1
|
Hylton-McComas HM, Cordes A, Floros KV, Faber AC, Drapkin BJ, Miles WO. Myc family proteins: Molecular drivers of tumorigenesis and resistance in neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189332. [PMID: 40280500 DOI: 10.1016/j.bbcan.2025.189332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Neuroendocrine cancers are a diverse and poorly understood collection of malignancies derived from neuroendocrine cells throughout the body. These cancers uniquely exhibit properties of both the nervous and endocrine systems. Only a limited number of genetic driver mutations have been identified in neuroendocrine cancers, however the mechanisms of how these genetic aberrations alter tumor biology remain elusive. Recent studies have implicated the MYC family of transcription factors as important oncogenic factors in neuroendocrine tumors. We take a systematic approach to understand the roles of the MYC family (c-MYC, n-MYC, l-MYC) in the tumorigenesis of neuroendocrine cancers of the lung, GI tract, pancreas, kidney, prostate, pediatric neuroblastoma, and adrenal glands. Reflecting the complexity of neuroendocrine cancers, we highlight the roles of the MYC family in deregulating the cell cycle and transcriptional networks, invoking cellular plasticity, affecting proliferation capacity, aiding in chromatin remodeling, angiogenesis, metabolic changes, and resistance mechanisms. Depicting the diversity of neuroendocrine cancers, we suggest new approaches in understanding the underlying tumorigenic processes of neuroendocrine cancers from the perspective of MYC.
Collapse
Affiliation(s)
- Hannah M Hylton-McComas
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Alyssa Cordes
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Konstantinos V Floros
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Anthony C Faber
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
von Hessert-Vaudoncourt C, Lelek S, Geisler C, Hartung T, Bröker V, Briest F, Mochmann L, Jost-Brinkmann F, Sedding D, Benecke J, Freitag H, Wolfshöfer S, Lammert H, Nölting S, Hummel M, Schrader J, Grabowski P. Concomitant inhibition of PI3K/mTOR signaling pathways boosts antiproliferative effects of lanreotide in bronchopulmonary neuroendocrine tumor cells. Front Pharmacol 2024; 15:1308686. [PMID: 38375032 PMCID: PMC10875132 DOI: 10.3389/fphar.2024.1308686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction: Somatostatin analogues (SSAs) are commonly used in the treatment of hormone hypersecretion in neuroendocrine tumors (NETs), however the extent to which they inhibit proliferation is much discussed. Objective: We studied the antiproliferative effects of novel SSA lanreotide in bronchopulmonary NETs (BP-NETs). We focused on assessing whether pretreating cells with inhibitors for phosphatidylinositol 3-kinase (PI3K) and mammalian target for rapamycin (mTOR) could enhance the antiproliferative effects of lanreotide. Methods: BP-NET cell lines NCI-H720 and NCI-H727 were treated with PI3K inhibitor BYL719 (alpelisib), mTOR inhibitor everolimus and SSA lanreotide to determine the effect on NET differentiation markers, cell survival, proliferation and alterations in cancer-associated pathways. NT-3 cells, previously reported to express somatostatin receptors (SSTRs) natively, were used as control for SSTR expression. Results: SSTR2 was upregulated in NCI-H720 and NT-3 cells upon treatment with BYL719. Additionally, combination treatment consisting of BYL719 and everolimus plus lanreotide tested in NCI-H720 and NCI-H727 led to diminished cell proliferation in a dose-dependent manner. Production of proteins activating cell death mechanisms was also induced. Notably, a multiplexed gene expression analysis performed on NCI-H720 revealed that BYL719 plus lanreotide had a stronger effect on the downregulation of mitogens than lanreotide alone. Discussion/Conclusion: We report a widespread analysis of changes in BP-NET cell lines at the genetic/protein expression level in response to combination of lanreotide with pretreatment consisting of BYL719 and everolimus. Interestingly, SSTR expression reinduction could be exploited in therapeutic and diagnostic applications. The overall results of this study support the evaluation of combination-based therapies using lanreotide in preclinical studies to further increase its antiproliferative effect and ultimately facilitate its use in high-grade tumors.
