1
|
Mohd ON, Heng YJ, Wang L, Thavamani A, Massicott ES, Wulf GM, Slack FJ, Doyle PS. Sensitive Multiplexed MicroRNA Spatial Profiling and Data Classification Framework Applied to Murine Breast Tumors. Anal Chem 2024; 96:12729-12738. [PMID: 39044395 DOI: 10.1021/acs.analchem.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.
Collapse
Affiliation(s)
- Omar N Mohd
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yujing J Heng
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Lin Wang
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Abhishek Thavamani
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Erica S Massicott
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Gerburg M Wulf
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Frank J Slack
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Patrick S Doyle
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Yan L, Zhou R, Feng Y, Li R, Zhang L, Pan Y, Qiao X, Li P, Wei X, Xu C, Li Y, Niu X, Sun X, Lv Z, Tian Z. MiR-134-5p inhibits the malignant phenotypes of osteosarcoma via ITGB1/MMP2/PI3K/Akt pathway. Cell Death Discov 2024; 10:193. [PMID: 38664375 PMCID: PMC11045734 DOI: 10.1038/s41420-024-01946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Micro RNAs (miRs) have been implicated in various tumorigenic processes. Osteosarcoma (OS) is a primary bone malignancy seen in adolescents. However, the mechanism of miRs in OS has not been fully demonstrated yet. Here, miR-134-5p was found to inhibit OS progression and was also expressed at significantly lower levels in OS tissues and cells relative to normal controls. miR-134-5p was found to reduce vasculogenic mimicry, proliferation, invasion, and migration of OS cells, with miR-134-5p knockdown having the opposite effects. Mechanistically, miR-134-5p inhibited expression of the ITGB1/MMP2/PI3K/Akt axis, thus reducing the malignant features of OS cells. In summary, miR-134-5p reduced OS tumorigenesis by modulation of the ITGB1/MMP2/PI3K/Akt axis, suggesting the potential for using miR-134-5p as a target for treating OS.
Collapse
Affiliation(s)
- Lei Yan
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Ruoqi Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Long Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yongchun Pan
- Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaochen Qiao
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, 689 Huitong South Road, Jinzhong, Shanxi, 030600, China
| | - Pengcui Li
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Shanxi Bethune Hospital, Shanxi, China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Yuan Li
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China
| | - Xiaochen Niu
- The Fifth Clinical Medical College of Shanxi Medical University, Shanxi, China
| | - Xiaojuan Sun
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
- Department of orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue injury repair, 382 Wuyi Road, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
3
|
Ban E, Lim HJ, Kwon H, Song EJ. Practical magnetic bead-based capillary electrophoresis with laser-induced fluorescence for detecting endogenous miRNA in plasma. Heliyon 2023; 9:e22809. [PMID: 38125489 PMCID: PMC10730592 DOI: 10.1016/j.heliyon.2023.e22809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs crucial for gene regulation and implicated in various human diseases. Their potential as clinical prognostic and diagnostic biomarkers in biological fluids necessitates reliable detection methods. In this study, a combination of streptavidin-coupled magnetic beads and capillary electrophoresis with laser-induced fluorescence (CE-LIF) was used to extract and analyze plasma miRNAs. Specifically, miRNAs hybridized with a biotinylated fluorescent DNA probe were isolated from plasma using magnetic beads. These hybridized miRNAs were then directly injected into the CE-LIF system for analysis, eliminating the need for additional processing steps. Both the hybridization and bead-to-probe binding were executed concurrently, regulated by temperature and time. Through the optimization of magnetic bead extraction and CE-LIF conditions, we developed a highly sensitive assay for miR-21 quantification in plasma. The assay displayed remarkable linearity (R2 = 0.9975) within a 0.1-5 pM range and exhibited favorable precision (0.22-1.26 %) and accuracy (98.31-111.19 %). Importantly, we successfully detected endogenous miR-21 in plasma samples from both a lung cancer patient and healthy adults, revealing a 1.7-fold overexpression of miR-21 in lung cancer plasma relative to normal samples. Our findings suggest that this developed system offers a simple and sensitive approach for detecting endogenous miRNAs in plasma, showing its potential utility in disease diagnostics. To our knowledge, this is the first study to utilize CE-LIF for plasma miRNA detection.
Collapse
Affiliation(s)
| | | | - Haejin Kwon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
4
|
Zhang C, Wu M, Hu S, Shi S, Duan Y, Hu W, Li Y. Label-Free, High-Throughput, Sensitive, and Logical Analysis Using Biomimetic Array Based on Stable Luminescent Copper Nanoclusters and Entropy-Driven Nanomachine. Anal Chem 2023; 95:11978-11987. [PMID: 37494597 DOI: 10.1021/acs.analchem.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of an array for high-throughput and logical analysis of biomarkers is significant for disease diagnosis. DNA-templated copper nanoclusters (CuNCs) have a strong potential to serve as a label-free photoluminescence source in array platforms, but their luminescent stability and sensitivity need to be improved. Herein, we report a facile, sensitive, and robust biomimetic array assay by integrating with stable luminescent CuNCs and entropy-driven nanomachine (EDN). In this strategy, the luminescent stability of CuNCs was improved by adding fructose in CuNCs synthesis to offer a reliable label-free signal. Meanwhile, the DNA template for CuNCs synthesis was introduced into EDN with excellent signal amplification ability, in which the reaction triggered by target miRNA would cause the blunt/protruding conformation change of 3'-terminus accompanied by the production or loss of luminescence. In addition, a biomimetic array fabricated by photonic crystals (PCs) physically enhanced the emitted luminescent signal of CuNCs and achieved high-throughput signal readout by a microplate reader. The proposed assay can isothermally detect as low as 4.5 pM of miR-21. Moreover, the logical EDN was constructed to achieve logical analysis of multiple miRNAs by "AND" or "OR" logic gate operation. Therefore, the proposed assay has the advantages of label-free property, high sensitivity, flexible design, and high-throughput analysis, which provides ideas for developing a new generation of facile and smart platforms in the fields of biological analysis and clinical application.
