1
|
Notomi R, Sasaki S, Taniguchi Y. Novel strategy for activating gene expression through triplex DNA formation targeting epigenetically suppressed genes. RSC Chem Biol 2024; 5:884-890. [PMID: 39211471 PMCID: PMC11353075 DOI: 10.1039/d4cb00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Triplex DNA formation is a useful genomic targeting tool that is expected to have a wide range of applications, including the antigene method; however, there are fundamental limitations in its forming sequence. We recently extended the triplex DNA-forming sequence to methylated DNA sequences containing 5mCG base pairs by developing guanidino-dN, which is capable of recognizing a 5mCG base pair with high affinity. We herein investigated the effect of triplex DNA formation using TFOs with guanidino-dN on methylated DNA sequences at the promoter of the RASSF1A gene, whose expression is epigenetically suppressed by DNA methylation in MCF-7 cells, on gene expression. Interestingly, triplex DNA formation increased the expression of the RASSF1A gene at the transcript and protein levels. Furthermore, RASSF1A-activated MCF-7 cells exhibited cell growth suppressing activity. Changes in the expression of various genes associated with the promotion of apoptosis and breast cancer survival accompanied the activation of RASSF1A in cells exhibited antiproliferative activity. These results suggest the potential of increases in gene expression through triplex DNA formation as a new genomic targeting tool.
Collapse
Affiliation(s)
- Ryotaro Notomi
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University 22825-7 Huis Ten Bosch Machi Sasebo city Nagasaki 859-3298 Japan
| | - Yosuke Taniguchi
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University 1-1-1 Tsushima-naka Kita-ku Okayama 700-8530 Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
2
|
Li X, Yin X, Bao H, Liu C. Targeting a novel circITCH/miR-421/BTG1 axis is effective to suppress the malignant phenotypes in hepatocellular carcinoma (HCC) cells. Cytotechnology 2023; 75:255-267. [PMID: 37187949 PMCID: PMC10167090 DOI: 10.1007/s10616-023-00576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Circular RNA-based competing endogenous RNA (ceRNA) networks contribute to the initiation and development of various types of cancer, including hepatocellular carcinoma (HCC). Although a novel circular RNA itchy E3 ubiquitin protein ligase (circITCH) is identified as a tumor suppressor in HCC, its detailed molecular mechanisms have not been fully delineated. The present study was designed to resolve this issue, and we firstly verified that circITCH suppressed the malignant phenotypes in HCC cells by regulating a novel miR-421/B-cell translocation gene 1 (BTG1) axis. Specifically, through performing the Real-Time qPCR analysis, we noticed that circITCH expression in HCC tumor tissues or cell lines were significantly lower than that in adjacent normal tissues or normal hepatocytes, and the expression levels of circITCH were negatively correlated with tumor size and TNM stage in HCC patients. Next, our functional experiments confirmed that overexpression of circITCH induced cell cycle arrest and apoptosis, and reduced cell viability and colony forming ability in Hep3B and Huh7 cells. Mechanically, bioinformatics analysis, RNA immunoprecipitation and luciferase reporter assay demonstrated that circITCH served as RNA sponges for miR-421 to elevate BTG1 levels in HCC cells. The rescuing experiments verified that upregulation of miR-421 promoted cell viability and colony formation, and reduced apoptosis, which were abrogated by overexpression of circITCH or BTG1. In conclusion, this study identified a novel circITCH/miR-421/BTG1 axis that restrained the development of HCC, and our findings provided novel biomarkers for the treatment of this disease.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Xuedong Yin
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Heyi Bao
- Department of General Surgery, Qiqihar First Hospital, Qiqihar, 161005 China
| | - Chang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Nangang District, Harbin, 150001 Heilongjiang China
| |
Collapse
|
3
|
Gao L, Zhu L, Shen C, Hou X, Chen Y, Zou L, Qiang H, Teichmann AT, Fu W, Luo Y. The transdermal cream of Formestane anti-breast cancer by controlling PI3K-Akt pathway and the tumor immune microenvironment. Front Immunol 2023; 14:1041525. [PMID: 37056757 PMCID: PMC10087521 DOI: 10.3389/fimmu.2023.1041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Treatment of ER+ breast cancer with intramuscular formulation of Formestane (4-OHA) shrinks the tumor within weeks. Since the tedious way of intramuscular administration and side effects are not suited for adjuvant treatment, Formestane was withdrawn from the market. A new transdermal formulation of 4-OHA cream may overcome the defects and retain the effect of shrinking the breast cancer tumor. However, the effects of 4-OHA cream on breast cancer need further confirmatory studies. METHODS In this work, in vivo, the influence of 4-OHA cream on breast cancer was evaluated using the mode of 7,12-dimethylbenz(a)anthracene (DMBA) induced rat mammary cancer. We explored the common molecule mechanisms of action of 4-OHA cream and its injection formulation on breast cancer through RNA- sequencing-based transcriptome analysis and several biochemical experiments. RESULTS The results showed that the cream substantially reduced the entire quantity, size, and volum of tumors in DMBA-treated rats consistent with 4-OHA injection, and indicated that there were comprehensive signals involved in 4-OHA antitumor activity, such as ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and proteoglycans in cancer. In addition, we observed that both 4-OHA formulations could enhance immune infiltration, especially CD8+ T cells, B cells, natural killer cells, and macrophages infiltration, in the DMBA-induced mammary tumor tissues. The antitumor effects of 4-OHA partly depended on these immune cells. CONCLUSION 4-OHA cream could inhibit breast cancer growth as its injection formulation and may provide a new way for neoadjuvant treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Lanyang Gao
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Lei Zhu
- West China Hospital, Sichuan University, Chengdu, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- West China Hospital, Sichuan University, Chengdu, China
| | - Youyou Chen
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Linglin Zou
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Huiyan Qiang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Alexander T. Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Wenguang Fu
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yao Luo
- West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lin S, Qiu L, Liang K, Zhang H, Xian M, Chen Z, Wei J, Fu S, Gong X, Ding K, Zhang Z, Hu B, Zhang X, Duan Y, Du H. KAT2A/ E2F1 Promotes Cell Proliferation and Migration via Upregulating the Expression of UBE2C in Pan-Cancer. Genes (Basel) 2022; 13:1817. [PMID: 36292703 PMCID: PMC9602169 DOI: 10.3390/genes13101817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 07/28/2023] Open
Abstract
Various studies have shown that lysine acetyltransferase 2A (KAT2A), E2F transcription factor 1 (E2F1), and ubiquitin conjugating enzyme E2 C (UBE2C) genes regulated the proliferation and migration of tumor cells through regulating the cell cycle. However, there is a lack of in-depth and systematic research on their mechanisms of action. This study analyzed The Cancer Genome Atlas (TCGA) to screen potential candidate genes and the regulation network of KAT2A and E2F1 complex in pan-cancer. Quantitative real-time PCR (qRT-PCR) and Western blotting (WB), cell phenotype detection, immunofluorescence co-localization, chromatin immunoprecipitation assay (ChIP), and RNA-Seq techniques were used to explore the functional of a candidate gene, UBE2C. We found that the expression of these three genes was significantly higher in more than 10 tumor types compared to normal tissue. Moreover, UBE2C was mainly expressed in tumor cells, which highlighted the impacts of UBE2C as a specific therapeutic strategy. Moreover, KAT2A and E2F1 could promote cell proliferation and the migration of cancer cells by enhancing the expression of UBE2C. Mechanically, KAT2A was found to cooperate with E2F1 and be recruited by E2F1 to the UBE2C promoter for elevating the expression of UBE2C by increasing the acetylation level of H3K9.