Collapse
Affiliation(s)
| | - Sara Lelek
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Geisler
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Teresa Hartung
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Vanessa Bröker
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Briest
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Liliana Mochmann
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabian Jost-Brinkmann
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dagmar Sedding
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joana Benecke
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Helma Freitag
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Wolfshöfer
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hedwig Lammert
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, Universitätsspital Zürich, Zurich, Germany
- Department of Internal Medicine II, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Schrader
- I. Department of Medicine, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Grabowski
- Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Smith J, Barnett E, Rodger EJ, Chatterjee A, Subramaniam RM. Neuroendocrine Neoplasms: Genetics and Epigenetics. PET Clin 2023; 18:169-187. [PMID: 36858744 DOI: 10.1016/j.cpet.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Te Whatu Ora - Southern, Dunedin Public Hospital, 270 Great King Street, PO Box 913, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Radiology, Duke University, 2301 Erwin Rd, BOX 3808, Durham, NC 27705, USA
| |
Collapse
|
4
|
Araujo-Castro M. Indications for genetic study in gastro-entero-pancreatic and thoracic neuroendocrine tumors. ENDOCRINOL DIAB NUTR 2023; 70 Suppl 1:63-73. [PMID: 36396595 DOI: 10.1016/j.endien.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/03/2022] [Indexed: 11/16/2022]
Abstract
Gastro-entero-pancreatic (GEP-NET) and thoracic neuroendocrine tumours (NETs) are one of the most heritable groups of neoplasms in the body, being multiple endocrine neoplasia syndrome type 1 (MEN1), the genetic syndrome most frequently associated with this type of tumours. Moreover, Von Hippel Lindau syndrome, tuberous sclerosis, type 4 multiple neoplasia syndrome, and type 1 neurofibromatosis are associated with an increased risk of developing GEP-NETs. Another important aspect in GEP-NETs and thoracic NETs is the knowledge of the molecular background since the molecular profile of these tumours may have implications in the prognosis and in the response to specific treatments. This review summarizes the main indications for performing a genetic study in patients with GEP-NETs and thoracic NETs, and the methods used to carry it out. Moreover, it offers a description of the main hereditary syndromes associated with these NETs and their molecular background, as well as the clinical implications of the molecular profile.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Unidad de Neuroendocrinología, Departamento de Endocrinología y Nutrición, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Invesitigación Sanitaria (IRYCIS), Madrid, Spain; Departamento de Medicina, Universidad de Alcalá, Madrid, Spain.
| |
Collapse
|
5
|
Ben Rekaya M, Sassi F, Saied E, Bel Haj Kacem L, Mansouri N, Zarrouk S, Azouz S, Rammeh S. PIK3CA mutations in breast cancer: A Tunisian series. PLoS One 2023; 18:e0285413. [PMID: 37195967 DOI: 10.1371/journal.pone.0285413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/23/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The aim of this study was to analyze PIK3CA mutations in exons 9 and 20 in breast cancers (BCs) and their association with clinicopathological characteristics. METHODS Mutational analysis of PIK3CA exon 9 and 20 was performed by Sanger sequencing in 54 primary BCs of Tunisian women. The associations of PIK3CA mutations with clinicopathological characteristics were analyzed. RESULTS Fifteen exon 9 and exon 20 PIK3CA variants were identified in 33/54 cases (61%). PIK3CA mutations including pathogenic (class 5/Tier I) or likely pathogenic (class 4/Tier II) occurred in 24/54 cases (44%): 17/24 cases (71%) in exon 9, 5/24 cases (21%) in exon 20 and 2/24 cases (8%) in both exons. Of these 24 cases, 18 (75%) carried at least one of the three hot spot mutations: E545K (in 8 cases), H1047R (in 4 cases), E542K (in 3 cases), E545K/E542K (in one case), E545K/H1047R (in one case) and P539R/H1047R (in one case). Pathogenic PIK3CA mutations were associated with negative lymph node status (p = 0.027). Age distribution, histological SBR tumor grading, estrogen and progesterone receptors, human epidermal growth factor receptor 2, and molecular classification were not correlated with PIK3CA mutations (p > 0.05). CONCLUSION The frequency of somatic PIK3CA mutations in BCs of Tunisian women is slightly higher than that of BCs of Caucasian women and more observed in exon 9 than in exon 20. PIK3CA mutated status is associated with negative lymph node status. These data need to be confirmed in larger series.
