1
|
Jin Y, Hu H, Tian Y, Xu H, Yu Q, Cheng L, Guo X, Wang Z, Huang X, Wang X, Wang G. The role of LncRNA-MANCR induced by HIF-1α drive the malignant progression of pancreatic cancer by targeting miRNA-494/SIRT1 signaling axis under hypoxic conditions. Cancer Gene Ther 2025:10.1038/s41417-025-00900-0. [PMID: 40195439 DOI: 10.1038/s41417-025-00900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
This study revealed the prospective biological role and fundamental mechanisms of hypoxia-induced lncRNA-MANCR (MANCR), which is notably upregulated in pancreatic cancer (PC). This work uncovered the potential biological function and underlying mechanisms of hypoxia-induced MANCR, which is significantly elevated in PC. Microarray assays confirmed MANCR expression in the tissues of patients with PC and patients with chronic pancreatitis (CP), which positively correlated with sirtuin-1 (SIRT1) mRNA levels. Chromatin immunoprecipitation and luciferase assays were employed to gauge binding within the hypoxia-inducible factor-1α (HIF-1α)/MANCR/miRNA-494/SIRT1 pathway. Additionally, the association between MANCR expression and the clinical outcomes of patients with PC was confirmed. MANCR is significantly upregulated in PC cells under hypoxic conditions, which is closely linked to poor prognosis in patients with PC. Depletion of MANCR repressed in vitro proliferation, migration, and invasion of PC cells and in vivo growth of PC xenograft tumours. We further demonstrated that MANCR is localised in the cytoplasm and competitively binds miR-494, which directly targets SIRT1. Mechanically, the overexpression of SIRT1 improved the stability of the HIF-1α protein through deacetylation, leading to enhanced HIF-1α assembly. Moreover, MANCR underwent transcriptional regulation by HIF-1α in a hypoxic setting. This modulation was ascribed to HIF-1α binding to hypoxia response elements present in the MANCR promoter sequence. Data revealed the potential possibility of feedback between MANCR and HIF-1α, which may be conducive to hypoxia-induced oncogenicity and PC tumorigenesis, thereby providing a suitable therapeutic target.
Collapse
Affiliation(s)
- Yan Jin
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
- Oncological and Laparoscopic Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yitong Tian
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Han Xu
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Qiao Yu
- Ultrasound medicine department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Oncological and Laparoscopic Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Guo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Oncological and Laparoscopic Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zongwei Wang
- School of Medicine, Stanford University, San Francisco, CA, USA
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Oncological and Laparoscopic Surgery Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Tao Y, Liu J, Qiu W, Li Y. LncRNA MANCR is downregulated in non-small cell lung cancer and predicts poor survival. Discov Oncol 2025; 16:40. [PMID: 39806185 PMCID: PMC11730023 DOI: 10.1007/s12672-025-01739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND It is known that genomic instability contributes to cancer development. Mitotically associated long non-coding RNA (MANCR) has been reported to promote genomic stability, suggesting its involvement in cancers. Therefore, this study was conducted to investigate the role of MANCR in non-small cell lung cancer (NSCLC). METHODS After NSCLC (n = 60) and control (healthy subjects, n = 60) plasma samples, as well as NSCLC and paired non-tumor tissues from patients were collected, the levels of MANCR expression in plasma and tissues was detected using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Then the correlations of MANCR expression with clinical stages were confirmed. The diagnostic values of MANCR in both plasma and tissue samples for stage I/II NSCLC were analyzed using Receiver Operating Characteristic (ROC) curves. All NSCLC patients were monitored for 5 years to investigate the role of MANCR in the prediction of patients' survival. RESULTS MANCR expression was downregulated in both NSCLC plasma and tissue of NSCLC patients compared to controls (P < 0.05). Decreased MANCR expression levels from stage I to IV were observed. However, MANCR expression in non-tumor tissue was not significantly different between different stages (P > 0.05). Additionally, stage I/II NSCLC patients were separated from controls using MANCR in plasma and tumor tissues as biomarkers. Lower MANCR levels in plasma and tumor were closely correlated with patients' higher mortality rate. CONCLUSION MANCR is down-expressed in NSCLC patients and may serve as a diagnostic and prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Yunming Tao
- Department of Thoracic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Jie Liu
- Surgery Department, Weifang Yidu Central Hospital, No.4138 Linglongshan South Road, Qingzhou, Weifang, 262500, Shandong, China
| | - Wenxiao Qiu
- Internal Medicine Department, Qingdao Central Hospital, No.127 Siliu South Road, Shibei District, Qingdao, 266300, Shandong, China
| | - Yuanyuan Li
- Spinal Surgery Department, the Fourth People's Hospital of Jinan, No.50 Normal Road, Tianqiao District, Jinan, 250031, Shandong, China.