Collapse
Affiliation(s)
- Chuyan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Shunming Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shaorui Shi
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Laboratory Medicine, Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Wenchuang Hu
- State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Mlika M, Mezni F. The use of biomarkers in the diagnosis of lung cancer. LA TUNISIE MEDICALE 2023; 101:398-403. [PMID: 38372537 PMCID: PMC11217978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/16/2023] [Indexed: 02/20/2024]
Abstract
Using a simple 10 to 20 milliliters of blood sample in order to make the diagnosis of lung cancer is the dream of every patient and practitioner. In fact, even if tissue samples or bronchial liquid represent the gold standard for microscopic diagnosis, using less invasive procedures represented the aim of many researches published in the literature. The utility of biomarkers has been widely reported in screening context, mainly in association to low dose CT-scan, or in therapeutic context in order to highlight therapeutic targets or to change treatment in a context of resistance to target therapies. The use of biomarkers in a diagnostic context has been recently highlighted in the literature. The authors aimed to present a general review of different biomarkers that could be used in the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Mona Mlika
- Pathology Department, Traumatology and Burn Center Ben Arous - University of Tunis el Manar, Faculty of Medicine of Tunis
| | - Faouzi Mezni
- Pathology Department, Abderrahmen Mami Hospital, Ariana, University of Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| |
Collapse
|
6
|
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83:384-398. [PMID: 33484868 PMCID: PMC8046427 DOI: 10.1016/j.semcancer.2021.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.
Collapse
Affiliation(s)
- Shama Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajer Manzoor
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simmone Siddiqui
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nithya Mariappan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iram Zafar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aamir Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
MicroRNAs as Potential Biomarkers in the Differential Diagnosis of Lipomatous Tumors and Their Mimics. Int J Mol Sci 2022; 23:ijms23147804. [PMID: 35887151 PMCID: PMC9322088 DOI: 10.3390/ijms23147804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Adipocytic tumors are the most common subtype of soft tissue tumors. In current clinical practice, distinguishing benign lipomas from well-differentiated liposarcomas (WDLPS), as well as dedifferentiated liposarcomas (DDLPS) from their morphologic mimics, remains a significant diagnostic challenge. This is especially so when examining small biopsy samples and without the aid of additional ancillary tests. Recognizing the important role that microRNAs (miRNAs) play in tumorigenesis and their potential utility in tumor classification, we analyzed routine clinical tissue samples of benign and malignant lipomatous tumors, as well as other sarcoma mimics, to identify distinguishing miRNA-based signatures that can aid in the differential diagnosis of these entities. We discovered a 6-miRNA signature that separated lipomas from WDLPS with high confidence (AUC of 0.963), as well as a separate 6-miRNA signature that distinguished DDLPS from their more aggressive histologic mimics (AUC of 0.740). Functional enrichment analysis unveiled possible mechanistic involvement of these predictive miRNAs in adipocytic cancer-related biological processes and pathways such as PI3K/AKT/mTOR and MAPK signaling, further supporting the relevance of these miRNAs as biomarkers for adipocytic tumors. Our results demonstrate that miRNA expression profiling may potentially be used as an adjunctive tool for the diagnosis of benign and malignant adipocytic tumors. Further validation studies are warranted.
Collapse
|
8
|
Application Value of Serum TK1 and PCDGF, CYFRA21-1, NSE, and CEA plus Enhanced CT Scan in the Diagnosis of Nonsmall Cell Lung Cancer and Chemotherapy Monitoring. JOURNAL OF ONCOLOGY 2022; 2022:8800787. [PMID: 35368891 PMCID: PMC8975651 DOI: 10.1155/2022/8800787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
Objective To assess the application value of serum thymidine kinase 1 (TK1) and PC cell-derived growth factor (PCDGF), cytokeratin 19 fragment 21-1 (CYFRA21-1), neuron-specific enolase (NSE), and carcinoembryonic antigen (CEA) plus enhanced CT scan in the diagnosis of nonsmall cell lung cancer (NSCLC) and chemotherapy monitoring. Methods Between April 2019 and April 2021, 30 patients with NSCLC assessed for eligibility treated in our institution were included in the experimental group, and 30 healthy individuals screened out from physical examinations were recruited in the control group. The chemotherapy regimens included gemcitabine plus cisplatin, pemetrexed disodium plus cisplatin, and vinorelbine plus cisplatin. The application value of serum TK1, PCDGF, CYFRA21-1, NSE, CEA, and enhanced CT scan in the diagnosis and chemotherapy monitoring of NSCLC was analyzed. Results Before treatment, the eligible patients had significantly higher serum levels of TK1, PCDGF, CYFRA21-1, NSE, and CEA than those of the healthy individuals included (P < 0.05). Clinical efficacy was categorized into good and poor, and the good efficacy included complete response and partial response, with the poor efficacy including stable disease and progressive disease. Patients with good clinical efficacy had lower levels of serum TK1, PCDGF, CYFRA21-1, NSE, and CEA than those with poor efficacy (P < 0.05). Joint detection showed a larger area under the curve (AUC) (0.900; 95%CI, 0.812-0.988), a higher sensitivity, and a superior detection outcome to the stand-alone detection (P < 0.05). Diagnostic results were similar between joint detection and pathological examination (P > 0.05). Conclusion The application of serum TK1, PCDGF, CYFRA21-1, NSE, and CEA assay plus enhanced CT scan shows high sensitivity and diagnostic accuracy in the diagnosis and chemotherapy monitoring of nonsmall cell lung cancer and thus provides a diagnostic reference basis.
