1
|
Suo Y, Li S, Lyu H, Zhao X, Xing J, Chai X, Zhang Q, Fu C, Xu C, Liao J. The biosynthesis of trillin 6'- O-glucoside: A low-abundance yet pharmacologically active polyphyllin from Paris polyphylla. Synth Syst Biotechnol 2025; 10:610-619. [PMID: 40160283 PMCID: PMC11950731 DOI: 10.1016/j.synbio.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Natural products from medicinal plants serve as an invaluable resource for drug discovery and development. However, low-abundance natural products are often understudied due to the challenges of obtaining sufficient quantities for pharmacological testing in cells or animals. Additionally, their complex stereochemistry and functional groups make chemical synthesis and purification difficult. In this study, we showcased the power of biosynthetic approaches to explore these underexplored compounds, using the low-abundance polyphyllin trillin 6'-O-glucoside from Paris polyphylla as an example. We identified two trillin 6'-O-glucosyltransferases required for its biosynthesis and successfully reconstructed the entire pathway in Nicotiana benthamiana. We demonstrated that trillin 6'-O-glucoside exhibits anti-bacterial activity comparable to major polyphyllins like polyphyllins I, II, and VII. Notably, it also showed much lower hemolytic activity, a common side effect of those major polyphyllins. Together, our study underscores the advantages of employing biosynthetic approaches to explore natural products that exist in low or trace abundances yet possess equally important pharmacological activities.
Collapse
Affiliation(s)
| | | | | | - Xin Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiale Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chunjin Fu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Miao W, Wang Z, Gao J, Ohno Y. Polyphyllin II inhibits breast cancer cell proliferation via the PI3K/Akt signaling pathway. Mol Med Rep 2024; 30:224. [PMID: 39364737 PMCID: PMC11465422 DOI: 10.3892/mmr.2024.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Paridis Rhizoma saponins (PRS) are significant components of Rhizoma Paridis and have inhibitory effects on various tumors, such as bladder, breast, liver and colon cancer. Polyphyllin II (PPII), one of the PRS, has an unclear effect on breast cancer. The present study aimed to explore the effect and mechanism of PPII in breast cancer. A network pharmacology approach was employed to predict the core components and breast cancer‑related targets of PRS. Moreover, a xenograft tumor model was established to determine the anti‑breast cancer effect of PPII in vivo. The viability of MDA‑MB‑231 cells was determined by a Cell Counting Kit‑8 assay. Apoptosis was analyzed using annexin V/PI double staining. Additionally, Transwell and scratch assays were performed to evaluate invasion and migration. The potential mechanism was predicted by Kyoto Encyclopedia of Genes and Genomes enrichment analysis and molecular docking analysis and verified by western blot analysis. The effect of PPII on aerobic glycolysis in breast cancer cells was detected by lactic acid and pyruvate kits and Western blotting of glycolytic rate‑limiting enzymes. Network pharmacology analysis revealed 26 core targets involved in breast cancer and that PPII was the core active component of PRS. The in vivo studies showed that PPII could inhibit the growth of breast cancer in mice. In vitro experiments confirmed that PPII induced cancer cell apoptosis and inhibited invasion and migration. Furthermore, PPII was capable of suppressing the expression of key proteins in the PI3K/Akt signaling pathway, reducing the generation of aerobic glycolytic products, and diminishing the protein expression levels of hexokinase 2 and pyruvate kinase M2. The results indicated that PPII inhibited aerobic glycolysis in breast cancer cells through the PI3K/Akt signaling pathway, thereby inhibiting breast cancer growth.
Collapse
Affiliation(s)
- Weiwei Miao
- Department of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P.R. China
| | - Zhixiong Wang
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, P.R. China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, P.R. China
| | - Yuko Ohno
- Department of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
4
|
Cao K, Shi H, Wu B, Lv Z, Yang R. Identification of ECM and EMT relevant genes involved in the progression of bladder cancer through bioinformatics analysis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:183-193. [PMID: 39308592 PMCID: PMC11411181 DOI: 10.62347/xntc7030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Bladder cancer (BC) is very common among cancers of urinary system. It was usually categorized into two types: non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). NMIBC and MIBC groupings are heterogeneous and have different characteristics. OBJECTIVES The study was aimed to find some hub genes and related signal pathways which might be engaged in the progression of BC and to investigate the relationship with clinical stages and its prognostic significance. METHODS GSE37317 datasets were acquired from Gene Expression Omnibus (GEO) database. GEO2R on-line tool was selected to screen the differentially expressed genes (DEGs) of the two different types of BC. Then, Gene Ontology (GO) enrichment and KOBAS-Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of these DEGs were conducted. A protein-protein interaction (PPI) network was employed to help us screen hub genes and find significant modules. Finally, we made analysis of gene expression and survival curve by GEPIA and Kaplan-Meier plotter database. RESULTS 224 DEGs were screened in total, with 110 showing increased expression and 114 demonstrating decreased expression. GO and KEGG pathway enrichment analysis showed that DEGs were mostly involved in collagen fibril organization, extracellular matrix (ECM) structural constituent, bHLH transcription factor binding, AGE-RAGE signaling pathway and TGF-beta signaling pathway. Only 3 hub genes (DCN, JUN, THBS1) displayed significantly higher expression compared to those in the healthy controls. These hub genes were also strongly related to clinical stages as well as overall survival (OS) of BC patients. CONCLUSIONS Taken together, most of hub genes involved in the progression of BC were related to ECM and EMT. In addition, 3 hub genes (DCN, JUN, THBS1) were strongly related with clinical stages and OS of BC patients. This study can enhance our comprehension of the progression of NMIBC and identify novel potential targets for MIBC.