Collapse
Affiliation(s)
- Mariem Ben Rekaya
- Faculty of Medicine of Tunis, UR17ES15, University Tunis El Manar, Tunis, Tunisia
| | - Farah Sassi
- Pathology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Essya Saied
- Faculty of Medicine of Tunis, UR17ES15, University Tunis El Manar, Tunis, Tunisia
| | - Linda Bel Haj Kacem
- Faculty of Medicine of Tunis, UR17ES15, University Tunis El Manar, Tunis, Tunisia
- Pathology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Nada Mansouri
- Pathology Department, Military Hospital, Tunis, Tunisia
| | - Sinda Zarrouk
- Pasteur Institute of Tunis, Genomics Platform, University of Tunis El Manar Tunis, Tunisia
| | - Saifeddine Azouz
- Pasteur Institute of Tunis, Genomics Platform, University of Tunis El Manar Tunis, Tunisia
| | - Soumaya Rammeh
- Faculty of Medicine of Tunis, UR17ES15, University Tunis El Manar, Tunis, Tunisia
- Pathology Department, Charles Nicolle Hospital, Tunis, Tunisia
| |
Collapse
|
6
|
Indicaciones de estudio genético en los tumores neuroendocrinos gastro-entero-pancreáticos y torácicos. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Sun TY, Hendifar A, Padda SK. Lung Neuroendocrine Tumors: How Does Molecular Profiling Help? Curr Oncol Rep 2022; 24:819-824. [PMID: 35305210 DOI: 10.1007/s11912-022-01253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Lung neuroendocrine tumors (NETs)-typical carcinoids and atypical carcinoids-have unique molecular alterations that are distinct from neuroendocrine carcinomas of the lung and non-small cell lung cancers. Here, we review the role of molecular profiling in the prognosis and treatment of lung NETs. RECENT FINDINGS There have been no recently identified molecular prognostic factors for lung NETs and none that have been routinely used to guide management of patients with lung NETs. Previous findings suggest that patients with loss of chromosome 11q may have a worse prognosis along with upregulation of anti-apoptotic pathways (e.g., loss of CD44 and OTP protein expression). Lung NETs rarely harbor driver mutations commonly found in non-small cell lung cancer (NSCLC) or TP53/RB1 mutations found universally in small cell lung cancer. Lung NETs also have low tumor mutation burden and low PD-L1 expression. Everolimus, an mTOR inhibitor and the only FDA approved therapy for unresectable lung NETs, is an effective treatment but the presence of a molecular alteration in the PI3K/AKT/mTOR pathway is not known to predict treatment response. The predominant mutations in lung NETs occur in genes regulating chromatin remodeling and histone modification, with potential targeted therapies emerging in clinical trials. Lung NETs have recurring alterations in genes that regulate the epigenome. Future targeted therapy interfering with epigenetic pathways may hold promise.
Collapse
Affiliation(s)
- Thomas Yang Sun
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA, USA
| | - Andrew Hendifar
- Department of Medicine, Division of Oncology, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, 7th Floor, Los Angeles, CA, USA
| | - Sukhmani K Padda
- Department of Medicine, Division of Oncology, Cedars-Sinai Medical Center, 127 S San Vicente Blvd, 7th Floor, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Araujo-Castro M, Pascual-Corrales E, Molina-Cerrillo J, Moreno Mata N, Alonso-Gordoa T. Bronchial Carcinoids: From Molecular Background to Treatment Approach. Cancers (Basel) 2022; 14:520. [PMID: 35158788 PMCID: PMC8833538 DOI: 10.3390/cancers14030520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
A better understanding of the genetic and molecular background of bronchial carcinoids (BCs) would allow a better estimation of the risk of disease progression and the personalization of treatment in cases of advanced disease. Molecular studies confirmed that lungs neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs) are different entities; thus, no progression of NET to NEC is expected. In BCs, MEN1 gene mutations and deletions and decreased gene expression have been associated with a poor prognosis. ATRX mutation has also been linked to a shorter disease-specific survival. In terms of therapeutic targets, PI3K/AKT/mTOR pathway mutations have been described in 13% of typical carcinoids (TCs) and 39% of atypical carcinoids (ACs), representing a targetable mutation with kinase inhibitors. Regarding treatment, surgical resection is usually curative in localized BCs and adjuvant treatment is not routinely recommended. Multiple options for systemic therapy exist for patients with advanced BCs, although limited by a heterogeneity in the scientific evidence behind their use recommendation. These options include somatostatin analogues, everolimus, peptide receptor radionuclide therapy, chemotherapy, radiotherapy, antiangiogenic agents, and immunotherapy. In this article, we provide a comprehensive review about the molecular and genetic background of BCs, and about the treatment of local and metastatic disease, as well as the main paraneoplastic syndromes that have been associated with this tumor.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
- Instituto de Investigación Biomédica Ramón y Cajal (IRICYS), 28034 Madrid, Spain;
- Universidad de Alcalá, 28801 Madrid, Spain
| | - Eider Pascual-Corrales
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