Collapse
|
9
|
Wang J, Sun J, Zhang J, Shen C, Zhang X, Xu J. Engineered G-Quadruplex-Embedded Self-Quenching Probes Regulate Single Probe-Based Multiplex Isothermal Amplification to Light Road Lamp Probes for Sensitized Determination of microRNAs. Anal Chem 2022; 94:4437-4445. [PMID: 35234452 DOI: 10.1021/acs.analchem.1c05402] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Design of oligonucleotide probe-based isothermal amplification with the ability to identify miRNA biomarkers is crucial for molecular diagnostics. In this work, we engineered a miRNA-21-responsive G-quadruplex-embedded self-quenching probe (GE-SQP) that can regulate single probe-based multiplex amplifications. The free GE-SQP is tightly locked in a quenching state with no active G-quadruplexes. Introduction of target miRNA to hybridize with GE-SQP would induce a multiplex isothermal amplification to significantly build a lot of one-bulb-contained road lamp probe (OC-RLP) and two-bulb-contained road lamp probe (TC-RLP) using G-quadruplex as the lamp bulb. When lightened by thioflavin T (ThT), beams of fluorescence were emitted to show the presented miRNA-21. Specially, the whole amplification is only a one probe-involved one-step reaction without any wasted species. The mix-to-detection and all-in amplification behavior allows the sensing system a maximally maintained operation simplicity and high assay performance. In such a way, the detection range of miRNA-21 is from 1 fM to 1 nM with a limit of detection of 0.86 fM. The practicability was demonstrated by determining miRNA-21 from serum samples with acceptable results. We expect that this method can open a new avenue for exploring advanced biosensors with improved analytical performances.
Collapse
Affiliation(s)
- Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, P.R. China
| | - Jiayin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, P.R. China
| | - Jing Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, P.R. China
| | - Chenlin Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei 230032, P.R. China
| | - Xinlei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
10
|
Hassanein SS, Ibrahim SA, Abdel-Mawgood AL. Cell Behavior of Non-Small Cell Lung Cancer Is at EGFR and MicroRNAs Hands. Int J Mol Sci 2021; 22:12496. [PMID: 34830377 PMCID: PMC8621388 DOI: 10.3390/ijms222212496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a complex disease associated with gene mutations, particularly mutations of Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) and epidermal growth factor receptor (EGFR). Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the two major types of lung cancer. The former includes most lung cancers (85%) and are commonly associated with EGFR mutations. Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs), including erlotinib, gefitinib, and osimertinib, are effective therapeutic agents in EGFR-mutated NSCLC. However, their effectiveness is limited by the development (acquired) or presence of intrinsic drug resistance. MicroRNAs (miRNAs) are key gene regulators that play a profound role in the development and outcomes for NSCLC via their role as oncogenes or oncosuppressors. The regulatory role of miRNA-dependent EGFR crosstalk depends on EGFR signaling pathway, including Rat Sarcoma/Rapidly Accelerated Fibrosarcoma/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase 1/2 (Ras/Raf/MEK/ERK1/2), Signal Transducer and Activator of Transcription (STAT), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-kB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Janus kinase 1 (JAK1), and growth factor receptor-bound protein 2 (GRB2). Dysregulated expression of miRNAs affects sensitivity to treatment with EGFR-TKIs. Thus, abnormalities in miRNA-dependent EGFR crosstalk can be used as diagnostic and prognostic markers, as well as therapeutic targets in NSCLC. In this review, we present an overview of miRNA-dependent EGFR expression regulation, which modulates the behavior and progression of NSCLC.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | | | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
| |
Collapse
|
11
|
Saviana M, Romano G, Le P, Acunzo M, Nana-Sinkam P. Extracellular Vesicles in Lung Cancer Metastasis and Their Clinical Applications. Cancers (Basel) 2021; 13:5633. [PMID: 34830787 PMCID: PMC8616161 DOI: 10.3390/cancers13225633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogenous membrane-encapsulated vesicles secreted by every cell into the extracellular environment. EVs carry bioactive molecules, including proteins, lipids, DNA, and different RNA forms, which can be internalized by recipient cells, thus altering their biological characteristics. Given that EVs are commonly found in most body fluids, they have been widely described as mediators of communication in several physiological and pathological processes, including cancer. Moreover, their easy detection in biofluids makes them potentially useful candidates as tumor biomarkers. In this manuscript, we review the current knowledge regarding EVs and non-coding RNAs and their role as drivers of the metastatic process in lung cancer. Furthermore, we present the most recent applications for EVs and non-coding RNAs as cancer therapeutics and their relevance as clinical biomarkers.
Collapse
Affiliation(s)
- Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.S.); (G.R.); (P.L.); (M.A.)
| |
Collapse
|
12
|
A simple "signal off-on" fluorescence nanoplatform for the label-free quantification of exosome-derived microRNA-21 in lung cancer plasma. Mikrochim Acta 2021; 188:397. [PMID: 34716495 DOI: 10.1007/s00604-021-05051-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
A simple nanoplatform based on molybdenum disulfide (MoS2) nanosheets, a fluorescence quencher (signal off), and a hybridization chain reaction (HCR) signal amplification (signal on) used for the enzyme-free, label-free, and low-background signal quantification of microRNA-21 in plasma exosome is reported. According to the sequence of microRNA-21, carboxy-fluorescein (FAM)-labeled hybridization probe 1 (FAM-H1) and hybridization probes 2 (FAM-H2) were designed with excitation maxima at 488 nm and emission maxima at 518 nm. MoS2 nanosheets could adsorb FAM-H1 and FAM-H2 and quenched their fluorescence signals to reduce the background signal. However, HCR was triggered when microRNA-21 was present. Consequently, HCR products containing a large number of FAM fluorophores can emit a strong fluorescence at 518 nm and could realize the detection of microRNA-21 as low as 6 pmol/L and had a wide linear relation of 0.01-25 nmol/L. This assay has the ability of single-base mismatch recognition and could identify microRNA-21 with high specificity. Most importantly, this approach was successfully applied to the detection of plasma exosomal microRNA-21 in patients with lung cancer, and it is proposed that other targets can also be detected by changing the FAM-H1 and FAM-H2 corresponding to the target sequence. Thus, a novel, hands-on strategy for liquid biopsy was proposed and has a potential application value in the early diagnosis of lung cancer.
