1
|
Li Y, Wang H, Mao D, Che X, Chen Y, Liu Y. Understanding pre-metastatic niche formation: implications for colorectal cancer liver metastasis. J Transl Med 2025; 23:340. [PMID: 40098140 PMCID: PMC11912654 DOI: 10.1186/s12967-025-06328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
The liver is the most commonly metastasized organ in colorectal cancer (CRC), and distant metastasis is the primary cause of mortality from CRC. In recent years, researchers have discovered that tumor cells create a "pre-metastatic niche (PMN)" favorable to metastasis before reaching the metastatic location. This review discusses the many processes and mechanisms that lead to PMN formation in CRC, including gut microbiota, stem cell stimulation, immunocyte interactions, and the induction of extracellular vesicles that carry important information. It examines research methods and diagnostic and therapeutic approaches for treating metastatic CRC with PMN. The crucial significance of PMN formation in metastatic CRC is also highlighted.
Collapse
Affiliation(s)
- Yaqin Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyu Che
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Administration of Traditional Chinese Medicine of Jiangsu Province, Nanjing, China.
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Multi-Component of Traditional Chinese Medicine and MicroecologyResearch Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Administration of Traditional Chinese Medicine of Jiangsu Province, Nanjing, China.
| |
Collapse
|
2
|
Jabbarzadeh Kaboli P, Roozitalab G, Farghadani R, Eskandarian Z, Zerrouqi A. c-MET and the immunological landscape of cancer: novel therapeutic strategies for enhanced anti-tumor immunity. Front Immunol 2024; 15:1498391. [PMID: 39664377 PMCID: PMC11632105 DOI: 10.3389/fimmu.2024.1498391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Cellular mesenchymal-epithelial transition factor (c-MET), also known as hepatocyte growth factor receptor (HGFR), is a crucial receptor tyrosine kinase implicated in various solid tumors, including lung, breast, and liver cancers. The concomitant expression of c-MET and PD-L1 in tumors, such as hepatocellular carcinoma, highlights their prognostic significance and connection to therapeutic resistance. Cancer-associated fibroblasts and mesenchymal stromal cells produce hepatocyte growth factor (HGF), activating c-MET signaling in tumor cells and myeloid-derived suppressor cells (MDSC). This activation leads to metabolic reprogramming and increased activity of enzymes like glutaminase (GLS), indoleamine 2,3-dioxygenase (IDO), and arginase 1 (ARG1), depleting essential amino acids in the tumor microenvironment that are vital for effector immune cell function. This review highlights the interplay between tumor cells and myeloid-derived suppressor cells (MDSCs) that create an immunosuppressive environment while providing targets for c-MET-focused immunotherapy. It emphasizes the clinical implications of c-MET inhibition on the behavior of immune cells such as neutrophils, macrophages, T cells, and NK cells. It explores the potential of c-MET antagonism combined with immunotherapeutic strategies to enhance cancer treatment paradigms. This review also discusses the innovative cancer immunotherapies targeting c-MET, including chimeric antigen receptor (CAR) therapies, monoclonal antibodies, and antibody-drug conjugates, while encouraging the development of a comprehensive strategy that simultaneously tackles immune evasion and enhances anti-tumor efficacy further to improve the clinical prognoses for patients with c-MET-positive malignancies. Despite the challenges and variability in efficacy across different cancer subtypes, continued research into the molecular mechanisms and the development of innovative therapeutic strategies will be crucial.
Collapse
Affiliation(s)
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Zoya Eskandarian
- Research Institute Children’s Cancer Center, and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Abdessamad Zerrouqi
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Fu Z, Wang MW, Liu YH, Jiao Y. Impact of immunotherapy on liver metastasis. World J Gastrointest Surg 2024; 16:1969-1972. [PMID: 39087120 PMCID: PMC11287679 DOI: 10.4240/wjgs.v16.i7.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 07/22/2024] Open
Abstract
This editorial discusses the article "Analysis of the impact of immunotherapy efficacy and safety in patients with gastric cancer and liver metastasis" published in the latest edition of the World Journal of Gastrointestinal Surgery. Immunotherapy has achieved outstanding success in tumor treatment. However, the presence of liver metastasis (LM) restrains the efficacy of immunotherapy in various tumors, including lung cancer, colorectal cancer, renal cell carcinoma, melanoma, and gastric cancer. A decrease in CD8+ T cells and nature killer cells, along with an increase in macrophages and regulatory T cells, was observed in the microenvironment of LM, leading to immunotherapy resistance. More studies are necessary to determine the best strategy for enhancing the effectiveness of immunotherapy in patients with LM.
