1
|
Clanchy FIL, Huang YS, Ogbechi J, Darlington LG, Williams RO, Stone TW. Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin, Prostate Specific Antigen, CD26 and HtrA: A New Form of Immunosuppression? Front Immunol 2022; 13:832989. [PMID: 35371018 PMCID: PMC8964980 DOI: 10.3389/fimmu.2022.832989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Several serine proteases have been linked to autoimmune disorders and tumour initiation although the mechanisms are not fully understood. Activation of the kynurenine pathway enzyme indoleamine-2,3-dioxygenase (IDO1) modulates cellular activity in the brain, tolerogenesis in the immune system and is a major checkpoint in cancer development. We now report that IDO1 mRNA and IDO1 protein expression (generating kynurenine) are induced in human monocyte-derived macrophages by several chymotryptic serine proteases with direct links to tumorigenesis, including Prostate Specific Antigen (PSA), CD26 (Dipeptidyl-peptidase-4, CD26/DPP-4), High Temperature Requirement protein-A (HtrA), and the bacterial virulence factor subtilisin. These proteases also induce expression of the pro-inflammatory cytokine genes IL1B and IL6. Other serine proteases tested: bacterial glu-C endopeptidase and mammalian Pro-protein Convertase Subtilase-Kexin-3 (PCSK3, furin), urokinase plasminogen activator (uPA), cathepsin G or neutrophil elastase, did not induce IDO1, indicating that the reported effects are not a general property of all serine proteases. The results represent a novel mechanism of activating immunosuppressive IDO1 and inducing kynurenine generation which, together with the production of inflammatory cytokines, would contribute to tumour initiation and progression, providing a new target for drug development. In addition, the proteasomal S20 serine protease inhibitor carfilzomib, used in the treatment of myeloma, prevented the induction of IDO1 and cytokine gene expression, potentially contributing to its clinical anti-cancer activity.
Collapse
Affiliation(s)
- Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Joy Ogbechi
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Medicine and Rheumatology, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Trevor W. Stone
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Kynurenines as a Novel Target for the Treatment of Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14070606. [PMID: 34201791 PMCID: PMC8308824 DOI: 10.3390/ph14070606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Malignancies are unquestionably a significant public health problem. Their effective treatment is still a big challenge for modern medicine. Tumors have developed a wide range of mechanisms to evade an immune and therapeutic response. As a result, there is an unmet clinical need for research on solutions aimed at overcoming this problem. An accumulation of tryptophan metabolites belonging to the kynurenine pathway can enhance neoplastic progression because it causes the suppression of immune system response against cancer cells. They are also involved in the development of the mechanisms responsible for the resistance to antitumor therapy. Kynurenine belongs to the most potent immunosuppressive metabolites of this pathway and has a significant impact on the development of malignancies. This fact prompted researchers to assess whether targeting the enzymes responsible for its synthesis could be an effective therapeutic strategy for various cancers. To date, numerous studies, both preclinical and clinical, have been conducted on this topic, especially regarding the inhibition of indoleamine 2,3-dioxygenase activity and their results can be considered noteworthy. This review gathers and systematizes the knowledge about the role of the kynurenine pathway in neoplastic progression and the findings regarding the usefulness of modulating its activity in anticancer therapy.
Collapse
|
3
|
Abstract
INTRODUCTION Various types of cancers threaten human life. The role of bacteria in causing cancer is controversial, but it has been determined that the Helicobacter pylori infection is one of the identified risk factors for gastric cancer. Helicobacter pylori infection is highly prevalent, and about half of the world,s population is infected with it. OBJECTIVE The aim of this study was the role of Helicobacter pylori in the development of gastric cancer. METHOD We obtained information from previously published articles. RESULTS AND CONCLUSION The bacterium has various virulence factors, including cytotoxin- associated gene A, vacuolating cytotoxin A, and the different outer membrane proteins that cause cancer by different mechanisms. These virulence factors activate cell signaling pathways such as PI3-kinase/Akt, JAK/STAT and Ras, Raf, and ERK signaling that control cell proliferation. Uncontrolled proliferation can lead to cancer.