Collapse
Affiliation(s)
- Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haibo Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Mingjian Xian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zihao Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bowen Hu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Morris ME, Meinsohn MC, Chauvin M, Saatcioglu HD, Kashiwagi A, Sicher NA, Nguyen N, Yuan S, Stavely R, Hyun M, Donahoe PK, Sabatini BL, Pépin D. A single-cell atlas of the cycling murine ovary. eLife 2022; 11:77239. [PMID: 36205477 PMCID: PMC9545525 DOI: 10.7554/elife.77239] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The estrous cycle is regulated by rhythmic endocrine interactions of the nervous and reproductive systems, which coordinate the hormonal and ovulatory functions of the ovary. Folliculogenesis and follicle progression require the orchestrated response of a variety of cell types to allow the maturation of the follicle and its sequela, ovulation, corpus luteum formation, and ovulatory wound repair. Little is known about the cell state dynamics of the ovary during the estrous cycle and the paracrine factors that help coordinate this process. Herein, we used single-cell RNA sequencing to evaluate the transcriptome of >34,000 cells of the adult mouse ovary and describe the transcriptional changes that occur across the normal estrous cycle and other reproductive states to build a comprehensive dynamic atlas of murine ovarian cell types and states.
Collapse
Affiliation(s)
- Mary E Morris
- Department of Gynecology and Reproductive Biology, Massachusetts General Hospital, Boston, United States
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Maeva Chauvin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Hatice D Saatcioglu
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Aki Kashiwagi
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Natalie A Sicher
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Ngoc Nguyen
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Selena Yuan
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Rhian Stavely
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Minsuk Hyun
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, United States
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, United States.,Department of Surgery, Harvard Medical School, Boston, United States
| |
Collapse
|
6
|
Affiliation(s)
- Sang Hyeon Kim
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In Ryeong Jung
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
7
|
Feng J. The p53 Pathway Related Genes Predict the Prognosis of Colon Cancer. Int J Gen Med 2022; 15:169-177. [PMID: 35023955 PMCID: PMC8747760 DOI: 10.2147/ijgm.s346280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Background Colon cancer is a common gastrointestinal malignancy. This study aimed to explore the relationship between p53 pathway-related genes and prognosis of colon cancer. Methods The mRNA datasets of colon cancer and adjacent tissues were downloaded from The Cancer Genome Atlas (TCGA) database, and the differential expression of genes in two groups was analyzed. Then, P53 pathway-related genes were intersected with differentially expressed genes (DEGs) to obtain P53 pathway-related differentially expressed genes. Then, overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) in clusters were compared by consistent cluster analysis. Univariate and multivariate Cox regression analysis of DEGs was performed to obtain survival-related DEGs. Risk scores were calculated for each sample based on survival-related DEGs, and patients were divided into high/low risk scores. Prognostic differences, tumor immune cell infiltration levels, and immune pathway activation status were compared between the two groups. Results We identified 28 DEGs and two clusters. There are significant differences in PFS between the two clusters (P=0.011), and no significant difference between OS and DSS. We obtained 3 DEGs (CDKN2A, BAK1, BTG1) that were significantly related to PFS, and CDKN2A was considered an independent prognostic factor. PFS showed statistically significant difference between high/low risk score groups (P=0.015). There were significant differences in immune cell infiltration level and immune pathway activity between two groups. Conclusion The p53 pathway-related genes are significantly related to PFS in colon cancer patients and play an important role in regulating the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jinggao Feng
- Department of Gastrointestinal and Anorectal Surgery, The Central Hospital of Yongzhou, Yongzhou City, Hunan Province, 425100, People's Republic of China
| |
Collapse
|
8
|
Butz H, Patócs A. Mechanisms behind context-dependent role of glucocorticoids in breast cancer progression. Cancer Metastasis Rev 2022; 41:803-832. [PMID: 35761157 PMCID: PMC9758252 DOI: 10.1007/s10555-022-10047-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Glucocorticoids (GCs), mostly dexamethasone (dex), are routinely administered as adjuvant therapy to manage side effects in breast cancer. However, recently, it has been revealed that dex triggers different effects and correlates with opposite outcomes depending on the breast cancer molecular subtype. This has raised new concerns regarding the generalized use of GC and suggested that the context-dependent effects of GCs can be taken into potential consideration during treatment design. Based on this, attention has recently been drawn to the role of the glucocorticoid receptor (GR) in development and progression of breast cancer. Therefore, in this comprehensive review, we aimed to summarize the different mechanisms behind different context-dependent GC actions in breast cancer by applying a multilevel examination, starting from the association of variants of the GR-encoding gene to expression at the mRNA and protein level of the receptor, and its interactions with other factors influencing GC action in breast cancer. The role of GCs in chemosensitivity and chemoresistance observed during breast cancer therapy is discussed. In addition, experiences using GC targeting therapeutic options (already used and investigated in preclinical and clinical trials), such as classic GC dexamethasone, selective glucocorticoid receptor agonists and modulators, the GC antagonist mifepristone, and GR coregulators, are also summarized. Evidence presented can aid a better understanding of the biology of context-dependent GC action that can lead to further advances in the personalized therapy of breast cancer by the evaluation of GR along with the conventional estrogen receptor (ER) and progesterone receptor (PR) in the routine diagnostic procedure.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
- Hereditary Tumours Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - Attila Patócs
- Department of Molecular Genetics and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Fu S, Shen X, Wang X, Zhou Y, Zhang J, Miao J. RNA-seq and nuclear proteomics provide insights into the lactation regulation mechanism of goat transfected IGF-I and GH recombinant vectors. Growth Horm IGF Res 2021; 60-61:101428. [PMID: 34507252 DOI: 10.1016/j.ghir.2021.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022]
Abstract
There exists little available information on the mechanisms of lactation regulation until now. In order to explore the underlying mechanism, we injected IGF-I and GH recombinant vectors into the mammary gland, then RNA-seq analysis and nuclear proteomics were used for rapid high-throughput screening of DEGs and DEPs in the two groups linked to lactation regulation. KEGG analysis of 206 DEGs showed that the same 4 of top 10 enrichment pathways (ECM receptor interaction, protein digestion and absorption, focal adhesion and phagosome) involved in 4 co-expressed genes (IDO, BTG1, ITGB6 and keratin 83), the two groups enriched different metabolic pathways yet. Nuclear proteomics analysis showed 75 and 36 DEPs in the IGF-I and GH group respectively; Sixteen common proteins were identified between the IGF-I group and GH group, four of which (ALB, TPT1, CXXC-5 and ACTR2) significantly decreased and three of which (PRP1, PAG-9 and Hsp70) significantly increased. Similarly, DEPs in the two groups were enriched in same one of top 10 enrichment pathways (PI3K-Akt signaling pathway). Protein-protein interaction networks highlighted the contribution of glycosphingolipid biosynthesis, porphyrin and chlorophyll metabolism and the Jak-STAT signaling pathway to lactation regulation of GH and IGFI. GH and IGF-I improve milk yield, which may be linked to important nodal proteins (ALB and ACTB). Our research advances the understanding of the mammary gland transcriptome and nuclear proteomics during GH and IGF-I overexpression. Individual genes, proteins and pathways in this study point towards potential targets for lactation regulation.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Hefei 230001, China
| | - Xudong Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences,Nanjing 210014, China.
