1
|
Guan B, Chen F, Wu Z, Wang C, Yang J. lncRNA PCGEM1 Regulates the Progress of Colorectal Cancer through Targeting miR-129-5p/SOX4. DISEASE MARKERS 2022; 2022:2876170. [PMID: 36193492 PMCID: PMC9526589 DOI: 10.1155/2022/2876170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer gene expression marker 1 (PCGEM1) has abnormal expression level in a variety of malignant tumor. However, the relationship between PCGEM1 and colorectal cancer is still unclear yet. This study is aimed at identifying the role of PCGEM1 in colorectal cancer. qRT-PCR was used to examine the expressions of the expression of lncRNA PCGEM1 and SOX4 in CRC tissues and cell lines. The biological functions of lncRNA PCGEM1 and SOX4 were examined by CCK-8 assay, Transwell assay, immunohistochemistry, western blotting, RNA interference, and gene overexpression techniques. Bioinformatics analysis was used to find the potential downstream molecule of PCGEM1 and miR-129-5p. The relationship between PCGEM1, miR-129-5p, and SOX4 was assessed by dual luciferase activity assay. We found that PCGEM1 is overexpressed in colorectal cancer cells and tissues, while miR-129-5p is underexpressed. SOX4 is overexpressed in colorectal cancer cells and tissues. Functionally, PCGEM1 silencing can significantly inhibit the proliferation, invasion, and migration of colorectal cancer cells. Mechanically, PCGEM1 acted as a sponge for miR-129-5p and absorbed its expression, and miR-129-5p was found to target SOX4, constructing the axis of PCGEM1/miR-129-5p/SOX4 in colorectal cancer. In conclusion, PCGEM1 mediates the proliferation, invasion, and migration of colorectal cancer cells by targeting miR-129-5p/SOX4 axis.
Collapse
Affiliation(s)
- Bingsheng Guan
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fazhi Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhenpeng Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingge Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Crespo M, León-Navarro DA, Martín M. Glutamatergic System is Affected in Brain from an Hyperthermia-Induced Seizures Rat Model. Cell Mol Neurobiol 2022; 42:1501-1512. [PMID: 33492599 PMCID: PMC11421758 DOI: 10.1007/s10571-021-01041-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
One of the most frequent neurological disorders in children is febrile seizures (FS), a risk for epilepsy in adults. Glutamate is the main excitatory neurotransmitter in CNS acting through ionotropic and metabotropic receptors. Excess of glutamate in the extracellular space elicits excitotoxicity and has been associated with neurological disorders, such as epilepsy. The removal of extracellular glutamate by excitatory amino acid transporters (EATT) plays an important neuroprotective role. GLT-1 is the main EAAT present in the cortex brain. On the other hand, an increase in metabotropic glutamate receptors 5 (mGlu5R) levels or their overstimulation have been related to the appearance of seizure events in different animal models and in temporal lobe epilepsy in humans. In this work, the status of several components of the glutamatergic system has been analysed in the cortex brain from an FS rat model at short (48 h) and long (20 days) term after hyperthermia-induced seizures. At the short term, we detected increased GLT-1 levels, reduced glutamate concentration, and unchanged mGlu5R levels, without neuronal loss. However, at the long term, an increase in mGlu5R levels together with a decrease in both GLT-1 and glutamate levels were observed. These changes were associated with the appearance of an anxious phenotype. These results suggest a neuroprotective role of the glutamatergic components mGlu5R and GLT-1 at the short term. However, this neuroprotective effect seems to be lost at the long term, leading to an anxious phenotype and suggesting an increased vulnerability and propensity to epileptic events in adults.