Collapse
Affiliation(s)
- Zhuo Fu
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Wei Wang
- Ministry of Health Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130000, Jilin Province, China
| | - Ya-Hui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
4
|
Wang R, Liu Y, Yu X, Wang W, Liu J. Joint DNA-RNA-based NGS for diagnosis and treatment of a rare CD47-MET fusion lung adenocarcinoma which was immunoresistant and savoltinib-sensitive: a case report. Front Immunol 2024; 15:1386561. [PMID: 38957460 PMCID: PMC11217332 DOI: 10.3389/fimmu.2024.1386561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Targeted therapy and immunotherapy are both important in the treatment of non-small-cell lung cancer (NSCLC). Accurate diagnose and precise treatment are key in achieving long survival of patients. MET fusion is a rare oncogenic factor, whose optimal detection and treatment are not well established. Here, we report on a 32-year-old female lung adenocarcinoma patient with positive PD-L1 and negative driver gene detected by DNA-based next-generation sequencing (NGS). A radical resection of the primary lesion after chemotherapy combined with PD-1 checkpoint inhibitor administration indicated primary immuno-resistance according to her pathological response and rapid relapse. A rare CD47-MET was detected by RNA-based NGS, which was confirmed by fluorescence in situ hybridization. Multiplex immunofluorescence revealed a PD-L1 related heterogeneous immunosuppressive microenvironment with little distribution of CD4+ T cells and CD8+ T cells. Savolitinib therapy resulted in a progression-free survival (PFS) of >12 months, until a new secondary resistance mutation in MET p.D1228H was detected by re-biopsy and joint DNA-RNA-based NGS after disease progression. In this case, CD47-MET fusion NSCLC was primarily resistant to immunotherapy, sensitive to savolitinib, and developed secondary MET p.D1228H mutation after targeted treatment. DNA-RNA-based NGS is useful in the detection of such molecular events and tracking of secondary mutations in drug resistance. To this end, DNA-RNA-based NGS may be of better value in guiding precise diagnosis and individualized treatment in this patient population.
Collapse
Affiliation(s)
- Rulan Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuejiao Yu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiewei Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Jabbarzadeh Kaboli P, Chen HF, Babaeizad A, Roustai Geraylow K, Yamaguchi H, Hung MC. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett 2024; 588:216780. [PMID: 38462033 DOI: 10.1016/j.canlet.2024.216780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
6
|
Suwatthanarak T, Thanormjit K, Suwatthanarak T, Acharayothin O, Methasate A, Chinswangwatanakul V, Tanjak P. Spatial Transcriptomic Profiling of Tetraspanins in Stage 4 Colon Cancer from Primary Tumor and Liver Metastasis. Life (Basel) 2024; 14:126. [PMID: 38255741 PMCID: PMC10817616 DOI: 10.3390/life14010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Stage 4 colon cancer (CC) presents a significant global health challenge due to its poor prognosis and limited treatment options. Tetraspanins, the transmembrane proteins involved in crucial cancer processes, have recently gained attention as diagnostic markers and therapeutic targets. However, their spatial expression and potential roles in stage 4 CC tissues remain unknown. Using the GeoMx digital spatial profiler, we profiled all 33 human tetraspanin genes in 48 areas within stage 4 CC tissues, segmented into immune, fibroblast, and tumor compartments. Our results unveiled diverse gene expression patterns across different primary tumor sub-regions. CD53 exhibited distinct overexpression in the immune compartment, hinting at a potential role in immune modulation. TSPAN9 was specifically overexpressed in the fibroblast compartment, suggesting involvement in tumor invasion and metastasis. CD9, CD151, TSPAN1, TSPAN3, TSPAN8, and TSPAN13 displayed specific overexpression in the tumor compartment, indicating potential roles in tumor growth. Furthermore, our differential analysis revealed significant spatial changes in tetraspanin expression between patient-matched stage 4 primary CC and metastatic liver tissues. These findings provide spatially resolved insights into the expression and potential roles of tetraspanins in stage 4 CC progression, proposing their utility as diagnostic markers and therapeutic targets. Understanding this landscape is beneficial for tailoring therapeutic strategies to specific sub-tumor regions in the context of stage 4 CC and liver metastasis.
Collapse
Affiliation(s)
- Thanawat Suwatthanarak
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (K.T.); (V.C.)
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (O.A.); (A.M.)
| | - Kullanist Thanormjit
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (K.T.); (V.C.)