- Instituto de Investigación Biomédica Ramón y Cajal (IRICYS), 28034 Madrid, Spain;
| | - Javier Molina-Cerrillo
- Instituto de Investigación Biomédica Ramón y Cajal (IRICYS), 28034 Madrid, Spain;
- Universidad de Alcalá, 28801 Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Nicolás Moreno Mata
- Thoracic Surgery Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Teresa Alonso-Gordoa
- Instituto de Investigación Biomédica Ramón y Cajal (IRICYS), 28034 Madrid, Spain;
- Universidad de Alcalá, 28801 Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
9
|
Volante M, Mete O, Pelosi G, Roden AC, Speel EJM, Uccella S. Molecular Pathology of Well-Differentiated Pulmonary and Thymic Neuroendocrine Tumors: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:154-168. [PMID: 33641055 PMCID: PMC7960615 DOI: 10.1007/s12022-021-09668-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Thoracic (pulmonary and thymic) neuroendocrine tumors are well-differentiated epithelial neuroendocrine neoplasms that are classified into typical and atypical carcinoid tumors based on mitotic index cut offs and presence or absence of necrosis. This classification scheme is of great prognostic value but designed for surgical specimens, only. Deep molecular characterization of thoracic neuroendocrine tumors highlighted their difference with neuroendocrine carcinomas. Neuroendocrine tumors of the lung are characterized by a low mutational burden, and a high prevalence of mutations in chromatin remodeling and histone modification-related genes, whereas mutations in genes frequently altered in neuroendocrine carcinomas are rare. Molecular profiling divided thymic neuroendocrine tumors into three clusters with distinct clinical outcomes and characterized by a different average of copy number instability. Moreover, integrated histopathological, molecular and clinical evidence supports the existence of a grey zone category between neuroendocrine tumors (carcinoid tumors) and neuroendocrine carcinomas. Indeed, cases with well differentiated morphology but mitotic/Ki-67 indexes close to neuroendocrine carcinomas have been increasingly recognized. These are characterized by specific molecular profiles and have an aggressive clinical behavior. Finally, thoracic neuroendocrine tumors may arise in the background of genetic susceptibility, being MEN1 syndrome the well-defined familial form. However, pathologists should be aware of rarer germline variants that are associated with the concurrence of neuroendocrine tumors of the lung or their precursors (such as DIPNECH) with other neoplasms, including but not limited to breast carcinomas. Therefore, genetic counseling for all young patients with thoracic neuroendocrine neoplasia and/or any patient with pathological evidence of neuroendocrine cell hyperplasia-to-neoplasia progression sequence or multifocal disease should be considered.
Collapse
Affiliation(s)
- Marco Volante
- Department of Oncology, University of Turin, Turin, Italy.
| | - Ozgur Mete
- Departments of Pathology, University Healthy Network and University of Toronto, Toronto, Canada
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Ernst Jan M Speel
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Silvia Uccella
- Dept. of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
10
|
Li X, Hou Y, Shi T, He Y, Ren D, Song Z, Wei S, Chen G, Chen J, Xu S. Clinicopathological characteristics and genetic analysis of pulmonary carcinoid tumors: A single-center retrospective cohort study and literature review. Oncol Lett 2020; 19:2446-2456. [PMID: 32194744 PMCID: PMC7039106 DOI: 10.3892/ol.2020.11347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/13/2019] [Indexed: 01/05/2023] Open
Abstract
Pulmonary carcinoid tumors, including typical and atypical carcinoids, are well-differentiated neuroendocrine tumors (NETs) that represent 1–2% of all lung cancer cases. In the present study, all cases of well-differentiated NETs diagnosed at Tianjin Medical University General Hospital (Tianjin, China) between 2006 and 2016 were reviewed, and 20 pulmonary carcinoid cases were identified. The clinical features of these cases were summarized, and the results of pathological and imaging examinations were collated. As a low-grade malignant pulmonary neoplasm, the molecular biological mechanism of pulmonary carcinoids is yet to be elucidated. To investigate the underlying molecular mechanisms behind pulmonary carcinoids and to determine an effective molecular targeted therapeutic strategy, next-generation sequencing (NGS) was performed using tissue samples from six patients to determine additional molecular biological characteristics that may help guide targeted therapy. A total of 27 somatic mutations in 21 genes were detected. Of note, mutations in the KIT proto-oncogene receptor tyrosine kinase, Erb-B2 receptor tyrosine kinase 4, MET proto-oncogene receptor tyrosine kinase and insulin-like growth factor 1 genes occurred in two out of six cases. Since treatments for advanced carcinoids are relatively ineffective, molecular profiling may contribute to the identification of novel treatments. In addition, the literature on mutations in pulmonary carcinoids was reviewed and available clinical information and features of this tumor type were summarized.