Collapse
Affiliation(s)
- Kai Cao
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjing 210008, Jiangsu, China
| | - Honglei Shi
- Department of Urology, Wujin Hospital Affiliated with Jiangsu UniversityChangzhou 213164, Jiangsu, China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213164, Jiangsu, China
| | - Bin Wu
- Department of Urology, Wujin Hospital Affiliated with Jiangsu UniversityChangzhou 213164, Jiangsu, China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213164, Jiangsu, China
| | - Zhong Lv
- Department of Urology, Wujin Hospital Affiliated with Jiangsu UniversityChangzhou 213164, Jiangsu, China
- Department of Urology, The Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213164, Jiangsu, China
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjing 210008, Jiangsu, China
| |
Collapse
|
5
|
Wang L, Qiu N, Tong S, Yu Y, Xi S, Wang F. Matrine Suppresses Arsenic-Induced Malignant Transformation of SV-HUC-1 Cells via NOX2. Int J Mol Sci 2024; 25:8878. [PMID: 39201564 PMCID: PMC11354282 DOI: 10.3390/ijms25168878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Arsenic (As) has been classified as a carcinogen for humans. There is abundant evidence indicating that arsenic increases the risk of bladder cancer among human populations. However, the underlying mechanisms have yet to be fully understood and elucidated. NADPH oxidases (NOXs) are the main enzymes for ROS production in the body. NADPH Oxidase 2 (NOX2), which is the most distinctive and ubiquitously expressed subunit of NOXs, can promote the formation and development of tumors. The utilization of NOX2 as a therapeutic target has been proposed to modulate diseases resulting from the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3). Matrine has been reported to exhibit various pharmacological effects, including anti-inflammatory, antifibrotic, antitumor, and analgesic properties. However, it has not been reported whether matrine can inhibit malignant transformation induced by arsenic in uroepithelial cells through NOX2. We have conducted a series of experiments using both a sub-chronic NaAsO2 exposure rat model and a long-term NaAsO2 exposure cell model. Our findings indicate that arsenic significantly increases cell proliferation, migration, and angiogenesis in vivo and in vitro. Arsenic exposure resulted in an upregulation of reactive oxygen species (ROS), NOX2, and NLRP3 inflammasome expression. Remarkably, both in vivo and in vitro, the administration of matrine demonstrated a significant improvement in the detrimental impact of arsenic on bladder epithelial cells. This was evidenced by the downregulation of proliferation, migration, and angiogenesis, as well as the expression of the NOX2 and NLRP3 inflammasomes. Collectively, these findings indicate that matrine possesses the ability to reduce NOX2 levels and inhibit the transformation of bladder epithelial cells.
Collapse
Affiliation(s)
- Lanfei Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
| | - Nianfeng Qiu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
| | - Suyuan Tong
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
| | - Yan Yu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
| | - Shuhua Xi
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
| | - Fei Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
- Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang 110122, China
| |
Collapse
|
6
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
7
|
Shi YX, Xu L, Wang X, Zhang KK, Zhang CY, Liu HY, Ding PP, Shi W, Liu ZY. Paris polyphylla ethanol extract and polyphyllin I ameliorate adenomyosis by inhibiting epithelial-mesenchymal transition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155461. [PMID: 38452697 DOI: 10.1016/j.phymed.2024.155461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The active ingredients of the Chinese medical herb Paris polyphylla, P. polyphylla ethanol extract (PPE) and polyphyllin I (PPI), potentially inhibit epithelial-mesenchymal transition (EMT) in tumors. However, the roles of these ingredients in inhibiting EMT in adenomyosis (AM) remain to be explored. PURPOSE The primary goal of the study was to uncover the underlying molecular processes through which PPE and PPI suppress EMT in AM, alongside assessing the safety profiles of these substances. METHODS To assess the suppressive impact of PPE on adenomyosis-derived cells (AMDCs), we employed Transwell and wound healing assays. The polyphyllins (PPI, PPII, PPVII) contained in PPE were characterized using high-performance liquid chromatography (HPLC). Then, bioinformatics techniques were performed to pinpoint potential PPI targets that could be effective in treating AM. Immunoblotting was used to verify the key proteins and pathways identified via bioinformatics. Furthermore, we examined the efficacy of PPE and PPI in treating Institute of Cancer Research (ICR) mice with AM by observing the morphological and pathological features of the uterus and performing immunohistochemistry. In addition, we assessed safety by evaluating liver, kidney and spleen pathologic features and serum test results. RESULTS Three major polyphyllins of PPE were revealed by HPLC, and PPI had the highest concentration. In vitro experiments indicated that PPE and PPI effectively prevent AMDCs invasion and migration. Bioinformatics revealed that the primary targets E-cadherin, N-cadherin and TGFβ1, as well as the EMT biological process, were enriched in PPI-treated AM. Immunoblotting assays corroborated the hypothesis that PPE and PPI suppress the TGFβ1/Smad2/3 pathway in AMDCs to prevent EMT from progressing. Additionally, in vivo studies showed that PPE (3 mg/kg and 6 mg/kg) and PPI (3 mg/kg and 6 mg/kg), successfully suppressed the EMT process through targeting the TGFβ1/Smad2/3 signaling pathway. Besides, it was observed that lower doses of PPE (3 mg/kg) and PPI (3 mg/kg) exerted minimal effects on the liver, kidneys, and spleen. CONCLUSIONS PPE and PPI efficiently impede the development of EMT by inhibiting the TGFβ1/Smad2/3 pathway, revealing an alternative pathway for the pharmacological treatment of AM.