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Ebrahimi M, Yaghoobi MM. Effects of aqueous and methanolic extracts of Astragalus Longistylus on growth and proliferation of human dental pulp stem cells. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00519-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zhang J, Dong W. Expression of B Cell Translocation Gene 1 Protein in Colon Carcinoma and its Clinical Significance. Recent Pat Anticancer Drug Discov 2021; 15:78-85. [PMID: 31916520 DOI: 10.2174/1574892815666200109113114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Colon cancer is one of the most common malignant tumors, and B cell Translocation Gene (BTG)1 is involved in the occurrence and development of colon cancer, however, the underlying molecular mechanism remains unclear. OBJECTIVE In this study, we investigated the expression of BTG1 protein in colon cancer, and its association with clinicopathology and prognosis. METHODS The tumor specimens from 59 patients with colon cancer who had undergone radical colectomy were selected as the observation group. Para-carcinoma tissues from the same patients were selected as the control group. The expressions of BTG1 mRNA and protein in the specimen of two groups were analyzed by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Western blot. According to the immunohistochemical results, the patients were divided into BTG1-negative and BTG1-positive groups. The postoperative cumulative survival rate in the two groups was analyzed. The association of the expression of BTG1 protein with the clinicopathological features and postoperative survival was investigated. RESULTS Compared with the control group, the expression levels of BTG1 mRNA and BTG1 protein were significantly decreased in the observation group (P < 0.05). Immunohistochemical analysis revealed that there were 12 positive tumor samples and 47 negative samples. The expression of BTG1 was negatively associated with the degree of differentiation and lymphatic metastasis. The cumulative survival rate of BTG1-positive patients was significantly increased compared with that of BTG1- negative patients (P < 0.05). Stepwise Cox regression analysis showed that lymphatic metastasis, tumor size and BTG1 expression level were independent prognostic factors for overall survival in patients with colon cancer. CONCLUSION BTG1 protein in colon cancer tissues were expressed at low levels, which was associated with the clinicopathological features, postoperative recurrence and survival of patients.
Collapse
Affiliation(s)
- Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Weihua Dong
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
12
|
Li Y, Huo J, He J, Zhang Y, Ma X. BTG1 inhibits malignancy as a novel prognosis signature in endometrial carcinoma. Cancer Cell Int 2020; 20:490. [PMID: 33041670 PMCID: PMC7542768 DOI: 10.1186/s12935-020-01591-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background Endometrial carcinoma (EC) is one of the three major malignant tumors of the female reproductive system. In recent years, the incidence and mortality rate of EC have increased. B-cell translocation gene 1 (BTG1) is an anti-proliferation gene that regulates the occurrence and development of a variety of tumors, but there is no research regarding this gene in EC. Methods Based on The Cancer Genome Atlas (TCGA) database, we used a variety of bioinformatics tools and databases to explore the expression and prognosis of BTG1. We verified expression and prognosis of BTG1 in EC using qRT-PCR and analyzed the relevant clinicopathological parameters. We functionally enriched BTG1 and related genes in EC patients through the bioinformatics website and analyzed miRNA targets of BTG1 and interacting protein networks. Cell proliferation, wound healing, transwell invasion, and cell apoptosis assays were used to detect the effects of BTG1 on the malignant biological behavior of endometrial carcinoma cells (ECCs). The effect of BTG1 on the epithelial-to-mesenchymal transition (EMT) process was detected using western blot. Results We analyzed the expression and prognosis of BTG1 based on TCGA and found that low expression of BTG1 was associated with poor EC prognosis. The qRT-PCR suggested that BTG1 had low expression in EC. BTG1 expression was significantly correlated with overall survival (OS) shortening. Clinicopathological analysis suggested that expression of BTG1 was related to invasion depth and the International Federation of Gynecology and Obstetrics (FIGO) stage. EC pathological tissue type, fertility history, lymphatic metastasis, menopause, estrogen receptor (ER), progesterone receptor (PR), and age of diagnosis were not related. Functional enrichment analysis showed that BTG1 plays an important role in regulating embryonic development, tumorigenesis, apoptosis, and cell cycle. Biological behavior experiments suggest that BTG1 inhibits proliferation, migration, and invasion of ECCs, and promotes apoptosis of ECCs. Western blot indicated that BTG1 inhibited the EMT process of ECCs. Conclusions BTG1, as a tumor suppressor gene, plays an important role in the occurrence and development of EC. We believe that BTG1 can be used as a potential prognostic biomarker for EC.
Collapse
Affiliation(s)
- Yibing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| | - Jianing Huo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| | - Junjian He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| | - Yunzheng Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110000 Liaoning People's Republic of China
| |
Collapse
|
13
|
Wang J, Wang Y, Xing P, Liu Q, Zhang C, Sui Y, Wu C. Development and validation of a hypoxia-related prognostic signature for breast cancer. Oncol Lett 2020; 20:1906-1914. [PMID: 32724434 PMCID: PMC7377061 DOI: 10.3892/ol.2020.11733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/15/2020] [Indexed: 12/30/2022] Open
Abstract
Hypoxia, an important component of the tumor microenvironment, plays a crucial role in the occurrence and progression of cancer. However, to the best of our knowledge, a systematic analysis of a hypoxia-related prognostic signature for breast cancer is lacking and is urgently required. Therefore, in the present study, RNA-seq data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and served as a discovery cohort. Cox proportional hazards regression analysis was performed to construct a 14-gene prognostic signature (PFKL, P4HA2, GRHPR, SDC3, PPP1R15A, SIAH2, NDRG1, BTG1, TPD52, MAFF, ISG20, LALBA, ERRFI1 and VHL). The hypoxia-related signature successfully predicted survival outcomes of the discovery cohort (P<0.001 for the TCGA dataset). Three independent Gene Expression Omnibus databases (GSE10886, GSE20685 and GSE96058) were used as validation cohorts to verify the value of the predictive signature (P=0.007 for GSE10886, P=0.021 for GSE20685, P<0.001 for GSE96058). In the present study, a robust predictive signature was developed for patients with breast cancer, and the findings revealed that the 14-gene hypoxia-related signature could serve as a potential prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuquan Wang
- College of Bioinformatics, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ping Xing
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qianqi Liu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Cong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang Sui
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Changjun Wu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
14
|