Collapse
Affiliation(s)
- Xiongfei Li
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yuelong Hou
- Department of Thoracic Surgery, Third Central Hospital of Tianjin, Tianjin 300170, P.R. China
| | - Tao Shi
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue He
- Burning Rock Biotech, Guangzhou, Guangdong 510000, P.R. China
| | - Dian Ren
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Sen Wei
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Gang Chen
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Chen
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Song Xu
- Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
11
|
Derks JL, Leblay N, Lantuejoul S, Dingemans AMC, Speel EJM, Fernandez-Cuesta L. New Insights into the Molecular Characteristics of Pulmonary Carcinoids and Large Cell Neuroendocrine Carcinomas, and the Impact on Their Clinical Management. J Thorac Oncol 2018; 13:752-766. [PMID: 29454048 DOI: 10.1016/j.jtho.2018.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Carcinoids and large cell neuroendocrine carcinomas (LCNECs) are rare neuroendocrine lung tumors. Here we provide an overview of the most updated data on the molecular characteristics of these diseases. Recent genomic studies showed that carcinoids generally contain a low mutational burden and few recurrently mutated genes. Most of the reported mutations occur in chromatin-remodeling genes (e.g., menin 1 gene [MEN1]), and few affect genes of the phosphoinositide 3-kinase (PI3K)-AKT-mechanistic target of rapamycin gene pathway. Aggressive disease has been related to chromothripsis, DNA-repair gene mutations, loss of orthopedia homeobox/CD44, and upregulation of ret proto-oncogene gene (RET) gene expression. In the case of LCNECs, which present with a high mutation burden, two major molecular subtypes have been identified: one with biallelic inactivation of tumor protein p53 gene (TP53) and retinoblastoma gene (RB1), a hallmark of SCLC; and the other one with biallelic inactivation of TP53 and serine/threonine kinase 11 gene (STK11)/kelch like ECH associated protein 1 gene (KEAP1), genes that are frequently mutated in NSCLC. These data, together with the identification of common mutations in the different components of combined LCNEC tumors, provide further evidence of the close molecular relation of LCNEC with other lung tumor types. In terms of therapeutic options, future studies should explore the association between mechanistic target of rapamycin pathway mutations and response to mechanistic target of rapamycin inhibitors in carcinoids. For LCNEC, preliminary data suggest that the two molecular subtypes might have a predictive value for chemotherapy response, but this observation needs to be validated in randomized prospective clinical trials. Finally, delta like Notch canonical ligand 3 inhibitors and immunotherapy may provide alternative options for patient-tailored therapy in LCNEC.
Collapse
Affiliation(s)
- Jules L Derks
- Department of Pulmonary Diseases, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Noémie Leblay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, IARC-WHO, Lyon, France
| | - Sylvie Lantuejoul
- Department of Biopathology, Centre Léon Bérard UNICANCER, Lyon, France; Grenoble Alpes University INSERM U1209/CNRS 5309, Institute for Advanced Biosciences, La Tronche, France
| | - Anne-Marie C Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ernst-Jan M Speel
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lynnette Fernandez-Cuesta
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, IARC-WHO, Lyon, France.