Collapse
Affiliation(s)
- Ya-Xin Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Li Xu
- Department of reproductive medicine, Shandong University of Traditional Chinese Medicine Second Affiliated Hospital, Jinan 250001, China
| | - Xin Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Ke-Ke Zhang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Cheng-Yuan Zhang
- Postgraduate Training Base of Linyi People's Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Hong-Yun Liu
- Department of Gynecology, Linyi Central Hospital, Yishui 276400, China
| | - Ping-Ping Ding
- Department of Gynecology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Wei Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Gynecology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| | - Zhi-Yong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
8
|
Jin Y, Qiao Q, Dong L, Cao M, Li P, Liu A, Sun R. Response Surface Optimization for Water-Assisted Extraction of Two Saponins from Paris polyphylla var. yunnanensis Leaves. Molecules 2024; 29:1652. [PMID: 38611929 PMCID: PMC11013099 DOI: 10.3390/molecules29071652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The process of extracting polyphyllin II and polyphyllin VII by water-assisted extraction was established and optimized in this study. Response surface methodology was used to establish a prediction model to optimize the extraction conditions. Based on the one-way test, the Box-Behnken design with three factors and three levels was used for the experimental program, and the composition analysis was carried out by high-performance liquid chromatography (HPLC). The optimal extraction conditions for polyphyllin II and polyphyllin VII were as follows: extraction time of 57 and 21 min, extraction temperature of 36 and 32 °C, solid-to-liquid ratio of 1:10 and 1:5 g/mL, respectively, and the yields of polyphyllin II and polyphyllin VII were 1.895 and 5.010%, which was similar to the predicted value of 1.835 and 4.979%. The results of the ANOVA showed that the model fit was good, and the Box-Behnken response surface method could optimize the water-assisted extraction of saponins from the leaves of Paris polyphylla var. yunnanensis. This study provides a theoretical basis for the application of polyphyllin II and polyphyllin VII in pharmaceutical production.
Collapse
Affiliation(s)
| | | | | | | | | | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Rui Sun
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
9
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
10
|
Liu Q, Luo Z, Yang J. Polyphyllin Ⅲ regulates EMT of lung cancer cells through GSK-3β/β-catenin pathway. Ann Med Surg (Lond) 2024; 86:1376-1385. [PMID: 38463106 PMCID: PMC10923388 DOI: 10.1097/ms9.0000000000001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/07/2023] [Indexed: 03/12/2024] Open
Abstract
Background Some studies have found that the application of traditional Chinese medicine in the treatment of lung cancer has achieved satisfying results. Polyphyllin Ⅲ (PP Ⅲ) is a natural steroid saponin from P. polyphylla var. yunnanensis, and its analogs have played a wide role in anticancer research. This study aimed to investigate the effect of PP Ⅲ on the development of lung cancer and its molecular mechanism. Methods A549 and NCI-H1299 cell lines were treated with PP Ⅲ in gradient concentration to detect the IC50 of the cells, and the optimal concentration was selected for subsequent experiments. The effects of PP III treatment on lung cancer were investigated in vitro and in vivo. Results In vitro experiments, it was found that the proliferation, invasion, migration, and colony formation ability of cancer cells were significantly reduced after PP III treatment, while accompanied by a large number of cell apoptosis. Further detection showed that N-cadherin was significantly decreased, E-cadherin was increased, and Snail and Twist were decreased in A549 cells and NCI-H1299 cells, respectively. In addition, GSK-3β expression was increased, while β-catenin expression was reduced with PP III treatment. In the mouse model, it was demonstrated that the volume of transplanted tumors was significantly reduced after PP Ⅲ treatment. Conclusions PP Ⅲ has the capacity to inhibit the progression of lung cancer and regulate epithelial-mesenchymal transition through the GSK-3β/β-catenin pathway to suppress the malignant behavior of cancer cells. The application of PP Ⅲ is expected to be an effective method for the treatment of lung cancer.