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (O.A.); (A.M.)
| | - Tharathorn Suwatthanarak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (O.A.); (A.M.)
| | - Onchira Acharayothin
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (O.A.); (A.M.)
| | - Asada Methasate
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (O.A.); (A.M.)
| | - Vitoon Chinswangwatanakul
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (K.T.); (V.C.)
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (O.A.); (A.M.)
| | - Pariyada Tanjak
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (K.T.); (V.C.)
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.S.); (O.A.); (A.M.)
| |
Collapse
|
7
|
Chen H, Zhai C, Xu X, Wang H, Han W, Shen J. Multilevel Heterogeneity of Colorectal Cancer Liver Metastasis. Cancers (Basel) 2023; 16:59. [PMID: 38201487 PMCID: PMC10778489 DOI: 10.3390/cancers16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer liver metastasis (CRLM) is a highly heterogeneous disease. Therapies that target both primary foci and liver metastasis are severely lacking. Therefore, understanding the features of metastatic tumor cells in the liver is valuable for the overall control of CRLM patients. In this review, we summarize the heterogeneity exhibited in CRLM from five aspects (gene, transcriptome, protein, metabolism, and immunity). In addition to genetic heterogeneity, the other four aspects exhibit significant heterogeneity. Compared to primary CRC, the dysregulation of epithelial-mesenchymal transition (EMT)-related proteins, the enhanced metabolic activity, and the increased infiltration of immunosuppressive cells are detected in CRLM. Preclinical evidence shows that targeting the EMT process or enhancing cellular metabolism may represent a novel approach to increasing the therapeutic efficacy of CRLM.
Collapse
Affiliation(s)
| | | | | | | | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.C.); (C.Z.); (X.X.); (H.W.)
| |
Collapse
|
8
|
Gesualdi L, Berardini M, Scicchitano BM, Castaldo C, Bizzarri M, Filippini A, Riccioli A, Schiraldi C, Ferranti F, Liguoro D, Mancini R, Ricci G, Catizone A. ERK Signaling Pathway Is Constitutively Active in NT2D1 Non-Seminoma Cells and Its Inhibition Impairs Basal and HGF-Activated Cell Proliferation. Biomedicines 2023; 11:1894. [PMID: 37509533 PMCID: PMC10377482 DOI: 10.3390/biomedicines11071894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
c-MET/hepatocyte growth factor (HGF) system deregulation is a well-known feature of malignancy in several solid tumors, and for this reason this system and its pathway have been considered as potential targets for therapeutic purposes. In previous manuscripts we reported c-MET/HGF expression and the role in testicular germ cell tumors (TGCTs) derived cell lines. We demonstrated the key role of c-Src and phosphatidylinositol 3-kinase (PI3K)/AKT adaptors in the HGF-dependent malignant behavior of the embryonal carcinoma cell line NT2D1, finding that the inhibition of these onco-adaptor proteins abrogates HGF triggered responses such as proliferation, migration, and invasion. Expanding on these previous studies, herein we investigated the role of mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) pathways in the HGF-dependent and HGF-independent NT2D1 cells biological responses. To inhibit MAPK/ERK pathways we chose a pharmacological approach, by using U0126 inhibitor, and we analyzed cell proliferation, collective migration, and chemotaxis. The administration of U0126 together with HGF reverts the HGF-dependent activation of cell proliferation but, surprisingly, does not exert the same effect on NT2D1 cell migration. In addition, we found that the use of U0126 alone significantly promotes the acquisition of NT2D1 «migrating phenotype», while collective migration of NT2D1 cells was stimulated. Notably, the inhibition of ERK activation in the absence of HGF stimulation resulted in the activation of the AKT-mediated pathway, and this let us speculate that the paradoxical effects obtained by using U0126, which are the increase of collective migration and the acquisition of partial epithelium-mesenchyme transition (pEMT), are the result of compensatory pathways activation. These data highlight how the specific response to pathway inhibitors, should be investigated in depth before setting up therapy.
Collapse
Affiliation(s)
- Luisa Gesualdi
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Marika Berardini
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Bianca Maria Scicchitano
- Section of Histology, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
- Systems Biology Group Lab, 00161 Rome, Italy
| | - Antonio Filippini
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Anna Riccioli
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Francesca Ferranti
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, 00133 Roma, Italy
| | - Domenico Liguoro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Angela Catizone
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
9
|
Gao Y, Rosen JM, Zhang XHF. The tumor-immune ecosystem in shaping metastasis. Am J Physiol Cell Physiol 2023; 324:C707-C717. [PMID: 36717100 PMCID: PMC10027084 DOI: 10.1152/ajpcell.00132.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/03/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
A better understanding of the mechanisms regulating cancer metastasis is critical to develop new therapies and decrease mortality. Emerging evidence suggests that the interactions between tumor cells and the host immune system play important roles in establishing metastasis. Tumor cells are able to recruit immune cells, which in turn promotes tumor cell invasion, intravasation, survival in circulation, extravasation, and colonization in different organs. The tumor-host immunological interactions also generate a premetastatic niche in distant organs which facilitates metastasis. In this review, we summarize the recent findings on how tumor cells and immune cells regulate each other to coevolve and promote the formation of metastases at the major organ sites of metastasis.