| |
Collapse
|
12
|
Bognar Z, Fekete K, Bognar R, Szabo A, Vass RA, Sumegi B. Amiodarone's major metabolite, desethylamiodarone, induces apoptosis in human cervical cancer cells. Can J Physiol Pharmacol 2018; 96:1004-1011. [PMID: 29847733 DOI: 10.1139/cjpp-2018-0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we found that desethylamiodarone (DEA) may have therapeutic potentiality in bladder cancer. In this study, we determined its effects on human cervical cancer cells (HeLa). Cell viability was evaluated by Muse Cell Count & Viability Assay; cell apoptosis was detected by Muse Annexin V & Dead Cell Assay. Cell cycle was flow cytometrically determined by Muse Cell Cycle Kit and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33342 staining. The changes in the expression levels of apoptosis-related proteins in the HeLa cells were assessed by immunoblot. Our results showed that DEA significantly inhibited the proliferation and viability of HeLa cells and induced apoptosis in vitro in dose-dependent and also in cell cycle-dependent manner because DEA induced G0/G1 phase arrest in the HeLa cell line. We found that DEA treatment downregulated the expression of phospho-Akt and phospho-Bad. In addition, DEA could downregulate expression of Bcl-2, upregulate Bax, and induce cytochrome c release. Our results indicate that DEA might have significance as an anti-tumor agent against human cervical cancer.
Collapse
Affiliation(s)
- Zita Bognar
- a Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Fekete
- a Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Rita Bognar
- a Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Aliz Szabo
- a Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Reka A Vass
- b Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Sumegi
- a Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary.,c Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,d Szentagothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Vollbrecht C, Werner R, Walter RFH, Christoph DC, Heukamp LC, Peifer M, Hirsch B, Burbat L, Mairinger T, Schmid KW, Wohlschlaeger J, Mairinger FD. Mutational analysis of pulmonary tumours with neuroendocrine features using targeted massive parallel sequencing: a comparison of a neglected tumour group. Br J Cancer 2015; 113:1704-11. [PMID: 26645239 PMCID: PMC4701994 DOI: 10.1038/bjc.2015.397] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/15/2022] Open
Abstract
Background: Lung cancer is the leading cause of cancer-related deaths worldwide. The typical and atypical carcinoid (TC and AC), the large-cell neuroendocrine carcinoma (LCNEC) and the small-cell lung cancers (SCLC) are subgroups of pulmonary tumours that show neuroendocrine differentiations. With the rising impact of molecular pathology in routine diagnostics the interest for reliable biomarkers, which can help to differentiate these subgroups and may enable a more personalised treatment of patients, grows. Methods: A collective of 70 formalin-fixed, paraffin-embedded (FFPE) pulmonary neuroendocrine tumours (17 TCs, 17 ACs, 19 LCNECs and 17 SCLCs) was used to identify biomarkers by high-throughput sequencing. Using the Illumina TruSeq Amplicon-Cancer Panel on the MiSeq instrument, the samples were screened for alterations in 221 mutation hot spots of 48 tumour-relevant genes. Results: After filtering >26 000 detected variants by applying strict algorithms, a total of 130 mutations were found in 29 genes and 49 patients. Mutations in JAK3, NRAS, RB1 and VHL1 were exclusively found in SCLCs, whereas the FGFR2 mutation was detected in LCNEC only. KIT, PTEN, HNF1A and SMO were altered in ACs. The SMAD4 mutation corresponded to the TC subtype. We prove that the frequency of mutations increased with the malignancy of tumour type. Interestingly, four out of five ATM-mutated patients showed an additional alteration in TP53, which was by far the most frequently altered gene (28 out of 130; 22%). We found correlations between tumour type and IASLC grade for ATM- (P=0.022; P=0.008) and TP53-mutated patients (P<0.001). Both mutated genes were also associated with lymph node invasion and distant metastasis (P⩽0.005). Furthermore, PIK3CA-mutated patients with high-grade tumours showed a reduced overall survival (P=0.040) and the mutation frequency of APC and ATM in high-grade neuroendocrine lung cancer patients was associated with progression-free survival (PFS) (P=0.020). Conclusions: The implementation of high-throughput sequencing for the analysis of the neuroendocrine lung tumours has revealed that, even if these tumours encompass several subtypes with varying clinical aggressiveness, they share a number of molecular features. An improved understanding of the biology of neuroendocrine tumours will offer the opportunity for novel approaches in clinical management, resulting in a better prognosis and prediction of therapeutic response.