Collapse
Affiliation(s)
| | - Zhuang Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jiao Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
11
|
Peng L, Yang R, Wang Z, Jian H, Tan X, Li J, He Z, Huang R, Zeng P, Gao W. Polyphyllin II (PPII) Enhances the Sensitivity of Multidrug-resistant A549/DDP Cells to Cisplatin by Modulating Mitochondrial Energy Metabolism. In Vivo 2024; 38:213-225. [PMID: 38148070 PMCID: PMC10756451 DOI: 10.21873/invivo.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Cisplatin resistance often leads to treatment futility and elevated mortality rates in patients with lung cancer. One promising strategy to address this challenge involves the integration of traditional Chinese medicine (TCM) with chemotherapeutic drugs. Currently, the potential synergistic effect and underlying mechanism of polyphyllin II (PPII) and cisplatin combination in combating cisplatin (DDP) resistance in lung cancer remain unexplored. MATERIALS AND METHODS In this study, we established a cisplatin resistance model using A549 cells and explored the underlying mechanisms of PPII in combination with cisplatin in A549/DDP resistant cells. Specifically, we assessed the impact of PPII combined with cisplatin on A549/DDP cell proliferation, viability, and the expression of apoptosis-related proteins. To gain deeper insights into the underlying mechanism, we examined the effects of PPII and cisplatin on mitochondrial function in A549/DDP cells. RESULTS This combination induced cell cycle arrest at both the S phase and G2/M phase in A549/DDP cells, thereby promoting apoptosis. Western blotting confirmed that DDP acted synergistically with PPII to enhance the expression of apoptotic proteins, diminish the expression of anti-apoptotic proteins, and promote the expression of anti-proliferation proteins in the mitochondrial pathway of A549/DDP cells. CONCLUSION The combination of PPII and cisplatin effectively modulated the mitochondrial function, thereby reversing drug resistance in A549/DDP cells. This innovative combination therapy shows significant promise as a novel strategy for overcoming cisplatin resistance in lung cancer.
Collapse
Affiliation(s)
- Lian Peng
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Renyi Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Zhibing Wang
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
- Key Laboratory of TCM Formula and Syndrome Transformation Medicine, Changsha, Hunan, P.R. China
| | - Huiying Jian
- Key Laboratory of TCM Formula and Syndrome Transformation Medicine, Changsha, Hunan, P.R. China
| | - Xiaoning Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Jian Li
- Key Laboratory of TCM Formula and Syndrome Transformation Medicine, Changsha, Hunan, P.R. China
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Zuomei He
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Rui Huang
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Puhua Zeng
- Key Laboratory of TCM Formula and Syndrome Transformation Medicine, Changsha, Hunan, P.R. China;
| | - Wenhui Gao
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China;
| |
Collapse
|
12
|
Cheng H, Chu J, Yang Y, Li Y, Wang M, Wu H, Wang M, Su J, Li Q. Paris polyphylla saponins II inhibits invasive, migration and epithelial-mesenchymal transition of melanoma cells through activation of autophagy. Toxicon 2024; 237:107558. [PMID: 38072315 DOI: 10.1016/j.toxicon.2023.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Malignant melanoma is a kind of malignant tumor derived from normal epidermal melanocytes or original nevus cells. It has a high degree of malignancy, rapid progress, dangerous condition, and poor prognosis. In recent years, the innovation of traditional Chinese medicine has broadened the scope and effect of tumor treatment. It is a hotspot and breakthrough to find new anti-tumor invasion and migration drugs from natural plants or traditional Chinese medicine. This study explored the role of PPII in promoting autophagy to inhibit EMT of melanoma cells, the role of the PI3K/Akt signaling pathway in the invasion and migration of melanoma cells induced by PPII. We found that PPII effectively inhibited the proliferation, invasion and migration of melanoma B16 and B16F10 in vitro, and induced autophagy. We also established the xenograft tumor and metastatic tumor model of C57BL/6 mice with B16F10 cells. Results showed that PPII effectively inhibited the growth of transplanted tumors, induced autophagy and inhibited the expression level of EMT related protein; Metastasis experiment showed that PPII inhibited the invasion and migration of B16F10, the effect of inhibiting lung metastasis is the most significant. Further mechanism studies showed that the inhibition of PPII on melanoma invasion and migration is related to its induction of autophagy and then inhibition of EMT.
Collapse
Affiliation(s)
- Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Jing Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuting Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yueyue Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Manman Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Jingjing Su
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
13
|
Wang W, Wang M, Liu X, Chen X, Cheng H, Wang G. LncRNA NEAT1 antagonizes the inhibition of melanoma proliferation, migration, invasion and EMT by Polyphyllin B. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2469-2480. [PMID: 37004552 DOI: 10.1007/s00210-023-02474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Polyphyllin B (PPB) is a compound with anti-tumor effects. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long-stranded noncoding RNA that induces epithelial-mesenchymal transition (EMT) of tumor cells and promotes tumor growth and metastasis. However, the role and mechanism of PPB on melanoma and the correlation between them remain unclear. In this study we screened NEAT1 by using LncRNA transcriptomic sequencing, and then transfected B16F10 cells using OVER-NEAT1 lentivirus. Next, we found that PPB had significant proliferation inhibition of melanoma and B16F10 cells through MTT assay and establishment of mouse subcutaneous transplantation tumor model; in addition, through wound healing assay, transwell assay and establishment of mouse melanoma lung metastasis model, we found that PPB significantly inhibited the invasion and migration of B16F10 cells in vitro, and inhibited the metastasis of melanoma to lung, bone and liver in vivo. Finally, changes in the expression levels of EMT-related proteins were assessed by western blot (WB) and immunohistochemistry, and PPB significantly downregulated the expression levels of MMP-9, N-cadherin, etc., and upregulated E-cadherin. While overexpressed NEAT1 showed the ability to promote melanoma proliferation, migration and invasion, in addition to partially reversed the inhibition of proliferation, migration and invasion of melanoma by PPB mentioned above.