Collapse
Affiliation(s)
- M Crespo
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, Regional Centre of Biomedical Research (CRIB), Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain
| | - D A León-Navarro
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, Regional Centre of Biomedical Research (CRIB), Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain.
| | - M Martín
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, Regional Centre of Biomedical Research (CRIB), Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain
| |
Collapse
|
3
|
Novel acetylation-related gene signatures for predicting the prognosis of patients with colorectal cancer. Hum Cell 2022; 35:1159-1173. [PMID: 35604486 DOI: 10.1007/s13577-022-00720-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022]
Abstract
Histone acetylation may affect the tumorigenesis and prognosis of colorectal cancer (CRC). However, there is still a lack of studies exploring the effect of acetylation-related genes on the prognosis of CRC. To explore the role of acetylation-related genes in CRC prognosis using bioinformatics strategies, the expression data and survival information of CRC patients were collected from the Gene Expression Omnibus. The Molecular Signatures Database was used to select acetylation-related genes. Univariate and least absolute shrinkage and selection operator regression analyses were used to screen prognostic genes. Kaplan-Meier curves were plotted for survival analysis. Cibersort and pRRophetics were used to analyze immune infiltration and predict drug sensitivity, respectively. By implementing independent prognostic factors, a nomogram model was constructed. The result showed that a total of 48 prognostic genes which screened from the acetylation-related gene set were mainly enriched in ABC transporters and acetylation/deacetylation-related pathways. Three gene signatures (SDR16C5, MEAF6, and SOX4) were further defined, and a prognostic model was constructed that showed high sensitivity and specificity for predicting CRC prognosis in both training and validation cohorts. Patients with different prognostic risks also presented differential expression of gene signatures, infiltration of activated CD4 memory T cells, and drug sensitivity to bicalutamide, gefitinib, Lenalidomide, and imatinib. The nomogram suggested the potential of a risk score-based model in predicting 1- and 2-year survival in patients with CRC. In conclusion, we proposed three gene signatures from an acetylation-related gene set as potential targets for epigenetic therapy and constructed a prognostic model for CRC.
Collapse
|
4
|
Xiao L, Li X, Cao P, Fei W, Zhou H, Tang N, Liu Y. Interleukin-6 mediated inflammasome activation promotes oral squamous cell carcinoma progression via JAK2/STAT3/Sox4/NLRP3 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:166. [PMID: 35513871 PMCID: PMC9069786 DOI: 10.1186/s13046-022-02376-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Background Interleukin-6 (IL-6) has been reported to be critical in oral squamous cell carcinoma (OSCC). However, the set of pathways that IL-6 might activate in OSCC are not fully understood. Methods IL-6 and Sox4 expressions were first determined with RT-qPCR, ELISA, Western blot, or immunohistochemistry in OSCC tissues, and correlations between IL-6 and Sox4 expression and patient pathological characteristics were examined, and Kaplan–Meier approach was employed for evaluating the prognostic utility in OSCC patients. CCK-8, EdU stain and colony formation assays were utilized to test cell proliferation in vitro. Mechanistically, downstream regulatory proteins of IL-6 were verified through chromatin immunoprecipitation, luciferase reporter, pull-down, and the rescued experiments. Western blot was used for detecting protein expression. A nude mouse tumorigenicity assay was used to confirm the role of IL-6 and Sox4 in vivo. Results IL-6 was upregulated in OSCC tissues, and Sox4 expression was positively correlated with IL-6 expression. High IL-6 and Sox4 expression was closely related to tumor size, TNM stage, and a poorer overall survival. Besides, IL-6 could accelerate OSCC cell proliferation by activating inflammasome via JAK2/STAT3/Sox4/NLRP3 pathways in vitro and in vivo. Furthermore, STAT3 played as a transcription factor which positively regulated Sox4, and IL-6 promotes Sox4 expression by activating JAK2/STAT3 pathway. Moreover, through the rescue experiments, we further confirmed that IL-6 could promote proliferation and NLRP3 inflammasome activation via JAK2/STAT3/Sox4 pathway in OSCC cells. Finally, knockdown of Sox4 suppressed OSCC growth in vivo, and antagonized the acceleration of IL-6 on tumor growth. Conclusions We confirmed that IL-6 plays an oncogenic role in OSCC progression by activating JAK2/STAT3/Sox4/NLRP3 pathway, which might be the therapeutic targets for OSCC remedy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02376-4.