Collapse
|
13
|
Li LZ, Wu ZZ, Lv Z. The Clinical Significance of miR-21 in Guiding Chemotherapy for Patients with Osteosarcoma. Pharmgenomics Pers Med 2021; 14:1247-1261. [PMID: 34616172 PMCID: PMC8488037 DOI: 10.2147/pgpm.s321637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The present study aims to explore the correlation between osteosarcoma (OS) chemosensitivity and the expression levels of serum and tumor tissue micro-ribonucleic acid-21 (miR-21). Methods The relevant miR-21 expression levels in 30 patients with OS were detected, and the gender, age, tumor location, pathological type, Enneking stage, and miR-21 expression changes before and after chemotherapy were retrospectively analyzed. Results Serum and tumor tissue miR21 expression levels were significantly higher in patients with OS than in control subjects; the serum miR-21 expressions before and after chemotherapy were not related to patient age and gender. The effective chemotherapy group showed significant differences in miR-21 expression levels before and after chemotherapy. Conclusion Serum and tumor tissue miR-21 expression levels in patients with OS are closely related to the effects of chemotherapy, making miR-21 a potential biomarker and therapeutic target for the diagnosis and evaluation of chemotherapy effects on patients with OS.
Collapse
Affiliation(s)
- Li-Zhi Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Zhuang-Zhuang Wu
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Zhi Lv
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| |
Collapse
|
14
|
Levy-Jurgenson A, Tekpli X, Kristensen VN, Yakhini Z. Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer. Sci Rep 2020; 10:18802. [PMID: 33139755 PMCID: PMC7606448 DOI: 10.1038/s41598-020-75708-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Digital analysis of pathology whole-slide images is fast becoming a game changer in cancer diagnosis and treatment. Specifically, deep learning methods have shown great potential to support pathology analysis, with recent studies identifying molecular traits that were not previously recognized in pathology H&E whole-slide images. Simultaneous to these developments, it is becoming increasingly evident that tumor heterogeneity is an important determinant of cancer prognosis and susceptibility to treatment, and should therefore play a role in the evolving practices of matching treatment protocols to patients. State of the art diagnostic procedures, however, do not provide automated methods for characterizing and/or quantifying tumor heterogeneity, certainly not in a spatial context. Further, existing methods for analyzing pathology whole-slide images from bulk measurements require many training samples and complex pipelines. Our work addresses these two challenges. First, we train deep learning models to spatially resolve bulk mRNA and miRNA expression levels on pathology whole-slide images (WSIs). Our models reach up to 0.95 AUC on held-out test sets from two cancer cohorts using a simple training pipeline and a small number of training samples. Using the inferred gene expression levels, we further develop a method to spatially characterize tumor heterogeneity. Specifically, we produce tumor molecular cartographies and heterogeneity maps of WSIs and formulate a heterogeneity index (HTI) that quantifies the level of heterogeneity within these maps. Applying our methods to breast and lung cancer slides, we show a significant statistical link between heterogeneity and survival. Our methods potentially open a new and accessible approach to investigating tumor heterogeneity and other spatial molecular properties and their link to clinical characteristics, including treatment susceptibility and survival.
Collapse
Affiliation(s)
- Alona Levy-Jurgenson
- Department of Computer Science, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
- Division of Medicine, Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Zohar Yakhini
- Department of Computer Science, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
- Interdisciplinary Center, Arazi School of Computer Science, Herzliya, 4610101, Israel.
| |
Collapse
|
15
|
Shen Y, Yang Y, Li Y. MiR-133a acts as a tumor suppressor in lung cancer progression by regulating the LASP1 and TGF-β/Smad3 signaling pathway. Thorac Cancer 2020; 11:3473-3481. [PMID: 33074595 PMCID: PMC7705923 DOI: 10.1111/1759-7714.13678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MiR-133a has been confirmed to be involved in the development of multiple cancers including non-small cell lung cancer (NSCLC). However, the precise molecular mechanism has not yet been fully elucidated. The purpose of this study was to investigate the functional role and underlying mechanism of miR-133a in the progression of NSCLC. METHODS Quantitative real-time PCR (qRT-PCR) was performed to measure miR-133a and LASP1 expression in NSCLC tissues and cells. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to detect cell viability. The protein levels were measured by western blot. The tumor growth was measured by xenograft tumor formation assay. RESULTS miR-133a was significantly decreased while LASP1 was increased in NSCLC tissues and cells compared with control groups. Moreover, overexpression of miR-133a suppressed cell viability, whereas miR-133a knockdown enhanced the viability of A549 cells. More importantly, LASP1 was verified as a direct target of miR-133a. Moreover, overexpression of miR-133a inhibited the epithelial-mesenchymal transition (EMT) and TGF-β/Smad3 pathways by regulating LASP1 in vitro. In addition, miR-133a mimic suppressed tumor growth by modulating the TGF-β/Smad3 pathway in vivo. CONCLUSIONS In conclusion, miR-133a acted as a tumor suppressor in lung cancer progression by regulating the LASP1 and TGF-β/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Yuyao Shen
- Department of Respiratory Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yan Yang
- Department of Respiratory Medicine, Shan Dong Chest Hospital, Jinan, China
| | - Yahua Li