Collapse
Affiliation(s)
- Wenjun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Xiaxia Liu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Xin Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road, Shushan District, Hefei, 230038, China.
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
14
|
Bouabdallah S, Al-Maktoum A, Amin A. Steroidal Saponins: Naturally Occurring Compounds as Inhibitors of the Hallmarks of Cancer. Cancers (Basel) 2023; 15:3900. [PMID: 37568716 PMCID: PMC10417465 DOI: 10.3390/cancers15153900] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is a global health burden responsible for an exponentially growing number of incidences and mortalities, regardless of the significant advances in its treatment. The identification of the hallmarks of cancer is a major milestone in understanding the mechanisms that drive cancer initiation, development, and progression. In the past, the hallmarks of cancer have been targeted to effectively treat various types of cancers. These conventional cancer drugs have shown significant therapeutic efficacy but continue to impose unfavorable side effects on patients. Naturally derived compounds are being tested in the search for alternative anti-cancer drugs. Steroidal saponins are a group of naturally occurring compounds that primarily exist as secondary metabolites in plant species. Recent studies have suggested that steroidal saponins possess significant anti-cancer capabilities. This review aims to summarize the recent findings on steroidal saponins as inhibitors of the hallmarks of cancer and covers key studies published between the years 2014 and 2024. It is reported that steroidal saponins effectively inhibit the hallmarks of cancer, but poor bioavailability and insufficient preclinical studies limit their utilization.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Theranostic Biomarkers, LR23ES02, Faculty of Medicine of Tunis, Université Tunis El Manar, Tunis 1006, Tunisia
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
15
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
16
|
Chen Y, Yin L, Hao M, Xu W, Gao J, Sun Y, Wang Q, Chen S, Liang Y, Guo R, Zhang J, Li J, Zhai Q, Cheng R, Wang J, Wang H, Yang Z. Medicarpin induces G1 arrest and mitochondria-mediated intrinsic apoptotic pathway in bladder cancer cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:211-225. [PMID: 37307373 DOI: 10.2478/acph-2023-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 06/14/2023]
Abstract
Bladder cancer (BC) is the tenth most commonly diagnosed cancer. High recurrence, chemoresistance, and low response rate hinder the effective treatment of BC. Hence, a novel therapeutic strategy in the clinical management of BC is urgently needed. Medicarpin (MED), an isoflavone from Dalbergia odorifera, can promote bone mass gain and kill tumor cells, but its anti-BC effect remains obscure. This study reve aled that MED effectively inhibited the proliferation and arrested the cell cycle at the G1 phase of BC cell lines T24 and EJ-1 in vitro. In addition, MED could significantly suppress the tumor growth of BC cells in vivo. Mechanically, MED induced cell apoptosis by upregulating pro-apoptotic proteins BAK1, Bcl2-L-11, and caspase-3. Our data suggest that MED suppresses BC cell growth in vitro and in vivo via regulating mitochondria-mediated intrinsic apoptotic pathways, which can serve as a promising candidate for BC therapy.
Collapse
Affiliation(s)
- Yuan Chen
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Liqi Yin
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingxuan Hao
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenkai Xu
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Jixian Gao
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Yuxin Sun
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Qiao Wang
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Shi Chen
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Youfeng Liang
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Guo
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinku Zhang
- 3Department of Pathology, First Central Hospital of Baoding City, Baoding 071000, Hebei, China
- 4Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Baoding 071000, Hebei, China
| | - Jinmei Li
- 3Department of Pathology, First Central Hospital of Baoding City, Baoding 071000, Hebei, China
- 4Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Baoding 071000, Hebei, China
| | - Qiongli Zhai
- 5Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Runfen Cheng
- 5Department of Pathology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jiansong Wang
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Haifeng Wang
- 2Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Zhao Yang
- 1College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
- 6College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China
| |
Collapse
|
17
|
Li TY, Du Y, Wang MC, Liu K, Liu Y, Cao Y, Wang YY, Chen WW, Qian XY, Qiu PC, Tang HF, Lu YY. Cytotoxic Steroidal Saponins Containing a Rare Fructosyl from the Rhizomes of Paris polyphylla var. latifolia. Int J Mol Sci 2023; 24:ijms24087149. [PMID: 37108310 PMCID: PMC10138723 DOI: 10.3390/ijms24087149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