Collapse
Affiliation(s)
- Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Jeffrey M Rosen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
10
|
Takeuchi E, Kondo K, Okano Y, Kunishige M, Kondo Y, Kadota N, Machida H, Hatakeyama N, Naruse K, Ogino H, Nokihara H, Shinohara T, Nishioka Y. Early mortality factors in immune checkpoint inhibitor monotherapy for advanced or metastatic non-small cell lung cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04215-7. [DOI: 10.1007/s00432-022-04215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Purpose
Immune checkpoint inhibitors (ICI) are a promising treatment, but may cause hyperprogressive disease and early death. The present study investigated early mortality factors in ICI monotherapy for lung cancer.
Patients and methods
We retrospectively reviewed all patients diagnosed with advanced or metastatic non-small cell lung cancer (NSCLC) and treated with ICI monotherapy (nivolumab, pembrolizumab, and atezolizumab) between March 2016 and August 2021 at National Hospital Organization Kochi Hospital and Tokushima University. Early death was defined as patients who died within 60 days of ICI treatment.
Results
A total of 166 patients were included. The majority of patients (87%) had an Eastern cooperative oncology group (ECOG) Performance status (PS) of 0/1. There were 21 early deaths. Significant differences were observed in ECOG PS, the histological type, liver metastasis, tumor size, the white blood cell count, neutrophils (%), lymphocytes (%), the neutrophil-to-lymphocyte ratio in serum (sNLR), C-reactive protein (CRP), and albumin between the groups with or without early death. Univariate logistic regression analyses identified ECOG PS score ≥ 2, liver metastasis, tumor size ≥ 5 cm, neutrophils ≥ 69%, lymphocytes < 22%, sNLR ≥ 4, CRP ≥ 1 mg/dl, and albumin < 3.58 g/dl as significant risk factors for early death. A multivariate logistic regression analysis revealed that liver metastasis (Odds ratio [OR], 10.3; p = 0.008), ECOG PS score ≥ 2 (OR, 8.0; p = 0.007), and a smoking history (OR, 0.1; p = 0.03) were significant risk factors for early death.
Conclusion
Liver metastases, ECOG PS score ≥ 2, and a non-smoking history are early mortality factors in ICI monotherapy for advanced or metastatic NSCLC.
Collapse
|
11
|
Sharifi-Azad M, Fathi M, Cho WC, Barzegari A, Dadashi H, Dadashpour M, Jahanban-Esfahlan R. Recent advances in targeted drug delivery systems for resistant colorectal cancer. Cancer Cell Int 2022; 22:196. [PMID: 35590367 PMCID: PMC9117978 DOI: 10.1186/s12935-022-02605-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world, the incidences and morality rate are rising and poses an important threat to the public health. It is known that multiple drug resistance (MDR) is one of the major obstacles in CRC treatment. Tumor microenvironment plus genomic instability, tumor derived exosomes (TDE), cancer stem cells (CSCs), circulating tumor cells (CTCs), cell-free DNA (cfDNA), as well as cellular signaling pathways are important issues regarding resistance. Since non-targeted therapy causes toxicity, diverse side effects, and undesired efficacy, targeted therapy with contribution of various carriers has been developed to address the mentioned shortcomings. In this paper the underlying causes of MDR and then various targeting strategies including exosomes, liposomes, hydrogels, cell-based carriers and theranostics which are utilized to overcome therapeutic resistance will be described. We also discuss implication of emerging approaches involving single cell approaches and computer-aided drug delivery with high potential for meeting CRC medical needs.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Lisovska N. Multilevel mechanism of immune checkpoint inhibitor action in solid tumors: History, present issues and future development (Review). Oncol Lett 2022; 23:190. [PMID: 35527781 PMCID: PMC9073577 DOI: 10.3892/ol.2022.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
Immunotherapy with checkpoint inhibitors (antibodies that target and block immune checkpoints in the tumor microenvironment) is included in the standard of care for patients with different types of malignancy, such as melanoma, renal cell and urothelial carcinoma, lung cancer etc. The introduction of this new immunotherapy has altered the view on potential targets for treatment of solid tumors from tumor cells themselves to their immune microenvironment; this has led to a reconsideration of the mechanisms of tumor-associated immunity. However, only a subset of patients benefit from immunotherapy and patient response is often unpredictable, even with known initial levels of prognostic markers; the biomarkers for favorable response are still being investigated. Mechanisms of immune checkpoint inhibitors efficiency, as well as the origins of treatment failure, require further investigation. From a clinical standpoint, discrepancies between the theoretical explanation of inhibitors of immune checkpoint actions at the cellular level and their deployment at a tissue/organ level impede the effective clinical implementation of novel immune therapy. The present review assessed existing experimental and clinical data on functional activity of inhibitors of immune checkpoints to provide a more comprehensive picture of their mechanisms of action on a cellular and higher levels of biological organization.