Ceccarelli M, D'Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol 2020; 10:226. [PMID: 32231994 PMCID: PMC7082329 DOI: 10.3389/fonc.2020.00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of medulloblastomas (MBs), a tumor of the cerebellum, arise from cerebellar granule cell precursors (GCPs) undergoing transformation following activation of the Sonic hedgehog (Shh) pathway. To study this process, we generated a new MB model by crossing Patched1 heterozygous (Ptch1+/−) mice, which develop spontaneous Shh-type MBs, with mice lacking B-cell translocation gene 1 (Btg1), a regulator of cerebellar development. In MBs developing in Ptch1+/− mice, deletion of Btg1 does not alter tumor and lesion frequencies, nor affect the proliferation of neoplastic precursor cells. However, in both tumors and lesions arising in Ptch1+/− mice, ablation of Btg1 increases by about 25% the apoptotic neoplastic precursor cells, as judged by positivity to activated caspase-3. Moreover, although Btg1 ablation in early postnatal GCPs, developing in the external granule cell layer, leads to a significant increase of proliferation, and decrease of differentiation, relative to wild-type, no synergy occurs with the Ptch1+/− mutation. However, Btg1 deletion greatly increases apoptosis in postnatal GCPs, with strong synergy between Btg1-null and Ptch1+/− mutations. That pronounced increase of apoptosis observed in Ptch1+/−/Btg1 knockout young or neoplastic GCPs may be responsible for the lack of effect of Btg1 ablation on tumorigenesis. This increased apoptosis may be a consequence of increased expression of protein arginine methyltransferase 1 (Prmt1) protein that we observe in Btg1 knockout/Ptch1+/− MBs. In fact, apoptotic genes, such as BAD, are targets of Prmt1. Moreover, in Btg1-null MBs, we observed a two-fold increase of cells positive to CD15, which labels tumor stem cells, raising the possibility of activation of quiescent tumor cells, known for their role in long-term resistance to treatment and relapses. Thus, Btg1 appears to play a role in cerebellar tumorigenesis by regulating the balance between apoptosis and proliferation during MB development, also influencing the number of tumor stem cells.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
15
|
Su C, Huang DP, Liu JW, Liu WY, Cao YO. miR-27a-3p regulates proliferation and apoptosis of colon cancer cells by potentially targeting BTG1. Oncol Lett 2019; 18:2825-2834. [PMID: 31452761 PMCID: PMC6676402 DOI: 10.3892/ol.2019.10629] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/13/2019] [Indexed: 01/16/2023] Open
Abstract
microRNA (miR/miRNA)-27a-3p has been reported to be abnormally expressed in various types of cancer, including colorectal cancer (CRC). B-cell translocation gene 1 (BTG1) has also been implicated with CRC. However, the association between miR-27a-3p and BTG1 in CRC, to the best of our knowledge, has not been investigated. In order to assess whether miR-27a-3p is associated with CRC, reverse transcription-quantitative PCR was performed on 20 paired CRC and paracancerous tissues for miRNA analysis. For the screening and validation of miR-27a-3p expression in colon cancer, several colon cancer cell lines (HCT-116, HCT8, SW480, HT29, LOVO and Caco2) and the normal colorectal epithelial cell line NCM460 were examined. The highest expression levels of miR-27a-3p were detected in the HCT-116, which was selected for further experimentation. The HCT-116 cells were divided into control, miR-27a-3p mimic and inhibitor groups, and cell proliferation was tested using an MTT assay. Additionally, miR-27a-3p inhibitor/mimic or BTG1 plasmid were transfected into the HCT-116 cells, and flow cytometry was performed to analyze cell cycle distributions. TUNEL analysis was performed to detect apoptosis. Protein levels of factors in the downstream signaling pathway mediated by miR-27a-3p [ERK/mitogen-activated extracellular signal-regulated kinase (MEK)] were detected. miR-27a-3p was revealed to be overexpressed in human CRC tissues and colon cancer cell lines. Knockdown of miR-27a-3p suppressed proliferation of HCT-116 cells and apoptosis was increased. It further markedly upregulated expression levels of BTG1 and inhibited activation of proteins of the ERK/MEK signaling pathway. In addition, overexpression of BTG1 in HCT-116 cells triggered G1/S phase cell cycle arrest and increased apoptosis via the ERK/MEK signaling pathway. In conclusion, the present study demonstrated that the effects of miR-27a-3p on colon cancer cell proliferation and apoptosis were similar to those of the tumor suppressor gene BTG1. The miR-27a-3p/BTG1 axis may have potential implications for diagnostic and therapeutic approaches in CRC.
Collapse
Affiliation(s)
- Chang Su
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Dong-Ping Huang
- Department of Surgery, People's Hospital of Putuo District, Shanghai 200060, P.R. China
| | - Jian-Wen Liu
- Department of Molecular and Cellular Pharmacology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Wei-Yan Liu
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Yi-Ou Cao
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
16
|
Role of B-Cell Translocation Gene 1 in the Pathogenesis of Endometriosis. Int J Mol Sci 2019; 20:ijms20133372. [PMID: 31324015 PMCID: PMC6651142 DOI: 10.3390/ijms20133372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 01/03/2023] Open
Abstract
Estrogen affects endometrial cellular proliferation by regulating the expression of the c-myc gene. B-cell translocation gene 1 (BTG1), a translocation partner of the c-myc, is a tumor suppressor gene that promotes apoptosis and negatively regulates cellular proliferation and cell-to-cell adhesion. The aim of this study was to determine the role of BTG1 in the pathogenesis of endometriosis. BTG1 mRNA and protein expression was evaluated in eutopic and ectopic endometrium of 30 patients with endometriosis (endometriosis group), and in eutopic endometrium of 22 patients without endometriosis (control group). The effect of BTG1 downregulation on cellular migration, proliferation, and apoptosis was evaluated using transfection of primarily cultured human endometrial stromal cells (HESCs) with BTG1 siRNA. BTG1 mRNA expression level of eutopic and ectopic endometrium of endometriosis group were significantly lower than that of the eutopic endometrium of the control group. Migration and wound healing assays revealed that BTG1 downregulation resulted in a significant increase in migration potential of HESCs, characterized by increased expression of matrix metalloproteinase 2 (MMP2) and MMP9. Downregulation of BTG1 in HESCs significantly reduced Caspase 3 expression, indicating a decrease in apoptotic potential. In conclusion, our data suggest that downregulation of BTG1 plays an important role in the pathogenesis of endometriosis.
Collapse
|
17
|
Qian Y, Lu X, Li Q, Zhao S, Fang D. The treatment effects and the underlying mechanism of B cell translocation gene 1 on the oncogenesis of brain glioma. J Cell Biochem 2019; 120:13310-13320. [DOI: 10.1002/jcb.28605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yu Qian
- Department of Neurosurgery Jiangsu University Affiliated People's Hospital
| | - Xinyu Lu
- Department of Neurosurgery Jiangsu University Affiliated People's Hospital
| | - Qiaoyu Li
- Department of Neurosurgery Jiangsu University Affiliated People's Hospital
| | - Su Zhao
- Department of Neurosurgery Jiangsu University Affiliated People's Hospital
| | - Dazhao Fang
- Department of Neurosurgery The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University Huaiyin China
| |
Collapse
|
18
|
Mok KW, Saxena N, Heitman N, Grisanti L, Srivastava D, Muraro MJ, Jacob T, Sennett R, Wang Z, Su Y, Yang LM, Ma'ayan A, Ornitz DM, Kasper M, Rendl M. Dermal Condensate Niche Fate Specification Occurs Prior to Formation and Is Placode Progenitor Dependent. Dev Cell 2019; 48:32-48.e5. [PMID: 30595537 PMCID: PMC6370312 DOI: 10.1016/j.devcel.2018.11.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
Abstract
Cell fate transitions are essential for specification of stem cells and their niches, but the precise timing and sequence of molecular events during embryonic development are largely unknown. Here, we identify, with 3D and 4D microscopy, unclustered precursors of dermal condensates (DC), signaling niches for epithelial progenitors in hair placodes. With population-based and single-cell transcriptomics, we define a molecular time-lapse from pre-DC fate specification through DC niche formation and establish the developmental trajectory as the DC lineage emerges from fibroblasts. Co-expression of downregulated fibroblast and upregulated DC genes in niche precursors reveals a transitory molecular state following a proliferation shutdown. Waves of transcription factor and signaling molecule expression then coincide with DC formation. Finally, ablation of epidermal Wnt signaling and placode-derived FGF20 demonstrates their requirement for pre-DC specification. These findings uncover a progenitor-dependent niche precursor fate and the transitory molecular events controlling niche formation and function.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Laura Grisanti
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Devika Srivastava
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Mauro J Muraro
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), and University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Tina Jacob
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA
| | - Zichen Wang
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yutao Su
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maria Kasper
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, New York, NY 10029, USA.