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Lee KY, Im JH, Lin W, Gwak HS, Kim JH, Yoo BC, Kim TH, Park JB, Park HJ, Kim HJ, Kwon JW, Shin SH, Yoo H, Lee C. Nanoparticles in 472 Human Cerebrospinal Fluid: Changes in Extracellular Vesicle Concentration and miR-21 Expression as a Biomarker for Leptomeningeal Metastasis. Cancers (Basel) 2020; 12:cancers12102745. [PMID: 32987772 PMCID: PMC7598615 DOI: 10.3390/cancers12102745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Leptomeningeal metastasis (LM) is a terminal stage cancer manifestation to whole neuraxis via cerebrospinal fluid (CSF). Up to now, LM has no solid biomarkers for disease progression or treatment response. Extracellular vesicles (EVs) in biofluids have been recently studied to evaluate cancer diagnostics and prognostics. Here, we measured nanoparticles in human CSF from 472 patients with both Dynamic Light Scattering and Nanoparticle Tracking Analysis. We found that the size distribution and concentration of nanoparticles in LM-disseminating CSF were significantly different from those in non-LM CSF samples. Changes in EVs concentration showed a potential biomarker for the therapy response in patients undergoing intra-CSF chemotherapy. Our suggestion of combined biomarker of EVs concentration and onco-miR for LM chemotherapy could help physicians to perform this possible neurotoxic treatment with appropriate monitoring tools for the effectiveness. Abstract Leptomeningeal metastasis (LM) has a poor prognosis and is difficult to diagnose and predict the response of treatment. In this study, we suggested that the monitoring of changes in the concentration of extracellular vesicles in cerebrospinal fluid could help diagnose or predict outcomes for LM. We measured nanoparticles in 472 human cerebrospinal fluid (CSF) from patients including LM with both Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA) after two-step centrifugations. NTA revealed that the concentration of CSF nanoparticles was significantly increased in LM compared to other groups (2.80 × 108 /mL vs. 1.49 × 108 /mL, p < 0.01). Changes in NTA-measured nanoparticles concentration after intra-CSF chemotherapy were further examined in 33 non-small cell lung cancer patients with LM. Overall survival was longer for patients with increased EV than the others (442 vs. 165 days, p < 0.001). Markers of extracellular vesicles (CD9/CD63/CD81) significantly decreased in the EV-decreased group. MicroRNA-21 expression decreased in this favorable prognostic group, whereas it increased in the EV-decreased group. In conclusion, the elevated concentration of extracellular vesicles in cerebrospinal fluid in patients with LM may be a predictive marker for survival duration. Moreover, EV changes combined with microRNA-21 might be a biomarker for monitoring the efficacy of intracranial chemotherapy of LM in non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Kyue-Yim Lee
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (K.-Y.L.); (J.H.I.)
| | - Ji Hye Im
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (K.-Y.L.); (J.H.I.)
| | - Weiwei Lin
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (W.L.); (J.H.K.); (B.C.Y.); (T.H.K.); (J.B.P.)
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (K.-Y.L.); (J.H.I.)
- Correspondence: ; Tel.: +82-31-920-1666; Fax: +82-31-920-2798
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (W.L.); (J.H.K.); (B.C.Y.); (T.H.K.); (J.B.P.)
| | - Byong Chul Yoo
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (W.L.); (J.H.K.); (B.C.Y.); (T.H.K.); (J.B.P.)
| | - Tae Hoon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (W.L.); (J.H.K.); (B.C.Y.); (T.H.K.); (J.B.P.)
| | - Jong Bae Park
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (W.L.); (J.H.K.); (B.C.Y.); (T.H.K.); (J.B.P.)
| | - Hyeon Jin Park
- Center for Pediatric Cancer, National Cancer Center, Goyang 10408, Korea;
| | - Ho-Jin Kim
- Department of Neurology, National Cancer Center, Goyang 10408, Korea;
| | - Ji-Woong Kwon
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
| | - Sang Hoon Shin
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
| | - Heon Yoo
- Neuro-Oncology Clinic, National Cancer Center, Goyang 10408, Korea; (J.-W.K.); (S.H.S.); (H.Y.)
| | | |
Collapse
|
17
|
Goyal G, Ammanath G, Palaniappan A, Liedberg B. Stoichiometric Tuning of PNA Probes to Au 0.8Ag 0.2 Alloy Nanoparticles for Visual Detection of Nucleic Acids in Plasma. ACS Sens 2020; 5:2476-2485. [PMID: 32700531 DOI: 10.1021/acssensors.0c00667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Standard detection methods for nucleic acids, an important class of diagnostic biomarkers, are often laborious and cumbersome. In need for development of facile methodologies, localized surface plasmon resonance (LSPR) assays have been widely explored for both spectroscopic and visual detection of nucleic acids. Our sensing approach is based on monitoring changes in the LSPR band due to interaction between peptide nucleic acid (PNA) and plasmonic nanoparticles (NPs) in the presence/absence of target nucleic acid. We have investigated the importance of tuning the stoichiometry of PNA to NPs to enable "naked-eye" detection of nucleic acids at clinically relevant concentration ranges. Assaying in plasma is achieved by incorporation of silver in gold NPs (AuNPs) via an alloying process. The synthesized gold/silver alloy NPs reduce nonspecific adsorption of proteinaceous interferents in plasma. Furthermore, the gold/silver alloy NPs absorb in the most sensitive cyan to green transition zone (∼500 nm) yielding highly competitive visual limits of detection (LODs). The visual LOD (calculated objectively using the ΔE algorithm) for a model microRNA (mir21) using a productive combination of stoichiometric tuning of the PNA to NP ratio and compositional tuning of the NPs in buffer and plasma extract equals 200 pM (∼250 times lower than existing reports) and 3 nM, respectively. We envision that the proposed LSPR assay based on Au0.8Ag0.2NPs offers an avenue for rapid and sensitive on-site detection of nucleic acids in complex matrixes in combination with efficient target extraction kits.