Collapse
Affiliation(s)
| | - Robert Werner
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Fred Henry Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Martin Peifer
- Department of Translational Genomics, Cologne Center of Genomics, University of Cologne, Cologne, Germany
| | - Burkhard Hirsch
- Institute of Pathology, Molecular Diagnostics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lina Burbat
- Institute of Pathology, Molecular Diagnostics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Mairinger
- Institute of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
14
|
Driver gene mutations of non-small-cell lung cancer are rare in primary carcinoids of the lung: NGS study by ion Torrent. Lung 2015; 193:303-8. [PMID: 25680416 DOI: 10.1007/s00408-015-9690-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/27/2015] [Indexed: 01/10/2023]
Abstract
Lung carcinoids are rare neuroendocrine tumors of the lung. Very little is known about the genetic background of these tumors. We applied Ion Torrent Ampliseq next-generation technology to study hotspot mutations of 22 lung cancer-related genes from typical and atypical lung carcinoid tumors. DNA isolated from 25 formalin-fixed, paraffin-embedded carcinoid tumors were amplified to prepare barcoded libraries covering 507 mutations included in 90 amplicons. The libraries were pooled, purified, enriched, and sequenced on ion personal genome machine. The sequences were aligned and checked for known and novel variations using Torrent Suite Software v.4.0.2. One out of 25 patients had mutations in the targeted regions sequenced. This patient had mutations in BRAF, SMAD4, PIK3CA, and KRAS. All these mutations were confirmed as somatic and are previously known mutations. In summary, mutations in genes commonly mutated in non-small-cell lung cancer are not common in lung carcinoids.
Collapse
|
15
|
BOLDRINI LAURA, GIORDANO MIRELLA, ALÌ GRETA, MELFI FRANCA, ROMANO GAETANO, LUCCHI MARCO, FONTANINI GABRIELLA. P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value. Oncol Lett 2015; 9:449-453. [PMID: 25436007 PMCID: PMC4247004 DOI: 10.3892/ol.2014.2620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/11/2014] [Indexed: 12/21/2022] Open
Abstract
The human P2X7 receptor is significant and exhibits several functions in neoplasia. At present, little is known with regard to its regulation. P2X7 expression may be regulated post-transcriptionally and putative microRNA (miRNA) binding sites are considered to be involved. The aim of this study was to determine whether miRNAs (miR-21, let-7 g and miR-205) regulate P2X7 mRNA stability. In addition, the impact of P2X7 expression in patients with non-small cell lung cancer (NSCLC) was investigated. P2X7 mRNA and mature Let-7 g, miR-21, and miR-205 expression levels were quantified in 96 NSCLC cases using quantitative reverse transcription polymerase chain reaction. In all samples, epidermal growth factor receptor and K-Ras mutational analysis was also performed. Samples with low P2X7 expression were found to exhibit a higher fold change in miR-21 expression when compared with samples exhibiting high P2X7 expression. Significantly higher miR-21 expression was observed in the tumors of NSCLC patients with a K-Ras mutation when compared with patients who had K-Ras wild-type tumors (P=0.003). Additionally, to evaluate the association between P2X7 expression and prognosis in NSCLC patients, survival analysis was performed using the Kaplan-Meier method. A significant difference in the progression-free survival and overall survival in the NSCLC patients with high P2X7 expression was identified, when compared with that of patients with low expression (P=0.03 and P=0.02, respetively). Therefore, we hypothesized that high levels of miR-21 expression in NSCLC patients with K-Ras mutations may be regulated by a complex circuit, including P2X7 downregulation and together these processes may promote tumor progression.