Collapse
Affiliation(s)
- Majid Alipour
- Department of Cell and Molecular Biology, Islamic Azad University, Babol Branch, Babol, Iran.
| |
Collapse
|
4
|
Ebokaiwe AP, Njoya EM, Sheng Y, Zhang Z, Li S, Zhou Z, Qiang Z, Peng T, Hussein AA, Zhang G, Lu X, Li L, Wang F. Salinomycin promotes T-cell proliferation by inhibiting the expression and enzymatic activity of immunosuppressive indoleamine-2,3-dioxygenase in human breast cancer cells. Toxicol Appl Pharmacol 2020; 404:115203. [PMID: 32822738 DOI: 10.1016/j.taap.2020.115203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/25/2023]
Abstract
Indoleamine 2,3 dioxygenase (IDO) is upregulated in many tumor types, including breast cancer, and plays a reputable role in promoting tumor immune tolerance. The importance of the immunosuppressive mechanism of IDO by suppressing T-cell function has garnered profound interest in the development of clinical IDO inhibitors. Herein, we established a screening method with cervical HeLa cells to induce IDO expression using interferon-γ (IFN-γ). After screening our chemical library, we found that salinomycin potently inhibited IFN-γ-stimulated kynurenine synthesis with IC50 values of 3.36-4.66 μM in both human cervical and breast cancer cells. Salinomycin lowered the IDO1 and IDO2 expression with no impact on the expression of tryptophan-2,3-dioxygenase. Interestingly, salinomycin potently repressed the IDO1 enzymatic activity by directly targeting the proteins in cells. Molecular docking revealed an alignment that favors nucleophilic attack of salinomycin in the catalytic domain of IDO1. Activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway by IFN-γ was significantly suppressed by salinomycin, via inhibiting the Jak1, Jak2, and STAT1/3 phosphorylation. Moreover, it inhibited IFN-γ-induced activation of the nuclear factor (NF)-κB pathway by inhibiting IκB degradation and NF-κB phosphorylation without affecting BIN1 expression. Furthermore, salinomycin significantly restored the proliferation of T cells co-cultured with IFN-γ-treated breast cancer cells and potentiated antitumor activity of cisplatin in vivo. These findings suggest that salinomycin suppresses kynurenine synthesis by inhibiting the catalytic activity of IDO1 and its expression by inhibiting the JAK/STAT and NF-κB pathways. Salinomycin warrants further investigation as a novel dual-functional IDO inhibitor for cancer immunotherapy.
Collapse
Affiliation(s)
- Azubuike Peter Ebokaiwe
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University Ndufu Alike-, Ikwo, Nigeria
| | - Emmanuel Mfotie Njoya
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O Box 812, Yaoundé, Cameroon
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhonghui Zhang
- College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhe Qiang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Bellville 7537, Western Cape, South Africa
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoxia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
5
|
Xu W, Liu H, Liu ZG, Wang HS, Zhang F, Wang H, Zhang J, Chen JJ, Huang HJ, Tan Y, Cao MT, Du J, Zhang QG, Jiang GM. Histone deacetylase inhibitors upregulate Snail via Smad2/3 phosphorylation and stabilization of Snail to promote metastasis of hepatoma cells. Cancer Lett 2018; 420:1-13. [PMID: 29410023 DOI: 10.1016/j.canlet.2018.01.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 01/25/2018] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) remains the third most common cause of cancer-related mortality. Resection and transplantation are the only curative treatments available, but are greatly hampered by high recurrence rates. Histone deacetylase inhibitors (HDACIs) are considered to be promising anticancer agents in drug development. Currently, four HDACIs have been granted Food and Drug Administration (FDA) approval for cancer. HDACIs have shown significant efficacy in hematological malignancies. However, they have limited effects in epithelial cell-derived cancers, including HCC, and the mechanisms of these are not elucidated. In this study, our results demonstrated that HDACIs were able to induce epithelial-mesenchymal transitions (EMT) in hepatoma cells which are believed to trigger tumor cell invasion and metastasis. We found that HDACIs promoted the expression of Snail and Snail-induced EMT was critical for HDACI-initiated invasion and metastasis. We indicated that HDACIs upregulated Snail in two ways. Firstly, HDACIs upregulated Snail at the transcriptional level by promoting Smad2/3 phosphorylation and nuclear translocation, then combined with the promoter to activate the transcription of Snail. Secondly, we showed that HDACIs regulated the stabilization of Snail via upregulating the expression of COP9 signalosome 2 (CSN2), which combined with Snail and exposed its acetylation site, then promoted acetylation of Snail, thereby inhibiting its phosphorylation and ubiquitination to repress the degradation of Snail. All these results highlighted that HDACIs have limited effects in HCC, and the use of HDACIs combined with other targeted strategies to inhibit EMT, which explored in this study is a promising treatment method for treating HCC.
