1
|
Parcharidis E, Andreadis D, Lazaridou E, Poulopoulos A. Expression of Epithelial-Mesenchymal Transition-Related Protein Claudin-10 in Oral Lichen Planus. Cureus 2025; 17:e80696. [PMID: 40242686 PMCID: PMC12000991 DOI: 10.7759/cureus.80696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2025] [Indexed: 04/18/2025] Open
Abstract
INTRODUCTION Oral lichen planus (OLP) is a common skin disease of indeterminate etiology that can affect the oral mucosa. Epithelial-mesenchymal transition (EMT) is a critical biological event that plays an essential role in several functions, such as development, tissue repair, and stem cell dynamics, but also in cancer progression. Claudin-10, an EMT-related protein, is encoded by the CLDN10 gene in humans. In the present work, we studied the immunohistological expression of Claudin-10 in OLP compared to normal oral mucosa. METHODS Fifty-one formalin-fixed, paraffin-embedded samples diagnosed as OLP from patients who did not receive any medications for the treatment of OLP until the initial biopsy and ten formalin-fixed, paraffin-embedded samples diagnosed as comprising histologically normal oral mucosa tissue from resection margins of fibromas were immunohistochemically stained and analyzed for Claudin-10. RESULTS The expression of Claudin-10 was evaluated as significantly enhanced in OLP epithelium compared to controls (p<0.001). In the superficial epithelial layer, the staining was markedly higher in OLP than in the controls (p=0.008), and in the stroma, the staining was significantly stronger in OLP (p=0.027). In the intermediate epithelial layer, the staining was significantly weaker in OLP than in the controls (p=0.001), and in the basal layer, the staining was markedly reduced in OLP (p<0.001). CONCLUSIONS The immunohistological expression of Claudin-10 has been described and analyzed in oral mucosal disease for the first time. Our findings indicate that the expression of Claudin-10 is dysregulated in OLP, possibly showing an interaction between the epithelium and the underlying tissue.
Collapse
Affiliation(s)
- Evangelos Parcharidis
- Department of Oral Medicine and Oral Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Dimitrios Andreadis
- Department of Oral Medicine and Oral Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Elizabeth Lazaridou
- Second Department of Dermatology-Venereology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Athanasios Poulopoulos
- Department of Oral Medicine and Oral Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
2
|
Davidson B, Doutel D, Holth A, Nymoen DA. Claudin-10 is a new candidate prognostic marker in metastatic high-grade serous carcinoma. Virchows Arch 2023; 482:975-982. [PMID: 37067588 PMCID: PMC10247576 DOI: 10.1007/s00428-023-03541-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
The objective of this study was to analyze the expression and prognostic role of the tight junction protein claudin-10 in high-grade serous carcinoma (HGSC). Claudin-10 protein expression by immunohistochemistry was analyzed in 588 HGSC (414 effusions, 174 surgical specimens). Expression in mesotheliomas (n = 97; 47 effusions, 50 surgical specimens) was studied for comparative purposes. CLDN10 mRNA expression by quantitative RT-PCR (qRT-PCR) was analyzed in 40 HGSC effusions. Claudin-10 protein expression was found in 360/588 (61%) HGSC vs. 19/97 (20%) mesotheliomas (p < 0.001), and was higher in HGSC surgical specimens compared to effusions (p < 0.001). qRT-PCR confirmed the presence of CLDN10 mRNA in HGSC effusions. High (> 25%) claudin-10 expression in HGSC effusions was significantly associated with shorter overall survival (OS; p = 0.036) and progression-free survival (PFS; p = 0.045) in univariate analysis, and was an independent prognosticator of OS in multivariate analysis (p = 0.045). In conclusion, claudin-10 protein expression is higher in HGSC compared to mesothelioma, although the diagnostic power of this marker appear to be lesser than other claudin family members. Claudin-10 expression in HGSC effusions is marker of more aggressive disease.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello N-0310, Oslo, Norway.