A phytochemical investigation of the steroidal saponins from the rhizomes of Paris polyohylla var. latifolia led to the discovery and characterization of three new spirostanol saponins, papolatiosides A-C (1-3), and nine known compounds (4-12). Their structures were established via extensive spectroscopic data analysis and chemical methods. Interestingly, compounds 1 and 2 possessed a fructosyl in their oligosaccharide moiety, which is rare in natural product and was firstly reported in family Melanthiaceae. The cytotoxicity of these saponins against several human cancer cell lines was evaluated by a CCK-8 experiment. As a result, compound 1 exhibited a significant cytotoxic effect on LN229, U251, Capan-2, HeLa, and HepG2 cancer cells with IC50 values of 4.18 ± 0.31, 3.85 ± 0.44, 3.26 ± 0.34, 3.30 ± 0.38 and 4.32 ± 0.51 μM, respectively. In addition, the result of flow cytometry analysis indicated that compound 1 could induce apoptosis of glioma cells LN229. The underlying mechanism was explored by network pharmacology and western bolt experiments, which indicated that compound 1 could induce glioma cells LN229 apoptosis by regulating the EGFR/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Tian-Yi Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Yang Du
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Min-Chang Wang
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Ke Liu
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Yang Liu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Yuan-Yuan Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Wen-Wen Chen
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Xiao-Ying Qian
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Peng-Cheng Qiu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Hai-Feng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| | - Yun-Yang Lu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
18
|
Liu Y, Liu MY, Bi LL, Tian YY, Qiu PC, Qian XY, Wang MC, Tang HF, Lu YY, Zhang BL. Cytotoxic steroidal glycosides from the rhizomes of Paris polyphylla var. yunnanensis. PHYTOCHEMISTRY 2023; 207:113577. [PMID: 36587887 DOI: 10.1016/j.phytochem.2022.113577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. (Melanthiaceae), an important specie of the genus Paris, has long been in a traditional Chinese medicine (TCM) for a long time. This study aimed to isolate and identify the structures of bioactive saponins from the rhizomes of P. polyphylla var. yunnanensis and evaluate their cytotoxicity against BxPC-3, HepG2, U373 and SGC-7901 carcinoma cell lines. Seven previously undescribed and seven known saponins were identified, and Paris saponins VII (PSVII) showed significant cytotoxicity against the BxPC-3 cell line with IC50 values of 3.59 μM. Furthermore, flow cytometry, transmission electron microscopy and western-bolt analysis revealed that PSVII inhibited the proliferation of BxPC-3 cells and might be involved in inducing apoptosis and pyroptosis by activating caspase-3, -7 and caspase-1, respectively.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Mei-You Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin-Lin Bi
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Yun-Yuan Tian
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Peng-Cheng Qiu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Xiao-Ying Qian
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Hai-Feng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China.
| | - Yun-Yang Lu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China.
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, China.
| |
Collapse
|
19
|
Zhao F, Zhao P, Chang J, Sun X, Ma X, Shi B, Yin M, Wang Y, Yang Y. Identification and vitro verification of the potential drug targets of active ingredients of Chonglou in the treatment of lung adenocarcinoma based on EMT-related genes. Front Genet 2023; 14:1112671. [PMID: 36824434 PMCID: PMC9942681 DOI: 10.3389/fgene.2023.1112671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the main histological type of lung cancer with an unfavorable survival rate. Metastasis is the leading LUAD-related death with Epithelial-Mesenchymal Transition (EMT) playing an essential role. The anticancer efficacies of the active ingredients in Chonglou have been widely reported in various cancers. However, the potential therapeutic targets of the Chonglou active ingredients in LUAD patients remain unknown. Here, the network pharmacology and bioinformatics were performed to analyze the associations of the clinical characteristics, immune infiltration factors and m6A-related genes with the EMT-related genes associated with LUAD (EMT-LUAD related genes), and the molecular docking, STRING, GO, and KEGG enrichment for the drug targets of Chonglou active ingredients associated with EMT (EMT-LUAD-Chonglou related genes). And, cell viability analysis and cell invasion and infiltration analysis were used to confirm the theoretical basis of this study. A total of 166 EMT-LUAD related genes were identified and a multivariate Cox proportional hazards regression model with a favorable predictive accuracy was constructed. Meanwhile, the immune cell infiltration, immune cell subsets, checkpoint inhibitors and the expression of m6A-related genes were significantly associated with the risk scores for EMT-LUAD related genes with independent significant prognostic value of all included LUAD patients. Furthermore, 12 EMT-LUAD-Chonglou related genes with five core drug targets were identified, which participated in LUAD development through extracellular matrix disassembly, collagen metabolic process, collagen catabolic process, extracellular matrix organization, extracellular structure organization and inflammatory response. Moreover, we found that the active ingredients of Chonglou could indeed inhibit the progression of lung adenocarcinoma cells. These results are oriented towards EMT-related genes to achieve a better understanding of the role of Chonglou and its targets in osteosarcoma development and metastasis, thus guiding future preclinical studies and facilitating clinical translation of LUAD treatment.