| |
Collapse
|
3
|
lncRNA MANCR Inhibits NK Cell Killing Effect on Lung Adenocarcinoma by Targeting miRNA-30d-5p. Cell Microbiol 2022. [DOI: 10.1155/2022/4928635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. NK cells are imperative in spontaneous antitumor response of various cancers. Currently, lncRNAs are considered important modulators of the tumor microenvironment. This study investigated the molecular mechanism by which mitotically associated long noncoding RNA (MANCR) controls killing effect of NK cells on lung adenocarcinoma (LUAD) in the tumor microenvironment. Methods. The interplay between MANCR and miRNA-30d-5p was analyzed by bioinformatics. Expression of MANCR mRNA and miRNA-30d-5p was examined using qRT-PCR. Dual-luciferase reporter and RIP assays were utilized to verify the targeted relationship between MANCR and miRNA-30d-5p. To investigate regulation of MANCR/miRNA-30d-5p axis in NK cell killing effect on LUAD cells, western blot tested the protein level of perforin and granzyme B. ELISA determined the level of IFN-γ. CytoTox 96 Non-Radioactive Cytotoxicity Assay kit was applied for cytotoxicity detection of NK cells. Perforin and granzyme B fluorescence intensity was measured via immunofluorescence, and cell apoptosis levels were also revealed via flow cytometry. Results. MANCR was found to be upregulated, while miRNA-30d-5p expression was downregulated in LUAD tissues. Overexpression of MANCR in LUAD cells significantly reduced NK cell IFN-γ secretion, expression of granzyme B and perforin, and NK cell killing effect. In addition, MANCR could target and downregulate miRNA-30d-5p expression, and miRNA-30d-5p overexpression reversed the inhibition of NK cell killing effect caused by MANCR overexpression. Conclusion. MANCR inhibited the killing effect of NK cells on LUAD via targeting and downregulating miRNA-30d-5p and provided new ideas for antitumor therapy based on tumor microenvironment.
Collapse
|
4
|
Ilieva M, Dao J, Miller HE, Madsen JH, Bishop AJR, Kauppinen S, Uchida S. Systematic Analysis of Long Non-Coding RNA Genes in Nonalcoholic Fatty Liver Disease. Noncoding RNA 2022; 8:ncrna8040056. [PMID: 35893239 PMCID: PMC9332188 DOI: 10.3390/ncrna8040056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
The largest solid organ in humans, the liver, performs a variety of functions to sustain life. When damaged, cells in the liver can regenerate themselves to maintain normal liver physiology. However, some damage is beyond repair, which necessitates liver transplantation. Increasing rates of obesity, Western diets (i.e., rich in processed carbohydrates and saturated fats), and cardiometabolic diseases are interlinked to liver diseases, including non-alcoholic fatty liver disease (NAFLD), which is a collective term to describe the excess accumulation of fat in the liver of people who drink little to no alcohol. Alarmingly, the prevalence of NAFLD extends to 25% of the world population, which calls for the urgent need to understand the disease mechanism of NAFLD. Here, we performed secondary analyses of published RNA sequencing (RNA-seq) data of NAFLD patients compared to healthy and obese individuals to identify long non-coding RNAs (lncRNAs) that may underly the disease mechanism of NAFLD. Similar to protein-coding genes, many lncRNAs are dysregulated in NAFLD patients compared to healthy and obese individuals, suggesting that understanding the functions of dysregulated lncRNAs may shed light on the pathology of NAFLD. To demonstrate the functional importance of lncRNAs in the liver, loss-of-function experiments were performed for one NAFLD-related lncRNA, LINC01639, which showed that it is involved in the regulation of genes related to apoptosis, TNF/TGF, cytokine signaling, and growth factors as well as genes upregulated in NAFLD. Since there is no lncRNA database focused on the liver, especially NAFLD, we built a web database, LiverDB, to further facilitate functional and mechanistic studies of hepatic lncRNAs.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
- Correspondence: (M.I.); (S.U.)
| | - James Dao
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (J.D.); (H.E.M.)
| | - Henry E. Miller
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (J.D.); (H.E.M.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA;
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Jens Hedelund Madsen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
| | - Alexander J. R. Bishop
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA;
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- May’s Cancer Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (J.H.M.); (S.K.)
- Bioinformatics Research Network, Atlanta, GA 30317, USA; (J.D.); (H.E.M.)