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
| | - Delfim Doutel
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello N-0310, Oslo, Norway
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Serviço de Anatomia Patológica, R. Prof. Lima Basto 1099-023, Lisbon, Portugal
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello N-0310, Oslo, Norway
| | - Dag Andre Nymoen
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, Montebello N-0310, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway
| |
Collapse
|
3
|
Wang DW, Zhang WH, Danil G, Yang K, Hu JK. The role and mechanism of claudins in cancer. Front Oncol 2022; 12:1051497. [PMID: 36620607 PMCID: PMC9818346 DOI: 10.3389/fonc.2022.1051497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Claudins are a tetraspan membrane protein multigene family that plays a structural and functional role in constructing tight junctions. Claudins perform crucial roles in maintaining cell polarity in epithelial and endothelial cell sheets and controlling paracellular permeability. In the last two decades, increasing evidence indicates that claudin proteins play a major role in controlling paracellular permeability and signaling inside cells. Several types of claudins are dysregulated in various cancers. Depending on where the tumor originated, claudin overexpression or underexpression has been shown to regulate cell proliferation, cell growth, metabolism, metastasis and cell stemness. Epithelial-to-mesenchymal transition is one of the most important functions of claudin proteins in disease progression. However, the exact molecular mechanisms and signaling pathways that explain why claudin proteins are so important to tumorigenesis and progression have not been determined. In addition, claudins are currently being investigated as possible diagnostic and treatment targets. Here, we discuss how claudin-related signaling pathways affect tumorigenesis, tumor progression, and treatment sensitivity.
Collapse
Affiliation(s)
- De-Wen Wang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Galiullin Danil
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Kun Yang
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Gastric Cancer Center and Laboratory of Gastric Cancer, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jian-Kun Hu,
| |
Collapse
|
4
|
Feng S, Lou K, Zou X, Zou J, Zhang G. The Potential Role of Exosomal Proteins in Prostate Cancer. Front Oncol 2022; 12:873296. [PMID: 35747825 PMCID: PMC9209716 DOI: 10.3389/fonc.2022.873296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is the most prevalent malignant tumor in men across developed countries. Traditional diagnostic and therapeutic methods for this tumor have become increasingly difficult to adapt to today’s medical philosophy, thus compromising early detection, diagnosis, and treatment. Prospecting for new diagnostic markers and therapeutic targets has become a hot topic in today’s research. Notably, exosomes, small vesicles characterized by a phospholipid bilayer structure released by cells that is capable of delivering different types of cargo that target specific cells to regulate biological properties, have been extensively studied. Exosomes composition, coupled with their interactions with cells make them multifaceted regulators in cancer development. Numerous studies have described the role of prostate cancer-derived exosomal proteins in diagnosis and treatment of prostate cancer. However, so far, there is no relevant literature to systematically summarize its role in tumors, which brings obstacles to the later research of related proteins. In this review, we summarize exosomal proteins derived from prostate cancer from different sources and summarize their roles in tumor development and drug resistance.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| | - Guoxi Zhang
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| |
Collapse
|
5
|
Yang L, Zhang W, Li M, Dam J, Huang K, Wang Y, Qiu Z, Sun T, Chen P, Zhang Z, Zhang W. Evaluation of the Prognostic Relevance of Differential Claudin Gene Expression Highlights Claudin-4 as Being Suppressed by TGFβ1 Inhibitor in Colorectal Cancer. Front Genet 2022; 13:783016. [PMID: 35281827 PMCID: PMC8907593 DOI: 10.3389/fgene.2022.783016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Claudins (CLDNs) are a family of closely related transmembrane proteins that have been linked to oncogenic transformation and metastasis across a range of cancers, suggesting that they may be valuable diagnostic and/or prognostic biomarkers that can be used to evaluate patient outcomes. However, CLDN expression patterns associated with colorectal cancer (CRC) remain to be defined.Methods: The mRNA levels of 21 different CLDN family genes were assessed across 20 tumor types using the Oncomine database. Correlations between these genes and patient clinical outcomes, immune cell infiltration, clinicopathological staging, lymph node metastasis, and mutational status were analyzed using the GEPIA, UALCAN, Human Protein Atlas, Tumor Immune Estimation