Collapse
Affiliation(s)
- Fulai Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Peng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xingyuan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xiaoping Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Binhao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Mengchen Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China,*Correspondence: Yongjun Wang, ; Yanping Yang,
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China,*Correspondence: Yongjun Wang, ; Yanping Yang,
| |
Collapse
|
20
|
Li ZW, Wang YH, Liu C, Wu YM, Lan GX, Xue YB, Wu QS, Zhou N. Effects of Organophosphate-Degrading Bacteria on the Plant Biomass, Active Medicinal Components, and Soil Phosphorus Levels of Paris polyphylla var. yunnanensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:631. [PMID: 36771715 PMCID: PMC9921132 DOI: 10.3390/plants12030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Paris polyphylla var. yunnanensis, a medicinal plant that originated in Yunnan (China), has been over-harvested in the wild population, resulting in its artificial cultivation. Given the negative environmental impacts of the excessive use of phosphorus (P) fertilization, the application of organophosphate-degrading bacteria (OPDB) is a sustainable approach for improving the P use efficiency in Paris polyphylla var. yunnanensis production. The present work aimed to analyze the effects of three organic phosphate-solubilizing bacteria of Bacillus on the yield and quality of P. polyphylla var. yunnanensis and the P concentrations in the soil. All the inoculation treatments distinctly increased the rhizome biomass, steroidal, and total saponin concentrations of the rhizomes and the Olsen-P and organic P in the soil. The highest growth rate of rhizomes biomass, steroidal saponins, available phosphorus, and total phosphorus content was seen in the S7 group, which was inoculated with all three OPDB strains, showing increases of 134.58%, 132.56%, 51.64%, and 17.19%, respectively. The highest total saponin content was found in the group inoculated with B. mycoides and B. wiedmannii, which increased by 33.68%. Moreover, the highest organic P content was seen in the group inoculated with B. wiedmannii and B. proteolyticus, which increased by 96.20%. In addition, the rhizome biomass was significantly positively correlated with the saponin concentration, together with the positive correlation between the Olsen-P and organic P and total P. It is concluded that inoculation with organophosphate-degrading bacteria improved the biomass and medicinal ingredients of the rhizome in P. polyphylla var. yunnanensis, coupled with increased soil P fertility, with a mixture of the three bacteria performing best.
Collapse
Affiliation(s)
- Zhuo-Wei Li
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Yue-Heng Wang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Chang Liu
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Ying-Mei Wu
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Guo-Xin Lan
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Yan-Bin Xue
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
- College of Pharmacy, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
21
|
Li J, Jia J, Zhu W, Chen J, Zheng Q, Li D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front Pharmacol 2023; 14:1095786. [PMID: 36895945 PMCID: PMC9989034 DOI: 10.3389/fphar.2023.1095786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.
Collapse
Affiliation(s)
- Jie Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinhao Jia
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Weiwei Zhu
- Clinical Trial Agency, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Jianfei Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
22
|
Jiao Y, Xin M, Xu J, Xiang X, Li X, Jiang J, Jia X. Polyphyllin II induced apoptosis of NSCLC cells by inhibiting autophagy through the mTOR pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1781-1789. [PMID: 36102594 PMCID: PMC9487979 DOI: 10.1080/13880209.2022.2120021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Polyphyllin II (PPII) is a steroidal saponin isolated from Rhizoma Paridis. It exhibits significant antitumor activity such as anti-proliferation and pro-apoptosis in lung cancer. OBJECTIVE To explore whether PPII induce autophagy and the relationship between autophagy and apoptosis in non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS The effects of PPII (0, 1, 5, and 10 μM) were elucidated by CCK8 assay, colony formation test, TUNEL staining, MDC method, and mRFP-GFP-LC3 lentivirus transfection in A549 and H1299 cells for 24 h. DMSO-treated cells were selected as control. The protein expression of autophagy (LC3-II, p62), apoptosis (Bcl-2, Bax, caspase-3) and p-mTOR was detected by Western blotting. We explored the relationship between autophagy and apoptosis by autophagy inhibitor CQ (10 μM) and 3-MA (5 mM). RESULTS PPII (0, 1, 5, and 10 μM) inhibited the proliferation and induced apoptosis. The IC50 values of A549 and H1299 cells were 8.26 ± 0.03 and 2.86 ± 0.83 μM. We found that PPII could induce autophagy. PPII promoted the formation of autophagosome, increased the expression of LC3-II/LC3-I (p < 0.05), while decreased p62 and p-mTOR (p < 0.05). Additionally, the co-treatment with autophagy inhibitors promoted the protein expression of c-caspase-3 and rate of Bax/Bcl-2 (p < 0.05), compared with PPII-only treatment group. Therefore, our results indicated that PPII-induced autophagy may be a mechanism to promote cell survival, although it can also induce apoptosis. CONCLUSIONS PPII-induced apoptosis exerts its anticancer activity by inhibiting autophagy, which will hopefully provide a prospective compound for NSCLC treatment.
Collapse
Affiliation(s)
- Yuhan Jiao
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Ming Xin
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Juanjuan Xu
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xindong Xiang
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xuan Li
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Jingjing Jiang
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xiuqin Jia
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
23
|
BERT-PPII: The Polyproline Type II Helix Structure Prediction Model Based on BERT and Multichannel CNN. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9015123. [PMID: 36060139 PMCID: PMC9433275 DOI: 10.1155/2022/9015123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Predicting the polyproline type II (PPII) helix structure is crucial important in many research areas, such as the protein folding mechanisms, the drug targets, and the protein functions. However, many existing PPII helix prediction algorithms encode the protein sequence information in a single way, which causes the insufficient learning of protein sequence feature information. To improve the protein sequence encoding performance, this paper proposes a BERT-based PPII helix structure prediction algorithm (BERT-PPII), which learns the protein sequence information based on the BERT model. The BERT model's CLS vector can fairly fuse sample's each amino acid residue information. Thus, we utilize the CLS vector as the global feature to represent the sample's global contextual information. As the interactions among the protein chains' local amino acid residues have an important influence on the formation of PPII helix, we utilize the CNN to extract local amino acid residues' features which can further enhance the information expression of protein sequence samples. In this paper, we fuse the CLS vectors with CNN local features to improve the performance of predicting PPII structure. Compared to the state-of-the-art PPIIPRED method, the experimental results on the unbalanced dataset show that the proposed method improves the accuracy value by 1% on the strict dataset and 2% on the less strict dataset. Correspondingly, the results on the balanced dataset show that the AUCs of the proposed method are 0.826 on the strict dataset and 0.785 on less strict datasets, respectively. For the independent test set, the proposed method has the AUC value of 0.827 on the strict dataset and 0.783 on the less strict dataset. The above experimental results have proved that the proposed BERT-PPII method can achieve a superior performance of predicting the PPII helix.
