1
|
Miri H, Rahimzadeh P, Hashemi M, Nabavi N, Aref AR, Daneshi S, Razzaghi A, Abedi M, Tahmasebi S, Farahani N, Taheriazam A. Harnessing immunotherapy for hepatocellular carcinoma: Principles and emerging promises. Pathol Res Pract 2025; 269:155928. [PMID: 40184729 DOI: 10.1016/j.prp.2025.155928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
HCC is considered as one of the leadin causes of death worldwide, with the ability of resistance towards therapeutics. Immunotherapy, particularly ICIs, have provided siginficant insights towards harnessing the immune system. The present review introduces the concepts and possibilities of immunotherapy for HCC treatment, emphasizing its underlying mechanisms and capacity to enhance patient results, focusing on both pre-clinical and clinical insights. The functions of TME and immune evasion mechanisms typical of HCC would be evaluated along with how contemporary immunotherapeutic approaches are designed to address these challenges. Furthermore, the clinical application of immunotherapy in HCC is discussed, emphasizing recent trial findings demonstrating the effectiveness and safety of drugs. In addition, the problems caused by immune evasion and resistance would be discussed to increase potential of immunotherapy along with combination therapy.
Collapse
Affiliation(s)
- Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Alireza Razzaghi
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Jiang Y, Han Q, Zhao H, Zhang J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:435-450. [PMID: 34046368 PMCID: PMC8147889 DOI: 10.2147/jhc.s307962] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy, and the hepatitis B virus (HBV) is its major pathogenic factor. Over the past decades, it has been confirmed that HBV infection could promote disease progression through a variety of mechanisms, ultimately leading to the malignant transformation of liver cells. Many factors have been identified in the pathogenesis of HBV-associated HCC (HBV-HCC), including HBV gene integration, genomic instability caused by mutation, and activation of cancer-promoting signaling pathways. As research in the progression of HBV-HCC progresses, the role of many new mechanisms, such as epigenetics, exosomes, autophagy, metabolic regulation, and immune suppression, is also being continuously explored. The occurrence of HBV-HCC is a complex process caused by interactions across multiple genes and multiple steps, where the synergistic effects of various cancer-promoting mechanisms accelerate the process of disease evolution from inflammation to tumorigenesis. In this review, we aim to provide a brief overview of the mechanisms involved in the occurrence and development of HBV-HCC, which may contribute to a better understanding of the role of HBV in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| |
Collapse
|
3
|
The role of HBV-induced autophagy in HBV replication and HBV related-HCC. Life Sci 2018; 205:107-112. [DOI: 10.1016/j.lfs.2018.04.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
|
4
|
Huang A, Ma J, Huang L, Yang F, Cheng P. Mechanisms for enhanced antitumor immune responses induced by irradiated hepatocellular carcinoma cells engineered to express hepatitis B virus X protein. Oncol Lett 2018; 15:8505-8515. [PMID: 29928322 PMCID: PMC6004658 DOI: 10.3892/ol.2018.8430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 02/23/2018] [Indexed: 02/05/2023] Open
Abstract
Tumor associated antigen (TAA) induces both humoral immunity and cellular immunity. The T cell-mediated immune response has an important role in the immune response induced by TAA. The hepatitis B virus X protein (HBx) sequence is mapped with Custer of differentiation (CD)8+ T cell (CTL) epitopes, while a large number of studies have indicated that HBx may enhance the autophagy. In our previous study, a novel hepatocellular carcinoma vaccine was designed that was an irradiated HBx modified hepatocellular carcinoma cell vaccine in autophagic form, which significantly induced antitumor immune responses in vivo. However, the mechanism by which this vaccine contributes to enhancing antitumor immune responses have yet to be fully elucidated. In the present study, we examined how autophagy was induced by this vaccine's influence on the generation of the ‘danger signal’ by hepatoma tumor cells and the subsequent activation of the immunoresponse. The data showed that the vaccine induced phenotypic maturation of DCs, which leads to efficient cross-presentation and a specific response. Both CD8+ and CD4+ T lymphocytes were involved in the antitumor immune response, as reflected by IFN-γ secretion. In addition, damage-associated molecular pattern molecules (DAMPs) were significantly elevated in the vaccine, and the elevation of DAMPs was autophagy-dependent. Furthermore, the antitumor activity was achieved by adoptive transfer of lymphocytes but not serum. The present findings indicated that this vaccine enhanced antitumor immune responses, which was in accordance with our previous study.