Collapse
Affiliation(s)
- Li Xiao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Xue Li
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Peilin Cao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Wei Fei
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Hao Zhou
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Na Tang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Yi Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
5
|
miR-539 activates the SAPK/JNK signaling pathway to promote ferropotosis in colorectal cancer by directly targeting TIPE. Cell Death Discov 2021; 7:272. [PMID: 34601499 PMCID: PMC8487425 DOI: 10.1038/s41420-021-00659-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a common tumor that harms human health with a high recurrence rate. It has been reported that the expression of microRNA-539 (miR-539) is low in several types of cancer, including CRC. Tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8/TIPE) is highly expressed in CRC and promotes the proliferation, migration and angiogenesis of CRC. However, the relationship between miR-539 and TIPE and the mechanisms by which they regulate the proliferation of CRC remain to be explored. We aimed to investigate the functions and mechanisms of miR-539 in CRC proliferation. Functionally, miR-539 can bind to and regulate the expression of TIPE, and miR-539 activates SAPK/JNK to downregulate the expression of glutathione peroxidase 4 (GPX4) and promote ferroptosis. Our data reveal the novel role of miR-539 in regulating ferroptosis in CRC via activation of the SAPK/JNK axis, providing new insight into the mechanism of abnormal proliferation in CRC and a novel potential therapeutic target for advanced CRC.
Collapse
|
6
|
Wang Z, Hu T, Jin C, Yu J, Zhu D, Liu J. The anti-tumor effect of miR-539-3p on colon cancer via regulating cell viability, motility, and nude mouse tumorigenicity with CDK14 inhibition. J Gastrointest Oncol 2020; 11:899-910. [PMID: 33209486 PMCID: PMC7657824 DOI: 10.21037/jgo-20-387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colon cancer is one of the major causes of morbidity and mortality worldwide. MicroRNAs (miRNAs) play important functions in the growth and metastasis of colon cancer. This study aimed to investigate the anti-tumor effect of micro ribonucleic acid 539-3p (miR-539-3p) on colon cancer via regulation of cell viability, motility, and nude mouse tumorigenicity with cyclin-dependent kinase 14 (CDK14) inhibition. METHODS The target relationship between miR-539-3p and CDK14 was predicted using TargetScan software, and were detected by luciferase reporter assay. Cell counting kit-8 (CCK-8) assay and flow cytometry were employed to examine cell proliferation and apoptosis. Western blotting was employed to measure the protein expression levels of p27, cleaved caspase-3, and epithelial (E)- and neural (N)-cadherin. The effect of miR-539-3p on tumor growth was evaluated by establishing a xenograft tumor model in nude mice. RESULTS The target relationship of CDK14 and miR-539-3p was identified as a negative regulator. Overexpression of miR-539-3p significantly inhibited SW620 and SW480 cell proliferation, promoted cell apoptosis, and suppressed cell invasion by targeting CDK14. The xenograft tumor model showed that the overexpression of miR-539-3p reduced tumor weight and volume. Immunohistochemical staining revealed that the overexpression of miR-539-3p inhibited the expression of Ki67 and E-cadherin. Additionally, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining showed that overexpression of miR-539-3p induced apoptosis. CONCLUSIONS Overexpression of miR-539-3p inhibited SW620 and SW480 cell proliferation, promoted cell apoptosis, and suppressed cell invasion by targeting CDK14. Therefore, miR-539-3p may be a useful diagnostic and therapeutic biomarker for colon cancer.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Tao Hu
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Chengwu Jin
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Jiangui Yu
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Dongqiang Zhu
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| | - Jian Liu
- Department of General Surgery, Chengdu Fifth People's Hospital, Chengdu, China
| |
Collapse
|
7
|
Nguyen TN, Nguyen HQ, Le DH. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by cross-platform gene expression analyses. PLoS One 2020; 15:e0229276. [PMID: 32542016 PMCID: PMC7295234 DOI: 10.1371/journal.pone.0229276] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Tyrosine is mainly degraded in the liver by a series of enzymatic reactions. Abnormal expression of the tyrosine catabolic enzyme tyrosine aminotransferase (TAT) has been reported in patients with hepatocellular carcinoma (HCC). Despite this, aberration in tyrosine metabolism has not been investigated in cancer development. In this work, we conduct comprehensive cross-platform study to obtain foundation for discoveries of potential therapeutics and preventative biomarkers of HCC. We explore data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Kaplan Meier plotter (KM plotter) and performed integrated analyses to evaluate the clinical significance and prognostic values of the tyrosine catabolic genes in HCC. We find that five tyrosine catabolic enzymes are downregulated in HCC compared to normal liver at mRNA and protein level. Moreover, low expression of these enzymes correlates with poorer survival in patients with HCC. Notably, we identify pathways and upstream regulators that might involve in tyrosine catabolic reprogramming and further drive HCC development. In total, our results underscore tyrosine metabolism alteration in HCC and lay foundation for incorporating these pathway components in therapeutics and preventative strategies.