Collapse
Affiliation(s)
- Wei Xu
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Gang Liu
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hao Wang
- Department of Clinical Laboratory, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Ji Zhang
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing-Jing Chen
- Sinocare Biosensing Limited Company, Changsha, Hunan, China
| | - Hong-Jun Huang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuan Tan
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meng-Ting Cao
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiu-Gui Zhang
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Zhang P, Zhu X, Wu Y, Hu R, Li D, Du J, Jiao X, He X. Histone deacetylase inhibitors reduce WB-F344 oval cell viability and migration capability by suppressing AKT/mTOR signaling in vitro. Arch Biochem Biophys 2015; 590:1-9. [PMID: 26558695 DOI: 10.1016/j.abb.2015.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022]
Abstract
Histone deacetylase (HDAC) can blockDNA replication and transcription and altered HDAC expression was associated with tumorigenesis. This study investigated the effects of HDAC inhibitors on hepatic oval cells and aimed to delineate the underlying molecular events. Hepatic oval cells were treated with two different HDAC inhibitors, suberoylanilidehydroxamic acid (SAHA) and trichostatin-A (TSA). Cells were subjected to cell morphology, cell viability, cell cycle, and wound healing assays. The expression of proteins related to both apoptosis and the cell cycle, and proteins of the AKT/mammalian target of rapamycin (mTOR) signaling pathway were analyzed by Western blot. The data showed that HDAC inhibitors reduced oval cell viability and migration capability, and arrested oval cells at the G0/G1 and S phases of the cell cycle, in a dose- and time-dependent manner. HDAC inhibitors altered cell morphology and reduced oval cell viability, and downregulated the expression of PCNA, cyclinD1, c-Myc and Bmi1 proteins, while also suppressing AKT/mTOR and its downstream target activity. In conclusion, this study demonstrates that HDAC inhibitors affect oval cells by suppressing AKT/mTOR signaling.
Collapse
Affiliation(s)
- Peng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Wu
- Department of Biostatistics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ronglin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongming Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xingyuan Jiao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Zhang P, Guo Z, Wu Y, Hu R, Du J, He X, Jiao X, Zhu X. Histone Deacetylase Inhibitors Inhibit the Proliferation of Gallbladder Carcinoma Cells by Suppressing AKT/mTOR Signaling. PLoS One 2015; 10:e0136193. [PMID: 26287365 PMCID: PMC4542213 DOI: 10.1371/journal.pone.0136193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/31/2015] [Indexed: 12/18/2022] Open
Abstract
Gallbladder carcinoma is an aggressive malignancy with high mortality mainly due to the limited potential for curative resection and its resistance to chemotherapeutic agents. Here, we show that the histone deacetylase inhibitors (HDACIs) trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA) reduce the proliferation and induce apoptosis of gallbladder carcinoma cells by suppressing the AKT/mammalian target of rapamycin (mTOR) signaling. Gallbladder carcinoma SGC-996 cells were treated with different concentrations of TSA and SAHA for different lengths of time. Cell proliferation and morphology were assessed with MTT assay and microscopy, respectively. Cell cycle distribution and cell apoptosis were analyzed with flow cytometry. Western blotting was used to detect the proteins related to apoptosis, cell cycle, and the AKT/mTOR signaling pathway. Our data showed that TSA and SAHA reduced SGC-996 cell viability and arrested cell cycle at the G1 phase in a dose- and time-dependent manner. TSA and SAHA promoted apoptosis of SGC-996 cells, down-regulated the expression of cyclin D1, c-Myc and Bmi1, and decreased the phosphorylation of AKT, mTOR p70S6K1, S6 and 4E-BP1. Additionally, the mTOR inhibitor rapamycin further reduced the cell viability of TSA- and SAHA-treated SGC-996 cells and the phosphorylation of mTOR, whereas the mTOR activator 1,2-dioctanoyl-sn-glycero-3-phosphate (C8-PA) exerted the opposite influence. Our results demonstrate that histone deacetylase inhibitors (HDACIs) suppress the proliferation of gallbladder carcinoma cell via inhibition of AKT/mTOR signaling. These findings offer a mechanistic rationale for the application of HDACIs in gallbladder carcinoma treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Wu