Collapse
Affiliation(s)
- Natalya Lisovska
- Chemotherapy Department, Center of Oncology, ‘Cyber Clinic of Spizhenko’, Kapitanovka, Kyiv 08112, Ukraine
| |
Collapse
|
13
|
Zhao W, Dai S, Yue L, Xu F, Gu J, Dai X, Qian X. Emerging mechanisms progress of colorectal cancer liver metastasis. Front Endocrinol (Lausanne) 2022; 13:1081585. [PMID: 36568117 PMCID: PMC9772455 DOI: 10.3389/fendo.2022.1081585] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related mortality worldwide. A total of 20% of CRC patients present with distant metastasis. The hepatic portal venous system, responsible for collecting most intestinal blood, makes the liver the most common site of CRC metastasis. The formation of liver metastases from colorectal cancer is a long and complex process. It involves the maintenance of primary tumors, vasculature invasion, distant colonization, and metastasis formation. In this review, we serve on how the CRC cells acquire stemness, invade the vascular, and colonize the liver. In addition, we highlight how the resident cells of the liver and immune cells interact with CRC cells. We also discuss the current immunotherapy approaches and challenges we face, and finally, we look forward to finding new therapeutic targets based on novel sequencing technologies.
Collapse
|
14
|
Zhao D, Yang Z, Chen C, Zhang Z, Yu Y, Li Z. CXCR4 promotes gefitinib resistance of Huh7 cells by activating the c-Met signaling pathway. FEBS Open Bio 2021; 11:3115-3125. [PMID: 34555268 PMCID: PMC8564344 DOI: 10.1002/2211-5463.13305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4) expression is associated with poor prognosis of hepatocellular carcinoma (HCC). The aim of this study was to explore the biological role of CXCR4 in gefitinib resistance of HCC. Compared with a normal, non-gefitinib-resistant, human HCC cell line (Huh7), CXCR4 mRNA and protein were highly expressed in gefitinib-resistant Huh7 cells (Huh7-R). Cell proliferation was decreased, and apoptosis was enhanced in Huh7 cells in the presence of gefitinib. These influences conferred by gefitinib treatment on proliferation and apoptosis of Huh7 cells were abolished by CXCR4 overexpression. CXCR4 knockdown reduced the proliferation ability of HuH-7R cells after gefitinib treatment. Importantly, CXCR4 overexpression had no influence on caveolin 1 (Cav-1) expression; similarly, Cav-1 silencing did not cause a substantive change in CXCR4 expression. However, CXCR4 activated Cav-1, c-Met, and Raf-1 in Huh7 cells, whereas Cav-1 silencing repressed the expression of Raf-1 and phosphorylated c-Met in Huh7 cells. CXCR4 overexpression promoted proliferation and repressed apoptosis in gefitinib-treated Huh7 cells, which was partly rescued by PHA-665752 (a c-Met inhibitor) treatment or c-Met deficiency. Finally, we constructed a tumor xenograft model to determine the influence of CXCR4 overexpression on tumor growth of HCC. CXCR4 overexpression accelerated tumor growth of HCC, which was abrogated by c-Met deficiency. These findings demonstrate that CXCR4 overexpression activates c-Met via the Cav-1 signaling pathway, thereby promoting gefitinib resistance of Huh7 cells. Thus, this study highlights novel insights into the mechanism of gefitinib resistance of HCC and CXCR4 may become a potential target for HCC treatment.
Collapse
Affiliation(s)
- Dali Zhao
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Zhiqiang Yang
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Chen Chen
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Zhipeng Zhang
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Yangsheng Yu
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityChina
| | - Zhituo Li
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityChina
| |
Collapse
|
15
|
|