| |
Collapse
|
19
|
Zhao S, Chen SR, Yang XF, Shen DF, Takano Y, Su RJ, Zheng HC. BTG1 might be employed as a biomarker for carcinogenesis and a target for gene therapy in colorectal cancers. Oncotarget 2018; 8:7502-7520. [PMID: 27447746 PMCID: PMC5352338 DOI: 10.18632/oncotarget.10649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
Here, BTG1 overexpression inhibited proliferation, induced differentiation, autophagy, and apoptosis in colorectal cancer cells (p2 arrest might be related to Cyclin B1 and Cdc25B hypoexpression in HCT-15 transfectants, while G1 arrest in HCT-116 transfectants overexpressing p21 and p27. BTG1 overexpression decreased the expression of Bcl-2, Bcl-xL, XIAP, Akt1 or survivin and increased the expression of Bax or p53 in colorectal cancer cells. BTG1-induced autophagy was dependent on Beclin-1 expression. BTG1 overexpression might weaken β-catenin pathway in colorectal cancer cells. The chemosensitivity of BTG1 transfectants to paclitaxel, cisplatin, MG132 or SAHA was positively correlated with its apoptotic induction. There was a lower expression level of BTG1 in cancer than matched non-neoplastic mucosa by RT-PCR (p
Collapse
Affiliation(s)
- Shuang Zhao
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shu-Rui Chen
- Department of Science and Technology, Jinzhou Medical University, Jinzhou, China
| | - Xue-Feng Yang
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dao-Fu Shen
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yasuo Takano
- School of Health Science, Tokyo University of Technology, Nishi-Kamata, Ohta-ku, Tokyo, Japan
| | - Rong-Jian Su
- Life Science Institute of Jinzhou Medical University, Jinzhou, China
| | - Hua-Chuan Zheng
- Cancer Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.,Life Science Institute of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
20
|
microRNA Expression in Ethnic Specific Early Stage Breast Cancer: an Integration and Comparative Analysis. Sci Rep 2017; 7:16829. [PMID: 29203780 PMCID: PMC5715135 DOI: 10.1038/s41598-017-16978-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) has a higher incidence in young Lebanese woman as compared to the West. We assessed the microRNA (miRNA) microarray profile of tissues derived from Lebanese patients with early BC and performed mRNA-miRNA integration analysis. 173 miRNAs were significantly dysregulated in 45 BC versus 17 normal adjacent breast tissues, including 74 with a fold change more than two of which 17 were never reported before in cancer. Integration analysis of mRNA-miRNA microarray data revealed a potential role of 51 dysregulated miRNA regulating 719 tumor suppressive or oncogenic mRNA associated with increased proliferation and decreased migration and invasion. We then performed a comparative miRNA microarray profile analysis of BC tissue between these 45 Lebanese and 197 matched American BC patients. Notably, Lebanese BC patients had 21 exclusively dysregulated miRNA (e.g. miR-31, 362-3p, and 663) and 4 miRNA with different expression manner compared to American patients (e.g. miR-1288-star and 324-3p). Some of these differences could reflect variation in patient age at diagnosis or ethnic variation affecting miRNA epigenetic regulation or sequence of miRNA precursors. Our data provide a basis for genetic/epigenetic investigations to explore the role of miRNA in early stage BC in young women, including ethnic specific differences.
Collapse
|
21
|
Kim JY, Do SI, Bae GE, Kim HS. B-cell translocation gene 1 is downregulated by promoter methylation in ovarian carcinoma. J Cancer 2017; 8:2669-2675. [PMID: 28928854 PMCID: PMC5604197 DOI: 10.7150/jca.21037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
A better understanding of tumor biology is important in the identification of molecules that are downregulated in malignancy and in determining their role in tumor suppression. B-cell translocation gene 1 (BTG1) has been shown to act as a tumor suppressor in several types of human malignancy. In this study, we analyzed BTG1 expression in ovarian carcinoma cell lines, and we investigated the mechanism underlying the observed alterations. The methylation status of the BTG1 promoter region was determined by methylation-specific polymerase chain reaction, and the effect of demethylation on BTG1 expression was analyzed. BTG1 protein expression in ovarian high-grade serous carcinoma tissue samples was evaluated using immunohistochemistry. BTG1 mRNA and protein expression were reduced in ovarian carcinoma cells. In BTG1-silenced ovarian cancer cells, the BTG1 promoter was highly methylated. Treatment with 5-aza-deoxycytidine significantly elevated BTG1 mRNA and protein expression. Immunostaining demonstrated that BTG1 expression was significantly lower in ovarian carcinoma tissue samples than nonpathological ovaries and fallopian tubes. We demonstrated that BTG1 silencing in ovarian carcinoma occurs through epigenetic repression and is involved in the ovarian carcinogenesis. Our data suggest that BTG1 is a potential therapeutic target for patients with ovarian carcinoma.
Collapse
Affiliation(s)
- Ji-Ye Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Go Eun Bae
- Department of Pathology, The Catholic University of Korea Incheon St. Mary's Hospital, Incheon, Republic of Korea.,Department of Pathology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Yuniati L, van der Meer LT, Tijchon E, van Ingen Schenau D, van Emst L, Levers M, Palit SAL, Rodenbach C, Poelmans G, Hoogerbrugge PM, Shan J, Kilberg MS, Scheijen B, van Leeuwen FN. Tumor suppressor BTG1 promotes PRMT1-mediated ATF4 function in response to cellular stress. Oncotarget 2016; 7:3128-43. [PMID: 26657730 PMCID: PMC4823095 DOI: 10.18632/oncotarget.6519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/19/2015] [Indexed: 11/25/2022] Open
Abstract
Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorette van Ingen Schenau
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marloes Levers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander A L Palit
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline Rodenbach
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Prinses Maxima Center for Pediatric Oncology, De Bilt, The Netherlands
| | - Jixiu Shan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Abstract
This study re-examined the dying process in the interdigital tissue during the formation of free digits in the developing limbs. We demonstrated that the interdigital dying process was associated with cell senescence, as deduced by induction of β-gal activity, mitotic arrest, and transcriptional up-regulation of p21 together with many components of the senescence-associated secretory phenotype. We also found overlapping domains of expression of members of the Btg/Tob gene family of antiproliferative factors in the regressing interdigits. Notably, Btg2 was up-regulated during interdigit remodeling in species with free digits but not in the webbed foot of the duck. We also demonstrate that oxidative stress promoted the expression of Btg2, and that FGF2 and IGF1 which are survival signals for embryonic limb mesenchyme inhibited Btg2 expression. Btg2 overexpression in vivo and in vitro induced all the observed changes during interdigit regression, including oxidative stress, arrest of cell cycle progression, transcriptional regulation of senescence markers, and caspase-mediated apoptosis. Consistent with the central role of p21 on cell senescence, the transcriptional effects induced by overexpression of Btg2 are attenuated by silencing p21. Our findings indicate that cell senescence and apoptosis are complementary processes in the regression of embryonic tissues and share common regulatory signals.