- Department of Biostatistics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronglin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyuan Jiao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (XJ); (XZ)
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (XJ); (XZ)
| |
Collapse
|
8
|
Gurav A, Sivaprakasam S, Bhutia YD, Boettger T, Singh N, Ganapathy V. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochem J 2015; 469:267-78. [PMID: 25984582 PMCID: PMC4943859 DOI: 10.1042/bj20150242] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022]
Abstract
Mammalian colon harbours trillions of bacteria under physiological conditions; this symbiosis is made possible because of a tolerized response from the mucosal immune system. The mechanisms underlying this tolerogenic phenomenon remain poorly understood. In the present study we show that Slc5a8 (solute carrier gene family 5a, member 8), a Na(+)-coupled high-affinity transporter in colon for the bacterial fermentation product butyrate, plays a critical role in this process. Among various immune cells in colon, dendritic cells (DCs) are unique not only in their accessibility to luminal contents but also in their ability to induce tolerogenic phenotype in T-cells. We found that DCs exposed to butyrate express the immunosuppressive enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and aldehyde dehydrogenase 1A2 (Aldh1A2), promote conversion of naive T-cells into immunosuppressive forkhead box P3(+) (FoxP3(+)) Tregs (regulatory T-cells) and suppress conversion of naive T-cells into pro-inflammatory interferon (IFN)-γ-producing cells. Slc5a8-null DCs do not induce IDO1 and Aldh1A2 and do not generate Tregs or suppress IFN-γ-producing T-cells in response to butyrate. We also provide in vivo evidence for an obligatory role for Slc5a8 in suppression of IFN-γ-producing T-cells. Furthermore, Slc5a8 protects against colitis and colon cancer under conditions of low-fibre intake but not when dietary fibre intake is optimal. This agrees with the high-affinity nature of the transporter to mediate butyrate entry into cells. We conclude that Slc5a8 is an obligatory link between dietary fibre and mucosal immune system via the bacterial metabolite butyrate and that this transporter is a conditional tumour suppressor in colon linked to dietary fibre content.
Collapse
Affiliation(s)
- Ashish Gurav
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, U.S.A
| | - Sathish Sivaprakasam
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, U.S.A
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Thomas Boettger
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstr 43, Bad Nauheim, D-61231, Germany
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, U.S.A
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Gallbladder cancer (GBC) should be considered an orphan disease in oncology and represent a unique carcinogenetic model. This review will analyse some of the current aspects of GBC. RECENT FINDINGS Chile has the highest incidence and mortality of GBC in the world. Most patients are diagnosed in advanced stages with few treatment options. During the last two decades, little progress has been made in early diagnosis and treatment. At the molecular level, recent access to next-generation sequencing and other techniques for detecting the mutations of multiple genes have made advances in this area. SUMMARY The use of therapies targeted according to the detection of specific molecular alterations is in the early stages of evaluation and could represent a significant advance in the treatment of a large number of patients from developing countries.
Collapse
|