- Correspondence: (M.I.); (S.U.)
| |
Collapse
|
5
|
Tang J, Bao M, Chen J, Bin X, Xu X, Fang X, Tang Z. Long-Noncoding RNA MANCR is Associated With Head and Neck Squamous Cell Carcinoma Malignant Development and Immune Infiltration. Front Genet 2022; 13:911733. [PMID: 35873456 PMCID: PMC9305332 DOI: 10.3389/fgene.2022.911733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated an important role for mitotically associated long non-coding RNA (MANCR) in carcinogenesis and cancer progression, but its function has not been elucidated in head and neck squamous cell carcinoma (HNSCC). In this study, we identified differentially expressed MANCR from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases across 24 cancer types and included 546 HNSCC patients. Furthermore, high expression of MANCR was verified in HNSCC cell lines and tissue by using real-time quantitative PCR (RT-qPCR) analysis. The Kaplan–Meier analysis showed a worse prognosis with higher levels of MANCR for HNSCC. The univariate Cox regression and multivariate Cox regression analyses revealed that MANCR was a high-risk factor in patients with HNSCC. Thereafter, we carried out the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. It was indicated that MANCR participates in axonogenesis and ECM-receptor interaction. Further enrichment analysis demonstrated that the expression of MANCR was positively correlated with the T gamma delta (tgd) cells, neutrophils, and Th1 cells, and negatively correlated with the infiltration of B cells, CD8 T cells, and T cells in HNSCC. In addition, in vitro experiments showed that knockdown of MANCR in HNSCC cells markedly inhibited cell proliferation, migration, and invasion. We find that MANCR was elevated in HNSCC and promoted the malignant progression of HNSCC. MANCR may serve as a potential biomarker in prognostic implications for HNSCC patients. The positive correlation between MANCR and immune infiltration cells may provide novel therapeutic targets and personalized immune-based cancer therapy for HNSCC.
Collapse
|
6
|
Liu L, Li Z, Chen S, Cui H, Li X, Dai G, Zhong F, Hao W, Zhang K, Liu H. BRD4 promotes heterotopic ossification through upregulation of LncRNA MANCR. Bone Joint Res 2021; 10:668-676. [PMID: 34657451 PMCID: PMC8559974 DOI: 10.1302/2046-3758.1010.bjr-2020-0454.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aims Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that BRD4 may contribute to osteoblastic differentiation. The current study aims to determine the role of BRD4 in the pathogenesis of HO and whether it could be a potential target for HO therapy. Methods Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing BRD4, Alizarin red staining, RT-qPCR, and Western Blot (Runx2, alkaline phosphatase (ALP), Osx) were performed on hBMSCs. Results Overexpression of BRD4 enhanced while inhibition of Brd4 suppressed the osteogenic differentiation of hBMSCs in vitro. Overexpression of Brd4 increased the expression of mitotically associated long non-coding RNA (Mancr). Downregulation of Mancr suppressed the osteoinductive effect of BRD4. In vivo, inhibition of BRD4 by JQ1 significantly attenuated pathological bone formation in the ATP model (p = 0.001). Conclusion BRD4 was found to be upregulated in HO and Brd4-Mancr-Runx2 signalling was involved in the modulation of new bone formation in HO. Cite this article: Bone Joint Res 2021;10(10):668–676.
Collapse
Affiliation(s)
- Lei Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.,Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - ZiHao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Guo Dai
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Fangling Zhong
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Kuibo Zhang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| |
Collapse
|
7
|
Liu C, Li H, Li X, Zhao X, Zhang X. LncRNA MANCR positively affects the malignant progression of lung adenocarcinoma. BMC Pulm Med 2021; 21:272. [PMID: 34418982 PMCID: PMC8379881 DOI: 10.1186/s12890-021-01635-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/12/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND LncRNA MANCR (mitosis-related lncRNA, LINC00704) is deemed as a pivotal regulator in various cancers, yet the biological function it performs in lung adenocarcinoma (LUAD) was rarely reported. We made an in-depth study to clarify its effect during the progression of this cancer. METHODS Expression data and clinical information were first accessed from TCGA LUAD dataset ( https://portal.gdc.cancer.gov/repository ). Differentially expressed lncRNAs were identified. R package "survival" determined the survival significance of the lncRNA MANCR. GSEA software was applied to conduct single sample enrichment analysis. qRT-PCR was used to examine MANCR expression. The expression levels of related proteins were tested using Western blot assay. The impact of MANCR on cancer cell biological behaviors was investigated via cell function experiments. RESULTS MANCR was significantly upregulated in LUAD cells. It also resulted in a poor prognosis. When MANCR expression was down-regulated, the expression of proteins related to invasion and migration, cell cycle and proliferation was decreased, while the expression of proteins associated with apoptosis was elevated. Furthermore, in vitro experiments revealed that silencing MANCR inhibited cancer cell functions, blocked cell cycle progression while promoting cell apoptosis. CONCLUSION LncRNA MANCR can lead to enhanced proliferative, invasive and migratory abilities of cancer cells while reducing cell apoptosis. Hence, MANCR might be a novel biomarker of LUAD.