Resource, STRING, Genenetwork, cBioportal, and DAVID databases in an effort to clarify the potential functional roles of different CLDN protein in CRC. Molecular docking analyses were used to probe potential interactions between CLDN4 and TGFβ1. Levels of CLDN4 and CLDN11 mRNA expression in clinical CRC patient samples and in the HT29 and HCT116 cell lines were assessed via qPCR. CLDN4 expression levels in these 2 cell lines were additionally assessed following TGFβ1 inhibitor treatment.Results: These analyses revealed that COAD and READ tissues exhibited the upregulation of CLDN1, CLDN2, CLDN3, CLDN4, CLDN7, and CLDN12 as well as the downregulation of CLDN5 and CLDN11 relative to control tissues. Higher CLDN11 and CLDN14 expression as well as lower CLDN23 mRNA levels were associated with poorer overall survival (OS) outcomes. Moreover, CLDN2 and CLDN3 or CLDN11 mRNA levels were significantly associated with lymph node metastatic progression in COAD or READ lower in COAD and READ tissues. A positive correlation between the expression of CLDN11 and predicted macrophage, dendritic cell, and CD4+ T cell infiltration was identified in CRC, with CLDN12 expression further being positively correlated with CD4+ T cell infiltration whereas a negative correlation was observed between such infiltration and the expression of CLDN3 and CLDN15. A positive correlation between CLDN1, CLDN16, and neutrophil infiltration was additionally detected, whereas neutrophil levels were negatively correlated with the expression of CLDN3 and CLDN15. Molecular docking suggested that CLDN4 was able to directly bind via hydrogen bond with TGFβ1. Relative to paracancerous tissues, clinical CRC tumor tissue samples exhibited CLDN4 and CLDN11 upregulation and downregulation, respectively. LY364947 was able to suppress the expression of CLDN4 in both the HT29 and HCT116 cell lines.Conclusion: Together, these results suggest that the expression of different CLDN family genes is closely associated with CRC tumor clinicopathological staging and immune cell infiltration. Moreover, CLDN4 expression is closely associated with TGFβ1 in CRC, suggesting that it and other CLDN family members may represent viable targets for antitumor therapeutic intervention.
Collapse
Affiliation(s)
- Linqi Yang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenqi Zhang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinxi Dam
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kai Huang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yihan Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhicong Qiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tao Sun
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Zhenduo Zhang
- Shijiazhuang People’s Hospital, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Wei Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| |
Collapse
|
6
|
Rao X, Jiang J, Liang Z, Zhang J, Zhuang Z, Qiu H, Luo H, Weng N, Wu X. Down-Regulated CLDN10 Predicts Favorable Prognosis and Correlates With Immune Infiltration in Gastric Cancer. Front Genet 2021; 12:747581. [PMID: 34721537 PMCID: PMC8548647 DOI: 10.3389/fgene.2021.747581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: CLDN10, an important component of the tight junctions of epithelial cells, plays a crucial role in a variety of tumors. The effect of CLDN10 expression in gastric cancer, however, has yet to be elucidated. Methods: Differential expression of CLDN10 at the mRNA and protein levels was evaluated using Oncomine, ULCAN, HPA and TIMER2.0 databases. Real-time polymerase chain reaction (RT-PCR) was utilized to further verify the expression of CLDN10 in vitro. Correlations between CLDN10 expression and clinical outcomes of gastric cancer were explored by Kaplan-Meier Plotter. Gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) were performed via LinkedOmics and GeneMANIA. The correlations between CLDN10 expression and immune cell infiltration and somatic copy number alternations (SCNA) in gastric cancer were explored by TIMER2.0 and GEPIA2.0. Results: CLDN10 expression was lower in gastric cancer compared to adjacent normal tissues, and associated with better prognosis. CLDN10 also showed significant differences at different T stages, Lauren classification, treatments and HER2 status. PPI and GSEA analysis showed that CLDN10 might be involved in signal transmission, transmembrane transport and metabolism. In some major immune cells, low expression of CLDN10 was associated with increased levels of immune cell infiltration. In addition, it was found that different SCNA status in CLDN10 might affect the level of immune cell infiltration. Furthermore, the expression of CLDN10 was significantly associated with the expression of several immune cell markers, especially B cell markers, follicular helper T cell (Tfh) markers and T cell exhaustion markers. Conclusion: Down-regulated CLDN10 was associated with better overall survival (OS) in gastric cancer. And CLDN10 may serve as a potential prognostic biomarker and correlate to immune infiltration levels in gastric cancer.