Collapse
Affiliation(s)
- Garima Goyal
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Gopal Ammanath
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Alagappan Palaniappan
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Bo Liedberg
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
- Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637553
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
18
|
Meirelles RJDA, Lizarte Neto FS, Cirino MLDA, Novais PC, Gula IS, Silva JPD, Tazzima MDFGS, Fazan VPS, Durand MT, Tirapelli DPDC, Carvalho CAMD, Schimming BC, Molina CAF, Tucci Junior S, Tirapelli LF. Morphological and molecular analysis of apoptosis in the corpus cavernosum of rats submitted to a chronic alcoholism model. Acta Cir Bras 2020; 35:e202000305. [PMID: 32520081 PMCID: PMC7282493 DOI: 10.1590/s0102-865020200030000005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose To evaluate the effect of chronic alcoholism on morphometry and apoptosis mechanism and correlate with miRNA-21 expression in the corpus cavernosum of rats. Methods Twenty-four rats were divided into two experimental groups: Control (C) and Alcoholic group (A). After two weeks of an adaptive phase, rats from group A received only ethanol solution (20%) during 7 weeks. The morphometric and caspase-3 immunohistochemistry analysis were performed in the corpus cavernosum. The miRNA-21 expression was analyzed in blood and cavernous tissue. Results Chronic ethanol consumption decreased cavernosal smooth muscle area of alcoholic rats. The protein expression of caspase 3 in the corpus cavernosum was higher in A compared to the C group. There was no difference in the expression of miRNA-21 in serum and cavernous tissue between the groups. Conclusion Chronic ethanol consumption reduced smooth muscle area and increased caspase 3 in the corpus cavernosum of rats, without altered serum and cavernosal miR-21 gene expression.
Collapse
|
19
|
Doukas SG, Vageli DP, Lazopoulos G, Spandidos DA, Sasaki CT, Tsatsakis A. The Effect of NNK, A Tobacco Smoke Carcinogen, on the miRNA and Mismatch DNA Repair Expression Profiles in Lung and Head and Neck Squamous Cancer Cells. Cells 2020; 9:E1031. [PMID: 32326378 PMCID: PMC7226174 DOI: 10.3390/cells9041031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/04/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Tobacco smoking is a common risk factor for lung cancer and head and neck cancer. Molecular changes such as deregulation of miRNA expression have been linked to tobacco smoking in both types of cancer. Dysfunction of the Mismatch DNA repair (MMR) mechanism has also been associated with a poor prognosis of these cancers, while a cross-talk between specific miRNAs and MMR genes has been previously proposed. We hypothesized that exposure of lung and head and neck squamous cancer cells (NCI and FaDu, respectively) to tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is capable of altering the expression of MSH2 and MLH1, key MMR components, by promoting specific miRNA deregulation. We found that either a low (1 μM) or high (2 μM) dose of NNK induced significant upregulation of "oncomirs" miR-21 and miR-155 and downregulation of "tumor suppressor" miR-422a, as well as the reduction of MMR protein and mRNA expression, in NCI and FaDu, compared to controls. Inhibition of miR-21 restored the NNK-induced reduced MSH2 phenotype in both NCI and FaDu, indicating that miR-21 might contribute to MSH2 regulation. Finally, NNK exposure increased NCI and FaDu survival, promoting cancer cell progression. We provide novel findings that deregulated miR-21, miR-155, and miR-422a and MMR gene expression patterns may be valuable biomarkers for lung and head and neck squamous cell cancer progression in smokers.
Collapse
Affiliation(s)
- Sotirios G. Doukas
- Department of Forensic Sciences and Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.G.D.); (A.T.)
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT 06510, USA;
| | - Dimitra P. Vageli
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT 06510, USA;
| | - George Lazopoulos
- Department of Cardiothoracic Surgery, Medical School, University of Crete, 71110 Heraklion, Greece;
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71110 Heraklion, Greece;
| | - Clarence T. Sasaki
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT 06510, USA;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.G.D.); (A.T.)
| |
Collapse
|
20
|
Mujica ML, Zhang Y, Bédioui F, Gutiérrez F, Rivas G. Label-free graphene oxide–based SPR genosensor for the quantification of microRNA21. Anal Bioanal Chem 2020; 412:3539-3546. [DOI: 10.1007/s00216-020-02593-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
|
21
|
Li X, Xu M, Lv W, Yang X. Ultrasound-targeted microbubble destruction-mediated miR-767 inhibition suppresses tumor progression of non-small cell lung cancer. Exp Ther Med 2020; 19:3391-3397. [PMID: 32266038 DOI: 10.3892/etm.2020.8602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) have important roles in tumor progression in various human cancers. Ultrasound-targeted microbubble destruction (UTMD)-mediated gene transfection has been considered a useful tool for improving cancer treatment. The present study aimed to investigate the role of miR-767 in non-small cell lung cancer (NSCLC) and further analyze the effects of UTMD-mediated miR-767 inhibition on tumor progression. The expression of miR-767 was measured by reverse transcription-quantitative PCR. UTMD-mediated miR-767 inhibition was achieved by the co-transfection of microbubbles and miR-767 inhibitor in NSCLC cells. Cell proliferation was assessed by a CCK-8 assay and cell migration and invasion were examined by a Transwell assay. The expression of miR-767 was increased in NSCLC serum, tissues and cells compared with controls. The reduction of miR-767 in NSCLC cells led to the inhibition of cell proliferation, migration and invasion. UTMD increased the transfection efficiency of the miR-767 inhibitor in NSCLC cells, and UTMD-mediated miR-767 inhibition resulted in a more significant suppressive effect on tumor cell proliferation, migration and invasion. Taken together, the results indicated that miR-767 expression is upregulated in both NSCLC clinical samples and cells. The downregulation of miR-767 can inhibit tumor cell proliferation, migration and invasion, and these effects are further promoted by UTMD-mediated miR-767 inhibition, which indicated the potential of a UTMD-mediated miR-767 inhibition as a novel therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Ultrasonography, Zibo City Linzi District People's Hospital, Zibo, Shandong 255400, P.R. China