Collapse
|
24
|
Zheng HC, Li J, Shen DF, Yang XF, Zhao S, Wu YZ, Takano Y, Sun HZ, Su RJ, Luo JS, Gou WF. BTG1 expression correlates with pathogenesis, aggressive behaviors and prognosis of gastric cancer: a potential target for gene therapy. Oncotarget 2016; 6:19685-705. [PMID: 26050197 PMCID: PMC4637314 DOI: 10.18632/oncotarget.4081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/23/2015] [Indexed: 02/06/2023] Open
Abstract
Here, we found that BTG1 overexpression inhibited proliferation, migration and invasion, induced G2/M arrest, differentiation, senescence and apoptosis in BGC-823 and MKN28 cells (p < 0.05). BTG1 transfectants showed a higher mRNA expression of Cyclin D1 and Bax, but a lower mRNA expression of cdc2, p21, mTOR and MMP-9 than the control and mock (p < 0.05). After treated with cisplatin, MG132, paclitaxel and SAHA, both BTG1 transfectants showed lower mRNA viability and higher apoptosis than the control in both time- and dose-dependent manners (p < 0.05) with the hypoexpression of chemoresistance-related genes (slug, CD147, GRP78, GRP94, FBXW7 TOP1, TOP2 and GST-π). BTG1 expression was restored after 5-aza-2′-deoxycytidine treatment in gastric cancer cells. BTG1 expression was statistically lower in gastric cancer than non-neoplastic mucosa and metastatic cancer in lymph node (p < 0.05). BTG1 expression was positively correlated with depth of invasion, lymphatic and venous invasion, lymph node metastasis, TNM staging and worse prognosis (p < 0.05). The diffuse-type carcinoma showed less BTG1 expression than intestinal- and mixed-type ones (p < 0.05). BTG1 overexpression suppressed tumor growth and lung metastasis of gastric cancer cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that down-regulated BTG1 expression might promote gastric carcinogenesis partially due to its promoter methylation. BTG1 overexpression might reverse the aggressive phenotypes and be employed as a potential target for gene therapy of gastric cancer.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Jing Li
- Department of Gastroenterology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Dao-fu Shen
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Xue-feng Yang
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Shuang Zhao
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Ya-zhou Wu
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Yasuo Takano
- School of Health Science, Tokyo University of Technology, Ohta-ku, Tokyo, Japan
| | - Hong-zhi Sun
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Rong-jian Su
- Experimental Center, Liaoning Medical University, Jinzhou, China
| | - Jun-sheng Luo
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Wen-feng Gou
- Cancer Research Center, Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| |
Collapse
|
25
|
Ceccarelli M, Micheli L, D'Andrea G, De Bardi M, Scheijen B, Ciotti M, Leonardi L, Luvisetto S, Tirone F. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: Involvement of cyclin D1. Dev Biol 2015; 408:109-25. [DOI: 10.1016/j.ydbio.2015.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
26
|
Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs. Int J Mol Sci 2015; 16:28169-79. [PMID: 26703569 PMCID: PMC4691036 DOI: 10.3390/ijms161226089] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022] Open
Abstract
Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity.
Collapse
|
27
|
Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets. PLoS One 2015; 10:e0141869. [PMID: 26544691 PMCID: PMC4636151 DOI: 10.1371/journal.pone.0141869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.
Collapse
|
28
|
ZHU RAN, LI WEI, XU YAN, WAN JIANMEI, ZHANG ZENGLI. Upregulation of BTG1 enhances the radiation sensitivity of human breast cancer in vitro and in vivo. Oncol Rep 2015; 34:3017-24. [DOI: 10.3892/or.2015.4311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/04/2015] [Indexed: 11/06/2022] Open
|
29
|
Micheli L, Ceccarelli M, Farioli-Vecchioli S, Tirone F. Control of the Normal and Pathological Development of Neural Stem and Progenitor Cells by the PC3/Tis21/Btg2 and Btg1 Genes. J Cell Physiol 2015; 230:2881-90. [DOI: 10.1002/jcp.25038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| |
Collapse
|
30
|
Liu C, Tao T, Xu B, Lu K, Zhang L, Jiang L, Chen S, Liu D, Zhang X, Cao N, Chen M. BTG1 potentiates apoptosis and suppresses proliferation in renal cell carcinoma by interacting with PRMT1. Oncol Lett 2015; 10:619-624. [PMID: 26622543 PMCID: PMC4513370 DOI: 10.3892/ol.2015.3293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/10/2015] [Indexed: 12/11/2022] Open
Abstract
B-cell translocation gene 1 (BTG1) is a member of the BTG/transducer of Erb family. BTG1 regulates cell cycle progression, inhibits proliferation, promotes apoptosis and stimulates cellular differentiation in multiple cell types. However, the functions of BTG1 in renal cell carcinoma (RCC) remain unclear. Therefore, the present study investigated the role of BTG1 in RCC tissue samples and 786-O RCC cells. RCC tissues and cells exhibited significantly weaker BTG1 protein and mRNA expression compared with para-carcinoma control tissues (P<0.05). Upregulated BTG1 expression induced significant G0/G1 cell cycle arrest, apoptosis and inhibition of cell proliferation in 786-O cells (P<0.05). Furthermore, BTG1 interacted with protein arginine N-methyltransferase 1 (PRMT1), and blocking the action of PRMT1 in 786-O cells resulted in inhibition of BTG1 function. These findings indicate that BTG1 may inhibit cell growth and promote apoptosis by interacting with PRMT1 in RCC; the identification of this mechanism may aid in the production of novel therapies for RCC.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Tao Tao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Kai Lu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Liang Jiang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dachuang Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowen Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Nihao Cao
- Department of Urology, Haimen City People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
31
|
Morettin A, Baldwin RM, Cote J. Arginine methyltransferases as novel therapeutic targets for breast cancer. Mutagenesis 2015; 30:177-89. [DOI: 10.1093/mutage/geu039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
32
|
SUN GUOGUI, LIU QING, CHENG YUNJIE, HU WANNING. B cell translocation gene 1 reduces the biological outcome of kidney cancer through induction of cell proliferation, cell cycle arrest, cell apoptosis and cell metastasis. Int J Mol Med 2014; 35:777-83. [DOI: 10.3892/ijmm.2014.2058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/25/2014] [Indexed: 11/05/2022] Open
|
33
|
Expression of BTG1 in hepatocellular carcinoma and its correlation with cell cycles, cell apoptosis, and cell metastasis. Tumour Biol 2014; 35:11771-9. [PMID: 25173640 DOI: 10.1007/s13277-014-2298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 06/30/2014] [Indexed: 01/22/2023] Open
Abstract
This study aimed to analyze the expression, clinical significance of B cell translocation gene 1 (BTG1) in hepatocellular carcinoma, and the biological effect in its cell line by BTG1 overexpression. Immunohistochemistry and Western blot were used to analyze BTG1 protein expression in 70 cases of hepatocellular cancer and 32 cases of normal tissues to study the relationship between BTG1 expression and clinical factors. Recombinant lentiviral vector was constructed to overexpress BTG1 and then infect hepatocellular cancer HepG2 cell line. The level of BTG1 protein expression was found to be significantly lower in hepatocellular cancer tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with tumor invasion, lymph node metastasis, clinic stage, and histological grade of patients with hepatocellular cancer (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function has shown that HepG2 cell-transfected BTG1 had a lower survival fraction; higher percentage of the G0/G1 phases; higher cell apoptosis; significant decrease in migration and invasion; and lower Cyclin D1 (CND1), B cell lymphoma 2 (Bcl-2), and matrix metalloproteinases (MMP)-9 protein expression compared with HepG2 cell-untransfected BTG1 (P < 0.05). BTG1 expression decreased in hepatocellular cancer and correlated significantly with lymph node metastasis, clinic stage, histological grade, poor overall survival, proliferation, and metastasis in hepatocellular cancer cell by regulating CND1, Bcl-2, and MMP-9 protein expression, suggesting that BTG1 may play important roles as a negative regulator to hepatocellular cancer cell.