Collapse
Affiliation(s)
- XiongHui Rao
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - JianLong Jiang
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - ZhiHao Liang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - JianBao Zhang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - ZheHong Zhuang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - HuaiYu Qiu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Huixing Luo
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Nuoqing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
7
|
Wang L, Gao S. Identification of 5-methylcytosine-related signature for predicting prognosis in ovarian cancer. Biol Res 2021; 54:18. [PMID: 34187591 PMCID: PMC8240302 DOI: 10.1186/s40659-021-00340-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer is one of the most common malignancies often resulting in a poor prognosis. 5-methylcytosine (m5C) is a common epigenetic modification with roles in eukaryotes. However, the expression and function of m5C regulatory factors in ovarian cancer remained unclear. RESULTS Two molecular subtypes with different prognostic and clinicopathological features were identified based on m5C regulatory factors. Meanwhile, functional annotation showed that in the two subtypes, 452 differentially expressed genes were significantly related to the malignant progression of ovarian cancer. Subsequently, four m5C genes were screened to construct a risk marker predictive of overall survival and indicative of clinicopathological features of ovarian cancer, also the robustness of the risk marker was verified in external dataset and internal validation set. multifactorial cox regression analysis and nomogram demonstrated that risk score was an independent prognostic factor for ovarian cancer prognosis. CONCLUSION In conclusion, our results revealed that m5C-related genes play a critical role in tumor progression in ovarian cancer. Further detection of m5C methylation could provide a novel targeted therapy for treating ovarian cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110014, Liaoning, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110014, Liaoning, China.
| |
Collapse
|
8
|
Gao P, Peng T, Cao C, Lin S, Wu P, Huang X, Wei J, Xi L, Yang Q, Wu P. Association of CLDN6 and CLDN10 With Immune Microenvironment in Ovarian Cancer: A Study of the Claudin Family. Front Genet 2021; 12:595436. [PMID: 34249076 PMCID: PMC8262617 DOI: 10.3389/fgene.2021.595436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The claudin family is a group of transmembrane proteins related to tight junctions. While their involvement in cancer has been studied extensively, their relationship with the tumor immune microenvironment remains poorly understood. In this research, we focused on genes related to the prognosis of ovarian cancer and explored their relationship with the tumor immune microenvironment. METHODS The cBioPortal for Cancer Genomics database was used to obtain the genetic variation pattern of the claudin family in ovarian cancer. The ONCOMINE and Gene Expression Profiling Interactive Analysis (GEPIA) databases were used to explore the mRNA expression of claudins in cancers. The prognostic potential of these genes was examined via the Kaplan-Meier plotter. The enrichment of immunological signatures was determined by gene set enrichment analysis (GSEA). The correlations between claudins and the tumor immune microenvironment in ovarian cancer were investigated via the Tumor Immune Estimation Resource (TIMER). RESULTS Claudin genes were altered in 363 (62%) of queried patients/samples. Abnormal expression levels of claudins were observed in various cancers. Among them, CLDN3, CLDN4, CLDN6, CLDN10, CLDN15, and CLDN16 were significantly correlated with overall survival in patients with ovarian cancer. GSEA revealed that CLDN6 and CLDN10 were significantly enriched in immunological signatures of B cell, CD4 T cell, and CD8 T cell. Furthermore, CLDN6 and CLDN10 were negatively correlated and positively correlated, respectively, with immune cell infiltration in ovarian cancer. The expression levels of CLDN6 and CLDN10 were also negatively correlated and positively correlated, respectively, with various gene markers of immune cells in ovarian cancer. Thus, CLDN6 and CLDN10 may participate in immune cell infiltration in ovarian cancer, and these mechanisms may be the reason for poor prognosis. CONCLUSION Our study showed that CLDN6 and CLDN10 were prognostic biomarkers correlated with the immune microenvironment in ovarian cancer. These results reveal new roles for CLDN6 and CLDN10 as potential therapeutic targets in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Peipei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Peng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shitong Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Huang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juncheng Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Radu MR, Prădatu A, Duică F, Micu R, Creţoiu SM, Suciu N, Creţoiu D, Varlas VN, Rădoi VE. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021; 9:693. [PMID: 34207450 PMCID: PMC8235073 DOI: 10.3390/biomedicines9060693] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is one of the most common causes of death in women as survival is highly dependent on the stage of the disease. Ovarian cancer is typically diagnosed in the late stage due to the fact that in the early phases is mostly asymptomatic. Genomic instability is one of the hallmarks of ovarian cancer. While ovarian cancer is stratified into different clinical subtypes, there still exists extensive genetic and progressive diversity within each subtype. Early detection of the disorder is one of the most important steps that facilitate a favorable prognosis and a good response to medical therapy for the patients. In targeted therapies, individual patients are treated by agents targeting the changes in tumor cells that help them grow, divide and spread. Currently, in gynecological malignancies, potential therapeutic targets include tumor-intrinsic signaling pathways, angiogenesis, homologous-recombination deficiency, hormone receptors, and immunologic factors. Ovarian cancer is usually diagnosed in the final stages, partially due to the absence of an effective screening strategy, although, over the times, numerous biomarkers have been studied and used to assess the status, progression, and efficacy of the drug therapy in this type of disorder.