Collapse
Affiliation(s)
- Tran N. Nguyen
- Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam
- * E-mail:
| | - Ha Q. Nguyen
- Department of Computer Vision, Vingroup Big Data Institute, Hanoi, Vietnam
| | - Duc-Hau Le
- Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam
| |
Collapse
|
8
|
Cai F, Chen L, Sun Y, He C, Fu D, Tang J. MiR-539 inhibits the malignant behavior of breast cancer cells by targeting SP1. Biochem Cell Biol 2020; 98:426-433. [PMID: 31742423 DOI: 10.1139/bcb-2019-0111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of microRNAs (miRNAs) is involved in the initiation and progression of human cancers. In our study, we found that miR-539 was down-regulated in breast cancer tissues and cell lines. Decreased expression of miR-539 was significantly associated with lymph node metastasis in patients with breast cancer. Overexpression of miR-539 inhibited the proliferation and promoted apoptosis of breast cancer cells. Moreover, highly expressed miR-539 significantly suppressed the epithelial-mesenchymal transition (EMT) and sensitized cells to cisplatin treatment. Mechanistically, miR-539 was found to target the specificity protein 1 (SP1) and down-regulated the expression of SP1 in breast cancer cells. Knockdown of miR-539 consistently increased the expression of SP1. The expression of miR-539 in breast cancer tissues was negatively correlated with the expression of SP1. Restoration of SP1 significantly attenuated the inhibitory effect of miR-539 on the proliferation of breast cancer cells. Taken together, our results indicate that miR-539 has a tumor suppressive role in breast cancer via targeting SP1, suggesting miR-539 as a promising target for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Fenglin Cai
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Luhong Chen
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Yuting Sun
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Chunlan He
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Deyuan Fu
- Department of General Surgery, Clinical Medical College of Yangzhou University & Northern Jiangsu People's Hospital, Yangzhou 225001, P.R. China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
| |
Collapse
|
9
|
Jishnu PV, Jayaram P, Shukla V, Varghese VK, Pandey D, Sharan K, Chakrabarty S, Satyamoorthy K, Kabekkodu SP. Prognostic role of 14q32.31 miRNA cluster in various carcinomas: a systematic review and meta-analysis. Clin Exp Metastasis 2020; 37:31-46. [PMID: 31813069 DOI: 10.1007/s10585-019-10013-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
Deregulated miR-379/miR-656 cluster expression is considered as important for carcinogenesis and can be used as a potential prognostic marker. Hence, the meta-analysis was conducted to test the utility of miR-379/miR-656 cluster as a prognostic marker in various cancers. A literature search was performed using Web of Science, PubMed and Cochrane Library to obtain relevant studies and were subjected to various subgroup and bioinformatics analyses. Selected twenty-three studies contained 13 cancer types comprising of 3294 patients from 7 nations. Univariate and multivariate data showed an association of high expression of miRNAs with the poor prognosis of cancer patients (p < 0.001). The subgroup analysis showed that lung cancer, breast cancer and papillary renal cell carcinoma (p < 0.001) have a negative association with the survival of patients. Our study is the first meta-analysis showing the association of miR-379/miR-656 cluster expression and overall survival, suggesting its potential as a prognostic indicator in multiple cancers.