Collapse
|
34
|
Lu YF, Sun GG, Liu Q, Yang CR, Cheng YJ. BTG1 expression in thyroid carcinoma: diagnostic indicator and prognostic marker. Int J Oncol 2014; 45:1574-82. [PMID: 25017022 DOI: 10.3892/ijo.2014.2543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/21/2014] [Indexed: 11/05/2022] Open
Abstract
We determined the expression and function of B cell translocation gene 1 (BTG1) in thyroid carcinoma. Thyroid samples were obtained from cancer lesions (n=83) and adjacent normal tissue (n=35) in thyroid cancer patients immediately after endoscopic biopsy. BTG1 expression was determined by immunohistochemistry and western blotting. The effect of BTG1 overexpression was examined in vitro utilizing the human thyroid cancer cell line FTC-133, stably transfected with a recombinant lentivirus (LeBTG1 cells) and compared to empty vector transfected controls (LeEmpty). BTG1 overexpression was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. The expression of proteins involved in cell cycle regulation (cyclin D1), apoptosis (Bcl-2) and cell migration (MMP-9) in LeBTG1 cells was analyzed by western blotting. The effect of BTG1 overexpression on cell viability and proliferation was assessed by MTT assay in LeBTG1 and LeEmpty cells. Flow cytometric analyses were used to evaluate the effect of BTG1 expression on cell cycle distribution and apoptosis. The migration and invasion potential of LeBTG1 cells was examined by plating cells in Matrigel-coated chambers. BTG1 protein expression was significantly lower in thyroid cancer tissue biopsies compared to normal tissue as measured by immunohistochemistry (36.1 vs. 80.0% of tissues; P<0.05) and western blotting (0.251±0.021 vs. 0.651±0.065; P<0.05). Decreased expression of BTG1 was significantly correlated with thyroid cancer lymph node metastasis, clinical stage and pathological differentiation (P<0.05), as well as with reduced overall 10‑year survival rates compared to patients with higher expression levels (30.2 vs. 66.7%; P<0.05). In vitro analyses revealed that LeBTG1 cells had a reduced survival fraction compared to control LeEmpty cells, with higher rates of apoptosis (11.6±2.1 vs. 2.1±0.4%; P<0.05). The proportion of LeBTG1 cells in G0/G1 stage and S phase was also significantly different from LeEmpty cells (81.8±6.3 and 10.2±1.0%, vs. 62.4±4.9 and 25.5±2.6%, respectively; P<0.05), and the migration and invasion of LeBTG1 cells was significantly impaired with respect to LeEmpty cells (72.0±8.0 and 55.0±7.0 vs. 113.0±16.0 and 89.0±9.0, respectively; P<0.05). These effects were accompanied by decreased protein expression of cyclin D1, Bcl-2 and MMP-9 in LeBTG1 cells (0.234±0.018, 0.209±0.021, 0.155±0.017, respectively) compared to control LeEmpty cells (0.551±0.065, 0.452±0.043, 0.609±0.072, respectively; P<0.05). Reduced BTG1 expression is associated with increased disease severity, suggesting it is a negative regulator of thyroid cancer and can serve as a prognostic indicator.
Collapse
Affiliation(s)
- Y F Lu
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan 063000, P.R. China
| | - G G Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, Tangshan 063000, P.R. China
| | - Q Liu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - C R Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, P.R. China
| | - Y J Cheng
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, P.R. China
| |
Collapse
|
35
|
Sun GG, Wang YD, Cheng YJ, Hu WN. The expression of BTG1 is downregulated in nasopharyngeal carcinoma and possibly associated with tumour metastasis. Mol Biol Rep 2014; 41:5979-88. [PMID: 24985971 DOI: 10.1007/s11033-014-3475-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/14/2014] [Indexed: 01/09/2023]
Abstract
To determine the expression and function of B cell translocation gene 1 (BTG1) in nasopharyngeal carcinoma. Nasopharyngeal samples were taken from cancer lesions (n = 75) and adjacent normal tissue (n = 33) in nasopharyngeal cancer patients immediately after endoscopic biopsy. BTG1 expression was determined by immunohistochemistry and Western blotting. The effect of BTG1 overexpression was examined in vitro utilizing a human nasopharyngeal cancer cell line CNE2 stably transfected with a recombinant lentivirus (LeBTG1 cells) and compared to empty vector-transfected controls (LeEmpty). BTG1 overexpression was verified by real-time reverse transcriptase polymerase chain reaction and Western blot. The expression of proteins involved in cell cycle regulation (cyclin D1), apoptosis (Bcl-2) and cell migration (MMP-9) in LeBTG1 cells were analyzed by Western blot. The effect of BTG1 overexpression on cell viability and proliferation was assessed by an MTT assay in LeBTG1 and LeEmpty cells. Flow cytometric analyses were used to evaluate the effect of BTG1 expression on cell cycle distribution and apoptosis. The migration and invasion potential of LeBTG1 cells was examined by plating cells in Matrigel-coated chambers. BTG1 protein expression was significantly lower in nasopharyngeal cancer tissue biopsies than normal tissue as measured by immunohistochemistry (36.0 vs. 81.8 % of tissues; P < 0.05) and Western blotting (0.221 ± 0.019 vs. 0.652 ± 0.055; P < 0.05). Decreased expression of BTG1 was significantly correlated with nasopharyngeal cancer tumor stage, lymph node metastasis, clinical stage and pathologic differentiation (P < 0.05), as well as with reduced overall five-year survival rates compared to patients with higher expression levels (31.2 vs. 70.2 %; P < 0.05). In vitro analyses revealed that LeBTG1 cells had a reduced survival fraction compared to control LeEmpty cells, with higher rates of apoptosis (9.3 ± 0.7 vs. 2.3 ± 0.3 %; P < 0.05). The proportion of LeBTG1 cells in G0/G1 stage and S phase was also significantly different from LeEmpty cells (82.6 ± 3.8 and 10.1 ± 1.0 %, vs. 62.2 ± 2.4 and 28.9 ± 2.0 %, respectively; Ps < 0.05), and the migration and invasion of LeBTG1 cells was significantly impaired with respect to LeEmpty cells (96.0 ± 13.0 and 91.0 ± 11.0 vs. 158.0 ± 17.0 and 142.0 ± 15.0, respectively; Ps < 0.05). These effects were accompanied by decreased protein expression of cyclin D1, Bcl-2 and MMP-9 in LeBTG1 cells (0.231 ± 0.021, 0.413 ± 0.046, 0.131 ± 0.011, respectively) compared to control LeEmpty cells (0.636 ± 0.067, 0.821 ± 0.083, 0.451 ± 0.041, respectively; Ps < 0.05). Reduced BTG1 expression is associated with increased disease severity, suggesting it is a negative regulator of nasopharyngeal cancer and can serve as a prognostic indicator.