Collapse
Affiliation(s)
- Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Alina Prădatu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Romeo Micu
- Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sanda Maria Creţoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 01171 Bucharest, Romania
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
| | - Viorica Elena Rădoi
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
10
|
Zhang J, Chou X, Zhuang M, Zhu C, Hu Y, Cheng D, Liu Z. circKMT2D contributes to H 2O 2-attenuated osteosarcoma progression via the miR-210/autophagy pathway. Exp Ther Med 2020; 20:65. [PMID: 32963595 PMCID: PMC7490787 DOI: 10.3892/etm.2020.9193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) have been demonstrated to be involved in osteosarcoma (OS) development; however, the underlying mechanism of circKMT2D in OS progression remains unclear. The present study aimed to elucidate how circKMT2D could affect hydrogen peroxide (H2O2)-induced OS progression. H2O2 (100 µmol/l) was used to treat MG63 and U2OS cells. The cell viability, invasive ability, apoptosis and circKMT2D expression were detected using Cell Counting Kit-8 assay, Transwell assay, flow cytometry and reverse transcription-quantitative PCR, respectively. Furthermore, MG63 and U2OS cells transfected with circKMT2D short hairpin RNA and negative control were treated with H2O2, and circKMT2D expression and cell phenotype were determined. Dual-luciferase reporter assay was conducted to determine the association between circKMT2D and miR-210 expression level. Rescue experiments were conducted to examine the mechanisms through which circKMT2D and miR-210 could affect H2O2-treated MG63 cells. In addition, the effects of miR-210 on the expression of the autophagy-related proteins Beclin1 and p62 in H2O2-treated MG63 cells were detected by western blotting. An autophagy inhibitor was used to treat the MG63 cells, and whether miR-210 could affect the H2O2-treated MG63 cell phenotype through autophagy was investigated. The results demonstrated that H2O2 treatment promoted cell apoptosis and decreased cell viability, invasive ability and circKMT2D expression in MG63 and U2OS cells. Furthermore, circKMT2D knockdown decreased the cell viability and invasive ability and enhanced the apoptosis of H2O2-treated MG63 and U2OS cells. circKMT2D possessed binding sites for miR-210 and inhibited miR-210 expression. In H2O2-treated MG63 cells, miR-210 silencing partially reversed the circKMT2D knockdown-induced cell viability inhibition and apoptosis promotion. In addition, miR-210 elevated Beclin1 expression and decreased p62 expression in H2O2-treated MG63 cells. The use of the autophagy inhibitor partially reversed the miR-210 overexpression-induced promotion of apoptosis and inhibition of the viability and invasive ability of H2O2-treated MG63 cells. Taken together, these findings indicated that circKMT2D knockdown may contribute to the inhibition of H2O2-attenuated OS progression via miR-210/autophagy pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Xubin Chou
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Ming Zhuang
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Chenlei Zhu
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Yong Hu
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Dong Cheng
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| | - Zhiwei Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213001, P.R. China
| |
Collapse
|