Collapse
Affiliation(s)
- Chang Liu
- Department of Integrated Medicine, Eastern Medical District of Chinese PLA General Hospital, Beijing, 100094, China
| | - Haifeng Li
- Department of Health Services, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Xiaojing Li
- Department of Medical Technology Support, Eastern Medical District of Chinese PLA General Hospital, Beijing, 100094, China
| | - Xuejing Zhao
- Department of Integrated Medicine, Eastern Medical District of Chinese PLA General Hospital, Beijing, 100094, China
| | - Xia Zhang
- Department of Medical Oncology, The Seventh Medical Center of PLA General Hospital, 5 Nanmencang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
8
|
Qi B, Liu H, Zhou Q, Ji L, Shi X, Wei Y, Gu Y, Mizushima A, Xia S. An immune-related lncRNA signature for the prognosis of pancreatic adenocarcinoma. Aging (Albany NY) 2021; 13:18806-18826. [PMID: 34285140 PMCID: PMC8351726 DOI: 10.18632/aging.203323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Recent evidence suggests that aberrant expression of long non-coding RNA (lncRNA) can drive the initiation and progression of malignancies. However, little is known about the prognostic potential of lncRNA. We aimed at constructing a lncRNA-based signature to improve the prognosis prediction of pancreatic adenocarcinoma (PAAD). The PAAD samples with clinical information were obtained from The Cancer Genome Atlas and International Cancer Genome Consortium. We established an eight-IRlncRNA signature in a training cohort. The prognostic value of eight-IRlncRNA signature was validated in two distinct cohorts when compared to other four prognostic models. We continued to analyze its independence in subgroups by univariate and multivariate Cox regression. We constructed a nomogram for clinicopathologic features and 1-, 3-, and 5-year overall survival performance. Moreover, Gene set enrichment analysis and Gene Set Variation Analysis distinguished the typical functions between high- and low-risk groups. In addition, we further observed the different correlations of immune cell between eight IRlncRNAs. Eight-IRlncRNA signature appears to be a good performer to predict the survival capability of PAAD patients, and the nomogram will enable PAAD patients to be more accurately managed in clinical practice.
Collapse
Affiliation(s)
- Bing Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Han Liu
- College of Stomatology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Qi Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Li Ji
- Department of Gastroenterology, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning, China
| | - Xueying Shi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yushan Wei
- Department of Scientific Research, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Yajun Gu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300000, Tianjin, China
| | - Akio Mizushima
- Department of Palliative Medicine, Graduate School of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
9
|
Radiosensitizing Pancreatic Cancer with PARP Inhibitor and Gemcitabine: An In Vivo and a Whole-Transcriptome Analysis after Proton or Photon Irradiation. Cancers (Basel) 2021; 13:cancers13030527. [PMID: 33573176 PMCID: PMC7866541 DOI: 10.3390/cancers13030527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is a devastating disease. Using modern technique of radiotherapy, such as proton therapy, may simultaneously enhance dose to the tumor and decrease dose to surrounding organ, thus limiting toxicity. Moreover, associating drugs to radiotherapy also increases its effectiveness on tumor. The aim of our study was to show the benefit of proton therapy compared to standard radiotherapy with photon, and the benefit of associating different drugs with those particles in vivo. Thus, our results displayed a higher effectiveness of associating proton therapy, gemcitabine and olaparib. Finally, we pointed out that treatment induced significant transcriptomic alterations. Abstract Over the past few years, studies have focused on the development of targeted radiosensitizers such as poly(ADP-ribose) polymerase inhibitors. We performed an in vivo study and a whole-transcriptome analysis to determine whether PARP inhibition enhanced gemcitabine-based chemoradiosensitization of pancreatic cancer xenografts, combined with either proton or photon irradiation. NMRI mice bearing MIA PaCa-2 xenografts were treated with olaparib and/or gemcitabine and irradiated with 10 Gy photon or proton. First, a significant growth inhibition was obtained after 10 Gy proton irradiation compared to 10 Gy photon irradiation (p = 0.046). Moreover, the combination of olaparib, gemcitabine and proton therapy significantly sensitized tumor xenografts, compared to gemcitabine (p = 0.05), olaparib (p = 0.034) or proton therapy (p < 0.0001) alone or to the association of olaparib, gemcitabine and radiotherapy (p = 0.024). Simultaneously, whole RNA sequencing profiling showed differentially expressed genes implicated in categories such as DNA repair, type I interferon signaling and cell cycle. Moreover, a large amount of lncRNA was dysregulated after proton therapy, gemcitabine and olaparib. This is the first study showing that addition of olaparib to gemcitabine-based chemoradiotherapy improved significantly local control in vivo, especially after proton therapy. RNA sequencing profiling analysis presented dynamic alteration of transcriptome after chemoradiation and identified a classifier of gemcitabine response.
Collapse
|