Collapse
Affiliation(s)
- Anliang Huang
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinhu Ma
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liyan Huang
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fan Yang
- Department of Pathology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Cheng
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Wagner SC, Ichim TE, Bogin V, Min WP, Silva F, Patel AN, Kesari S. Induction and characterization of anti-tumor endothelium immunity elicited by ValloVax therapeutic cancer vaccine. Oncotarget 2018; 8:28595-28613. [PMID: 28404894 PMCID: PMC5438675 DOI: 10.18632/oncotarget.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
ValloVax is a placental endothelium derived vaccine which induces tissue-nonspecific antitumor immunity by blocking tumor angiogesis. To elucidate mechanisms of action, we showed that production of ValloVax, which involves treating placental endothelial cells with IFN-gamma, results in upregulation of HLA and costimulatory molecules. It was shown that in mixed lymphocyte reaction, ValloVax induces Type I cytokines and allo-proliferative responses. Plasma from ValloVax immunized mice was capable of killing in vitro tumor-like endothelium but not control endothelium. Using defined antigens associated with tumor endothelial cells, specific molecular entities were identified as being targeted by ValloVax induced antibodies. Binding of predominantly IgG antibodies to ValloVax cells was confirmed by flow cytometry. Further suggesting direct killing of tumor endothelial cells was expression of TUNEL positive cells, as well as, reduction in tumor oxygenation. Supporting a role for antibody mediated responses, cell depletion experiments suggested a predominant role of B cells in maintaining an intact anti-tumor endothelial response. Adoptive transfer experiments suggested that infusion of CD3+ T cells from immunized mice was sufficient to transfer tumor protection. Generation of memory T cells selective to tumor endothelial specific markers was observed. Functional confirmation of memory responses was observed in tumor rechallenge experiments. Furthermore, we observed that both PD-1 or CTLA-4 blockade augmented antitumor effects of ValloVax. These data suggest a T cell induced B cell mediated anti-tumor endothelial response and set the framework clinical trials through elucidation of mechanism of action.
Collapse
Affiliation(s)
| | | | | | - Wei-Ping Min
- Department of Immunology, University of Western Ontario, London, Ontario, Canada
| | - Francisco Silva
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Amit N Patel
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| |
Collapse
|
6
|
Yu S, Wang Y, Jing L, Claret FX, Li Q, Tian T, Liang X, Ruan Z, Jiang L, Yao Y, Nan K, Lv Y, Guo H. Autophagy in the "inflammation-carcinogenesis" pathway of liver and HCC immunotherapy. Cancer Lett 2017; 411:82-89. [PMID: 28987386 DOI: 10.1016/j.canlet.2017.09.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
Autophagy plays a dual role in many types of cancer, such as hepatocellular carcinoma (HCC). Autophagy seems to be inhibited and functions as a tumor-suppression mechanism in the "inflammation-carcinogenesis" pathway of the liver, including hepatitis B virus and hepatitis C virus, alcoholic steatohepatitis and non-alcoholic steatohepatitis related HCC. However, in established tumors, autophagy plays a tumor-promoting role. Because of the varied function of autophagy in HCC, we hypothesized p62 as a marker to evaluate the autophagic level. Moreover, autophagy is critical in antigen presentation and homeostasis of immune cells and tumor microenvironment. Understanding the intricate relationships of autophagy, inflammation, and immunity provides us with new insights into HCC immunotherapy.
Collapse
Affiliation(s)
- Sizhe Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Li Jing
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - F X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Qing Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
7
|
Muraro E, Merlo A, Martorelli D, Cangemi M, Dalla Santa S, Dolcetti R, Rosato A. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:197. [PMID: 28289418 PMCID: PMC5327441 DOI: 10.3389/fimmu.2017.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | | | - Riccardo Dolcetti
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Wu SY, Lan SH, Liu HS. Autophagy and microRNA in hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2016; 22:176-187. [PMID: 26755869 PMCID: PMC4698484 DOI: 10.3748/wjg.v22.i1.176] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023] Open
Abstract
Approximately 350 million people worldwide are chronically infected by hepatitis B virus (HBV). HBV causes severe liver diseases including cirrhosis and hepatocellular carcinoma (HCC). In about 25% of affected patients, HBV infection proceeds to HCC. Therefore, the mechanisms by which HBV affects the host cell to promote viral replication and its pathogenesis have been the subject of intensive research efforts. Emerging evidence indicates that both autophagy and microRNAs (miRNAs) are involved in HBV replication and HBV-related hepatocarcinogenesis. In this review, we summarize how HBV induces autophagy, the role of autophagy in HBV infection, and HBV-related tumorigenesis. We further discuss the emerging roles of miRNAs in HBV infection and how HBV affects miRNAs biogenesis. The accumulating knowledge pertaining to autophagy and miRNAs in HBV replication and its pathogenesis may lead to the development of novel strategies against HBV infection and HBV-related HCC tumorigenesis.
Collapse
|
9
|
He Y, Meng XM, Huang C, Wu BM, Zhang L, Lv XW, Li J. Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett 2013; 344:20-27. [PMID: 24183851 DOI: 10.1016/j.canlet.2013.10.021] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
Abstract
Recent advances in non-protein coding part of human genome analysis have discovered extensive transcription of large RNA transcripts that lack of coding protein function, termed long noncoding RNAs (lncRNAs). It is becoming evident that lncRNAs may be an important class of pervasive genes involved in carcinogenesis and metastasis. However, the biological and molecular mechanisms of lncRNAs in diverse diseases are not yet fully understood. Thus, it is anticipated that more efforts should be made to clarify the lncRNAs world. Moreover, accumulating studies have demonstrated that a class of lncRNAs are dysregulated in hepatocellular carcinoma(HCC) and closely related with tumorigenesis, metastasis, prognosis or diagnosis. In this review, we will briefly discuss the regulation and functional role of lncRNAs in HCC, therefore evaluating the potential of lncRNAs as prospective novel therapeutic targets in HCC.
Collapse
Affiliation(s)
- Yong He
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Bao-Ming Wu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Xiong-Wen Lv
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, China; Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei 230032, China.
| |
Collapse
|