Collapse
Affiliation(s)
- LAURA BOLDRINI
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| | - MIRELLA GIORDANO
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| | - GRETA ALÌ
- Unit of Pathological Anatomy III, University Hospital of Pisa, Pisa 56126, Italy
| | - FRANCA MELFI
- Unit of Thoracic Surgery, University Hospital of Pisa, Pisa 56126, Italy
| | - GAETANO ROMANO
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| | - MARCO LUCCHI
- Unit of Thoracic Surgery, University Hospital of Pisa, Pisa 56126, Italy
| | - GABRIELLA FONTANINI
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
16
|
Capodanno A, Boldrini L, Proietti A, Alì G, Pelliccioni S, Niccoli C, D'Incecco A, Cappuzzo F, Chella A, Lucchi M, Mussi A, Fontanini G. Let-7g and miR-21 expression in non-small cell lung cancer: correlation with clinicopathological and molecular features. Int J Oncol 2013; 43:765-74. [PMID: 23820752 DOI: 10.3892/ijo.2013.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/17/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) play a key role in cancer pathogenesis and are involved in several human cancers, including non-small cell lung cancer (NSCLC). This study evaluated Let-7g and miR-21 expression by quantitative real-time PCR in 80 NSCLC patients and correlated the results with their main clinicopathological and molecular features. MiR-21 expression was significantly higher in NSCLC tissues compared to non-cancer lung tissues (p<0.0001), while no significant changes in Let-7g expression were observed between the tumor and normal lung tissues. Target prediction analysis led to the identification of 26 miR-21 and 24 Let-7g putative target genes that play important roles in cancer pathogenesis and progression. No significant association was observed between the analysed miRNAs and the main clinicopathological or molecular characteristics of the NSCLC patients, although both miRNAs were downregulated in squamous cell carcinomas compared to adenocarcinomas. Noteworthy, we observed a significant association between low Let-7g expression and metastatic lymph nodes at diagnosis (p=0.046), as well as between high miR-21 expression and K-Ras mutations (p=0.0003). Survival analysis did not show any significant correlation between prognosis and the analysed miRNAs, although the patients with a high Let-7g and miR-21 expression showed a significantly lower short-term progression-free survival (p=0.01 and p=0.0003, respectively) and overall survival (p=0.023 and p=0.0045, respectively). In conclusion, we showed that Let-7g and miR-21 expression was deregulated in NSCLC and we demonstrated a strong relationship between miR-21 overexpression and K-Ras mutations. Our data indicate that Let-7g and miR-21 profiling combined with the determination of K-Ras mutational status may be considered a useful biomarker for a more effective molecular characterization and clinical management of NSCLC patients.
Collapse
Affiliation(s)
- Alessandra Capodanno
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, I-56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Deb S, Do H, Byrne D, Jene N, kConFab Investigators, Dobrovic A, Fox SB. PIK3CA mutations are frequently observed in BRCAX but not BRCA2-associated male breast cancer. Breast Cancer Res 2013; 15:R69. [PMID: 23971979 PMCID: PMC3978692 DOI: 10.1186/bcr3463] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/30/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Although a substantial proportion of male breast cancers (MBCs) are hereditary, the molecular pathways that are activated are unknown. We therefore examined the frequency and clinicopathological associations of the PIK3CA/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and their regulatory genes in familial MBC. METHODS High resolution melting analysis and confirmatory sequencing was used to determine the presence of somatic mutations in PIK3CA (exon 9 and 20), AKT1 (exon 4), KRAS (exon 2) and BRAF (exon 15) genes in 57 familial MBCs. Further analysis of the PIK3CA/mTOR pathway was performed using immunohistochemistry for the pAKT1, pS6 and p4EBP1 biomarkers. RESULTS PIK3CA somatic mutations were identified in 10.5% (6 of 57) of cases; there were no AKT1, KRAS or BRAF somatic mutations. PIK3CA mutations were significantly more frequent in cancers from BRCAX patients (17.2%, 5/29) than BRCA2 (0%, 0/25) carriers (P = 0.030). Two BRCAX patients had an E547K mutation which has only been reported in one female breast cancer previously. PIK3CA mutation was significantly correlated with positive pS6 (83.3% vs. 32.0%, P = 0.024) and negative p4EBP1 (100% vs. 38.0%, P = 0.006) expression, but not pAKT expression. Expression of nuclear p4EBP1 correlated with BRCA2 mutation carrier status (68.0% vs. 38.7%, P = 0.035). CONCLUSIONS Somatic PIK3CA mutation is present in familial male breast cancer but absent in BRCA2 carriers. The presence of two of the extremely rare E547K PIK3CA mutations in our cohort may have specific relevance in MBCs. Further study of PIK3CA in MBCs, and in particular BRCAX patients, may contribute to further establishing the relevance of specific PIK3CA mutations in MBC aetiology and in the identification of particular patient groups most likely to benefit from therapeutic targeting with the novel PIK3CA inhibitors that are currently in development.
Collapse
Affiliation(s)
- Siddhartha Deb
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
- Department of Pathology and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hongdo Do
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - David Byrne
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Nicholas Jene
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - kConFab Investigators
- Kathleen Cuningham Foundation Consortium for research into Familial Breast Cancer, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Alexander Dobrovic
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
- Department of Pathology and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
- Department of Pathology and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|