| | - Min Xu
- Department of Pediatric Surgery, Burns and Plastic Surgery, and Hemorrhoids Fistula Surgery, Yidu Central Hospital of Weifang, Shandong 262500, P.R. China
| | - Wenyu Lv
- Department of Oncology, Boxing People's Hospital, Binzhou, Shandong 256500, P.R. China
| | - Xingwang Yang
- Department of General Surgery, Zibo City Linzi District People's Hospital, Zibo, Shandong 255400, P.R. China
| |
Collapse
|
22
|
Kim Y, Sim J, Kim H, Bang SS, Jee S, Park S, Jang K. MicroRNA-374a Expression as a Prognostic Biomarker in Lung Adenocarcinoma. J Pathol Transl Med 2019; 53:354-360. [PMID: 31645091 PMCID: PMC6877434 DOI: 10.4132/jptm.2019.10.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lung cancer is the most common cause of cancer-related death, and adenocarcinoma is the most common histologic subtype. MicroRNA is a small non-coding RNA that inhibits multiple target gene expression at the post-transcriptional level and is commonly dysregulated in malignant tumors. The purpose of this study was to analyze the expression of microRNA-374a (miR-374a) in lung adenocarcinoma and correlate its expression with various clinicopathological characteristics. METHODS The expression level of miR-374a was measured in 111 formalin-fixed paraffin-embedded lung adenocarcinoma tissues using reverse transcription-quantitative polymerase chain reaction assays. The correlation between miR-374a expression and clinicopathological parameters, including clinical outcome, was further analyzed. RESULTS High miR-374 expression was correlated with advanced pT category (chi-square test, p=.004) and pleural invasion (chi-square test, p=.034). Survival analysis revealed that patients with high miR-374a expression had significantly shorter disease-free survival relative to those with low miR-374a expression (log-rank test, p=.032). CONCLUSIONS miR-374a expression may serve as a potential prognostic biomarker for predicting recurrence in early stage lung adenocarcinoma after curative surgery.
Collapse
Affiliation(s)
- Yeseul Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Jongmin Sim
- Department of Pathology, Samsung Medical Center, Seoul, Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Seong Sik Bang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Seungyun Jee
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Sungeon Park
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Zhang L, Huang P, Li Q, Wang D, Xu CX. miR-134-5p Promotes Stage I Lung Adenocarcinoma Metastasis and Chemoresistance by Targeting DAB2. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:627-637. [PMID: 31689617 PMCID: PMC6838973 DOI: 10.1016/j.omtn.2019.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/15/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
Despite surgery and adjuvant therapy, early-stage lung adenocarcinoma (LUAD) treatment often fails due to local or metastatic recurrence. However, the mechanism is largely unknown. Here, we report that increased expression levels of miR-134-5p and decreased levels of disabled-2 (DAB2) were significantly correlated with recurrence in stage I LUAD patients. Our data show that miR-134-5p overexpression or DAB2 silencing strongly stimulated LUAD cell metastasis and chemoresistance. In contrast, inhibition of miR-134-5p or overexpression of DAB2 strongly suppressed LUAD cell metastasis and overcame the insensitivity of chemoresistant LUAD cells to chemotherapy. In addition, we demonstrated that DAB2 is a target of miR-134-5p and that miR-134-5p stimulates chemoresistance and metastasis through DAB2 in LUAD. Taken together, these findings suggest that miR-134-5p and its target gene DAB2 have potential as a biomarker for predicting recurrence in stage I LUAD patients. Additionally, miR-134-5p inhibition or DAB2 restoration may be a novel strategy for inhibiting LUAD metastasis and overcoming LUAD cell resistance to chemotherapy.
Collapse
Affiliation(s)
- Liang Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Ping Huang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| | - Cheng-Xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
24
|
Zeng SG, Xie JH, Zeng QY, Dai SH, Wang Y, Wan XM, Zhou XL. MicroRNA-497-5p negatively regulates the proliferation and cisplatin resistance of non-small cell lung cancer cells by targeting YAP1 and TEAD1. Transl Cancer Res 2019; 8:2470-2480. [PMID: 35116999 PMCID: PMC8798955 DOI: 10.21037/tcr.2019.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/27/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are crucial regulators in the pathological processes and drug resistance of lung cancer. In this study, we investigated the role of miR-497-5p in modulating the function of non-small cell lung cancer (NSCLC). METHODS MiR-497-5p expression in lung cancer tissues and cells was evaluated by qRT-PCR. Cell proliferation was evaluated by CCK-8 assay and colony-formation assay. Cell cycle and cell apoptosis were detected by flow cytometry. The effect of miR-497-5p on the expression of Yes-associated protein 1 (YAP1) and TEA domain family member 1 (TEAD1) was analyzed by qRT-PCR, Western blot and luciferase activity assay. RESULTS The expression of miR-497-5p was significantly downregulated in lung cancer tissues and cells compared with paired normal tissues and cells. Overexpression of miR-497-5p induced growth retardation and apoptosis of A549 lung cancer cells. Mechanistically, YAP1 and TEAD1 were targeted and downregulated by miR-497-5p. Finally, we found that miR-497-5p increased cisplatin chemosensitivity in A549 cells. CONCLUSIONS MiR-497-5p suppresses cell proliferation and resistance to cisplatin in NSCLC by downregulating the expression of YAP1 and TEAD1.