Collapse
Affiliation(s)
- Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of Obstetrics, & Gynaecology, Kasturba Medical College, Manipal, MAHE, Manipal, India
| | - Krishna Sharan
- Department of Radiotherapy Oncology, Kasturba Medical College, Manipal, MAHE, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
10
|
Xu K, Xiong W, Zhao S, Wang B. MicroRNA-106b serves as a prognostic biomarker and is associated with cell proliferation, migration, and invasion in osteosarcoma. Oncol Lett 2019; 18:3342-3348. [PMID: 31452813 DOI: 10.3892/ol.2019.10666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to be involved in tumor progression of various human malignancies. The purpose of this study was to investigate the expression patterns and prognostic value of microRNA-106b (miR-106b) in osteosarcoma (OS) and to examine its functional role in OS progression. Reverse transcription-quantitative PCR (RT-qPCR) was used to estimate the expression of miR-106b in OS tissues and cells. The prognostic value of miR-106b in OS was evaluated by plotting Kaplan-Meier survival curves and performing Cox analyses. Cell experiments were carried out to examine the effects of miR-106b on OS cell proliferation, migration, and invasion. The expression of miR-106b was elevated in both OS tissues and cells compared with the expression in normal control tissues and cells (P<0.001). miR-106b expression was associated with metastasis (P=0.028) and Tumor-Node-Metastasis stage (P=0.017). Patients with high miR-106b expression levels had a poorer overall survival rate compared with those with low miR-106b expression levels (log-rank P=0.001). Multivariate Cox analyses indicated that miR-106b expression was an independent prognostic factor for patients with OS (hazard ratio=2.769; 95% confidence interval=1.369-5.599; P=0.005). The results of cell experiments implied that the upregulation of miR-106b could promote OS cell proliferation, migration and invasion, whereas the downregulation of miR-106b could suppress these functions (P<0.05). Taken together, this study's results indicated that the overexpression of miR-106b is associated with a poor prognosis for patients with OS and that overexpression promotes OS cell proliferation, migration, and invasion. This study may provide a novel prognostic biomarker and a candidate therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Ke Xu
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Wenhua Xiong
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Shoujun Zhao
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Bin Wang
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
11
|
Moran JD, Kim HH, Li Z, Moreno CS. SOX4 regulates invasion of bladder cancer cells via repression of WNT5a. Int J Oncol 2019; 55:359-370. [PMID: 31268162 PMCID: PMC6615919 DOI: 10.3892/ijo.2019.4832] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Sry-Related HMG-BOX-4 (SOX4) is a developmental transcription factor that is overexpressed in as many as 23% of bladder cancer patients; however, the role of SOX4 in bladder cancer tumorigenesis is not yet well understood. Given the many roles of SOX4 in embryonic development and the context-dependent regulation of gene expression, in this study, we sought to determine the role of SOX4 in bladder cancer and to identify SOX4-regulated genes that may contribute to tumorigenesis. For this purpose, we employed a CRISPR interference (CRISPRi) method to transcriptionally repress SOX4 expression in T24 bladder cancer cell lines, 'rescued' these cell lines with the lentiviral-mediated expression of SOX4, and performed whole genome expression profiling. The cells in which SOX4 was knocked down (T24-SOX4-KD) exhibited decreased invasive capabilities, but no changes in migration or proliferation, whereas rescue experiments with SOX4 lentiviral vector restored the invasive phenotype. Gene expression profiling revealed 173 high confidence SOX4-regulated genes, including WNT5a as a potential target of repression by SOX4. Treatment of the T24-SOX4-KD cells with a WNT5a antagonist restored the invasive phenotype observed in the T24-scramble control cells and the SOX4 lentiviral-rescued cells. High WNT5a expression was associated with a decreased invasion and WNT5a expression inversely correlated with SOX4 expression, suggesting that SOX4 can negatively regulate WNT5a levels either directly or indirectly and that WNT5a likely plays a protective role against invasion in bladder cancer cells.
Collapse
Affiliation(s)
- Josue D Moran
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA
| | - Hannah H Kim
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhenghong Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|