Collapse
|
24
|
Qiu F, Liu Q, Xia Y, Jin H, Lin Y, Zhao X. Circ_0000658 knockdown inhibits epithelial-mesenchymal transition in bladder cancer via miR-498-induced HMGA2 downregulation. J Exp Clin Cancer Res 2022; 41:22. [PMID: 35031054 PMCID: PMC8759287 DOI: 10.1186/s13046-021-02175-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/05/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) has been associated with the angiogenesis and oncogenic phenotypes of multiple malignant tumors including bladder cancer (BCa). Circular RNAs (circRNAs) are recognized as crucial regulators in the EMT. This study aims to illustrate the possible role of circular RNA_0000658 (circ_0000658) in BCa and the underlying molecular mechanism. METHODS The expression of circ_0000658, microRNA (miR)-498, and high mobility group AT-hook 2 (HMGA2) was assessed in cancer and adjacent normal tissue collected from BCa patients and human BCa cell lines (MGH-U3, T24, 5637 and SW780). BCa cells were transduced with a series of overexpression or shRNA plasmids to clarify the function of circ_0000658 and miR-498 on the oncogenic phenotypes and EMT of BCa cells. Further, we established nude mice xenografted with BCa cells to validate the roles of circ_0000658 on tumor growth in vivo. RESULTS Circ_0000658 was highly expressed in BCa tissue samples and cell lines, which indicated a poor prognosis of BCa patients. Circ_0000658 competitively bound to miR-498 and thus restricted miR-498 expression. Meanwhile, circ_0000658 weakened the binding of miR-498 to the target gene HMGA2 and upregulated the HMGA2 expression. Circ_0000658 elevation or miR-498 knockdown augmented oncogenic phenotypes and EMT of BCa cells, corresponding to a reduction in the expression of β-catenin and E-cadherin as well as an increase in the expression of N-cadherin, Slug, Snail, ZEB1 and Twist. Inhibition of HMGA2 reversed the effects of circ_0000658 overexpression on tumor growth in vivo. CONCLUSION Altogether, our study uncovered the tumor-promoting role of circ_0000658 in BCa via the miR-498/HMGA2 axis.
Collapse
Affiliation(s)
- Feng Qiu
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Qiuchen Liu
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Yanfu Xia
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Hengxi Jin
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215000, Jiangsu Province, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215000, Jiangsu Province, China.
| | - Xiaojun Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
25
|
Mirzaei S, Paskeh MDA, Hashemi F, Zabolian A, Hashemi M, Entezari M, Tabari T, Ashrafizadeh M, Raee P, Aghamiri S, Aref AR, Leong HC, Kumar AP, Samarghandian S, Zarrabi A, Hushmandi K. Long non-coding RNAs as new players in bladder cancer: Lessons from pre-clinical and clinical studies. Life Sci 2021; 288:119948. [PMID: 34520771 DOI: 10.1016/j.lfs.2021.119948] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
The clinical management of bladder cancer (BC) has become an increasing challenge due to high incidence rate of BC, malignant behavior of cancer cells and drug resistance. The non-coding RNAs are considered as key factors involved in BC progression. The long non-coding RNAs (lncRNAs) are RNA molecules and do not encode proteins. They have more than 200 nucleotides in length and affect gene expression at epigenetic, transcriptional and post-transcriptional phases. The lncRNAs demonstrate abnormal expression in BC cells and tissues. The present aims to identifying lncRNAs with tumor-suppressor and tumor-promoting roles, and evaluating their roles as regulatory of growth and migration. Apoptosis, glycolysis and EMT are tightly regulated by lncRNAs in BC. Response of BC cells to cisplatin, doxorubicin and gemcitabine chemotherapy is modulated by lncRNAs. LncRNAs regulate immune cell infiltration in tumor microenvironment and affect response of BC cells to immunotherapy. Besides, lncRNAs are able to regulate microRNAs, STAT3, Wnt, PTEN and PI3K/Akt pathways in affecting both proliferation and migration of BC cells. Noteworthy, anti-tumor compounds and genetic tools such as siRNA, shRNA and CRISPR/Cas systems can regulate lncRNA expression in BC. Finally, lncRNAs and exosomal lncRNAs can be considered as potential diagnostic and prognostic tools in BC.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Hin Chong Leong
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|