Collapse
Affiliation(s)
- Shang-Gan Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jian-Hong Xie
- Department of Surgery, Suichuan People’s Hospital, Ji’an 343900, China
| | - Qun-Ying Zeng
- Department of Surgery, Suichuan People’s Hospital, Ji’an 343900, China
| | - Shao-Hua Dai
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue-Mei Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue-Liang Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
25
|
Lyu K, Xu Y, Yue H, Li Y, Zhao J, Chen L, Wu J, Zhu X, Chai L, Li C, Wen W, Lei W. Long Noncoding RNA GAS5 Acts As A Tumor Suppressor In Laryngeal Squamous Cell Carcinoma Via miR-21. Cancer Manag Res 2019; 11:8487-8498. [PMID: 31572003 PMCID: PMC6756574 DOI: 10.2147/cmar.s213690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose Long noncoding RNAs (lncRNAs) have been identified as an important class of noncoding RNAs that are deeply involved in multiple biological processes in tumorigenesis. This study is to investigate the critical roles and biological function of lncRNA growth arrest-specific 5 (GAS5) in tumorigenesis of laryngeal squamous cell carcinoma (LSCC). Patients and methods A total of 59 samples of LSCC and paired adjacent tissue, as well as corresponding clinicopathological information were collected. GAS5 expression in both LSCC tissues and human SUN1076 and SNU899 cell lines were analyzed by Real-time quantitative RT-PCR method. Ectopic expression of GAS5 by vector transfection in LSCC cell lines and followed by in vitro experiments was to investigate the critical roles and function of GAS5 in LSCC. Cell Counting Kit 8 (CCK8) assay and PE/7AAD Annexin V Apoptosis analysis was to evaluate cell proliferation ability and cell apoptosis. Co-transfection of GAS5 and miR-21 was to explore the interaction between GAS5 and miR-21 in LSCC. BAX and CDK6 protein level were analyzed by western blot method. Results This study demonstrated that GAS5 was significantly downregulated in LSCC tissue and human LSCC cell lines. GAS5 levels were correlated with the clinicopathological features of LSCC patients. In addition, the ectopic expression of GAS5 significantly inhibited cell proliferation and promoted apoptosis. Co-expression analyses indicated that GAS5 is negatively correlated with miR-21 in LSCC tissues. Overexpression of miR-21 eliminated GAS5-mediated cell apoptosis and proliferation suppression. Furthermore, GAS5, which upregulated BAX mRNA expression and downregulated CDK6 mRNA expression, was reversed by ectopic expression of miR-21. Conclusion GAS5 suppresses LSCC progression through the negative regulation of miR-21 and its targets involved in cell proliferation and apoptosis, indicating that GAS5 may serve as a biomarker and potential target for LSCC therapy.
Collapse
Affiliation(s)
- Kexing Lyu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yang Xu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huijun Yue
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yun Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jing Zhao
- Department of Otolaryngology, The Third Hospital of Heibei Medical University, Shijiazhuang, People's Republic of China
| | - Lin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jianhui Wu
- Department of Otolaryngology, Meizhou People's Hospital, Meizhou, People's Republic of China
| | - Xiaolin Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Liping Chai
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weiping Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenbin Lei
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
26
|
Li J, Zhang Z, Chen F, Hu T, Peng W, Gu Q, Sun Y. The Diverse Oncogenic and Tumor Suppressor Roles of microRNA-105 in Cancer. Front Oncol 2019; 9:518. [PMID: 31281797 PMCID: PMC6595394 DOI: 10.3389/fonc.2019.00518] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNA molecules that regulate gene expression at the post-transcriptional/translational level. They act a considerable role not only in the normal progress of development but also in aberrant human diseases, including malignancy. With accumulating proofs of miR-105, the complex role of miR-105 during cancer initiation and progression is gradually emerging. miR-105 acts as a tumor suppressor by inhibiting tumor growth and metastasis or as an oncogene by promoting tumor initiation and invasion, depending on particular tumor contexts and base-pairing genes. In this review, we emphasize the characteristics of miR-105 in cancer to elucidate various deadly tumors and discuss transcriptional regulations that may explain fluctuations in miR-105 expression. This review may provide new ideas for applying miR-105 as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Jie Li
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyuan Zhang
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangyu Chen
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Hu
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Peng
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiou Gu
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Diagnostic significance of circulating miRNAs in systemic lupus erythematosus. PLoS One 2019; 14:e0217523. [PMID: 31163082 PMCID: PMC6548426 DOI: 10.1371/journal.pone.0217523] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background In recent years, many studies focused on the association between the microRNAs (miRNAs) and the risk of systemic lupus erythematosus (SLE), especially miRNA-21 (miR-21). We aimed to investigate the role of circulating miRNAs, especially the miR-21, as a biomarker in detecting SLE. Methods We searched PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, and China National Knowledge Infrastructure through Mar 3th, 2019. We performed this meta-analysis in a fixed/random-effect model using Meta-disc 1.4 and STATA 15.1. Results A total of 17 relevant studies were eligible to analyze pooled accuracy. The overall performance of total mixed miRNAs (TmiRs) detection was: pooled sensitivity, 0.71 (95% confidence interval [CI], 0.69 to 0.72); pooled specificity, 0.81 (95%CI, 0.79 to 0.83); and area under the summary receiver operating characteristic curves value (SROC), 0.8797. The miR-21 detection was: pooled sensitivity, 0.68 (95%CI, 0.62 to 0.74); pooled specificity, 0.77 (95%CI, 0.69 to 0.84); and SROC, 0.8281. The meta-regression analysis showed that the type of samples was the sources of heterogeneity. The subgroup analysis suggested that detection in plasma group had the largest AUC of SROC in all the subgroups: pooled sensitivity, 0.8 (95%CI, 0.78 to 0.82); pooled specificity, 0.83 (95%CI, 0.8 to 0.86); and SROC, 0.9068. Conclusions Our meta-analysis demonstrated that circulating miRNAs might be potential novel biomarkers for detecting SLE, especially miR-21. Moreover, plasma is recommended as the clinical specimen for diagnostic detection.
Collapse
|