Collapse
Affiliation(s)
- G G Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, NO. 65, Shengli Road, Lunan District, Tangshan, 063000, Hebei province, China,
| | | | | | | |
Collapse
|
36
|
Sun GG, Wang YD, Cheng YJ, Hu WN. BTG1 underexpression is an independent prognostic marker in esophageal squamous cell carcinoma. Tumour Biol 2014; 35:9707-16. [PMID: 24969561 DOI: 10.1007/s13277-014-2245-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023] Open
Abstract
To determine the expression and function of B cell translocation gene 1 (BTG1) in esophageal carcinoma, esophageal samples were taken from cancer lesions (n = 74) and adjacent normal tissue (n = 34) in esophageal cancer patients immediately after endoscopic biopsy. BTG1 expression was determined by immunohistochemistry and Western blotting. The effect of BTG1 overexpression was examined in vitro utilizing a human esophageal cancer cell line ECA-109 stably transfected with a recombinant lentivirus (LeBTG1 cells) and compared to empty vector-transfected controls (LeEmpty). BTG1 overexpression was verified by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot. The expression of proteins involved in cell cycle regulation (cyclin D1) and apoptosis (Bcl-2) and cell migration (MMP-9) in LeBTG1 cells was analyzed by Western blot. The effect of BTG1 overexpression on cell viability and proliferation was assessed by an MTT assay in LeBTG1 and LeEmpty cells. Flow cytometric analyses were used to evaluate the effect of BTG1 expression on cell cycle distribution and apoptosis. The migration and invasion potential of LeBTG1 cells was examined by plating cells in Matrigel-coated chambers. The level of BTG1 protein expression was found to be significantly lower in esophageal cancer tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with lymph node metastasis, clinical stage, and histological grade of patients with esophageal cancer (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function shown that Eca-109 cell-transfected BTG1 had a lower survival fraction, higher percentage of the G0/G1 phases, higher cell apoptosis, significant decrease in migration and invasion, and lower cylin D1, Bcl-2, and MMP-9 protein expression compared with Eca-109 cell-untransfected BTG1 (P < 0.05). Reduced BTG1 expression is associated with increased disease severity, suggesting it is a negative regulator of esophageal cancer and can serve as a prognostic indicator.
Collapse
Affiliation(s)
- G G Sun
- Department of Chemoradiotherapy, Tangshan People's Hospital, NO. 65, Shengli road, Lunan district, Tangshan, 063000, Hebei, China,
| | | | | | | |
Collapse
|
37
|
Farioli-Vecchioli S, Mattera A, Micheli L, Ceccarelli M, Leonardi L, Saraulli D, Costanzi M, Cestari V, Rouault JP, Tirone F. Running Rescues Defective Adult Neurogenesis by Shortening the Length of the Cell Cycle of Neural Stem and Progenitor Cells. Stem Cells 2014; 32:1968-82. [DOI: 10.1002/stem.1679] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Andrea Mattera
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Luca Leonardi
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Daniele Saraulli
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Marco Costanzi
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
- Department of Human Sciences; LUMSA University; Rome Italy
| | - Vincenzo Cestari
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
- Department of Psychology and “Daniel Bovet” Center; Sapienza University of Rome; Rome Italy
| | - Jean-Pierre Rouault
- Institut de Génomique Fonctionnelle de Lyon; Ecole Normal Supérieure de Lyon; CNRS UMR 5242, INRA UMR 1288 Lyon France
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| |
Collapse
|
38
|
Linalool exhibits cytotoxic effects by activating antitumor immunity. Molecules 2014; 19:6694-706. [PMID: 24858101 PMCID: PMC6271996 DOI: 10.3390/molecules19056694] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/05/2014] [Accepted: 05/19/2014] [Indexed: 12/18/2022] Open
Abstract
According to recent studies, the Plantaginaceae, which are traditional Chinese herbal remedies, have potential for use in viral infection treatment and cancer therapy. Linalool and p-coumaric acid are two of the biologically active compounds that can be isolated from the Plantaginaceae. This study mainly focused on investigating the bioactivity of linalool as well as the bioactivity of p-coumaric acid in terms of their cytotoxic effects on cancer cells. Whether the mechanisms of such effects are generated through apoptosis and immunoregulatory activity were also investigated. By using WST-1 analysis, it was shown that linalool and p-coumaric acid have good inhibitory effects against breast, colorectal and liver cancer cells. The IC50 values of linalool for those cancer cell types were 224 μM, 222 μM, and 290 μM, respectively, and the IC50 values of p-coumaric acid were 693 μM, 215 μM and 87 μM, respectively. Cell cycle analysis also confirmed that linalool and p-coumaric acid can lead to apoptosis. By using flow cytometry, it was determined that treatment with linalool rather than p-coumaric acid significantly increased the sub-G1 phase and that there were more cells concentrated in the G1 phase. Furthermore, by using cytokine array analysis, we found that linalool can stimulate IFN-γ, IL-13, IL-2, IL-21, IL-21R, IL-4, IL-6sR and TNF-α secretion. This demonstrated that in addition to the bidirectional regulation capabilities found in linalool, it also induces Th1 cellular immune response in T-47D cells. These results showed that linalool holds great potential for use in cancer therapy, and we believe that it could provide an alternative way to take action against tumors.
Collapse
|
39
|
Sheng SH, Zhao CM, Sun GG. BTG1 expression correlates with the pathogenesis and progression of breast carcinomas. Tumour Biol 2013; 35:3317-26. [PMID: 24272202 DOI: 10.1007/s13277-013-1437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022] Open
Abstract
This study aimed to analyze the expression, clinical significance of B cell translocation gene 1 (BTG1) in breast carcinoma and the biological effect in its cell line by BTG1 overexpression. Immunohistochemistry and western blot were used to analyze BTG1 protein expression in 72 cases of breast cancer and 36 cases of normal tissues to study the relationship between BTG1 expression and clinical factors. Recombinant lentiviral vector was constructed to over-express EMP-1 and then infect breast cancer MCF-7 cell line. Quantitative real-time RT-PCR (qRT-PCR) and western blot were used to detect the mRNA level and protein of BTG1. MTT assay, cell apoptosis, cell cycles, migration and invasion assays were also conducted as to the influence of the upregulated expression of BTG1 that might be found on MCF-7 cells biological effect. The level of BTG1 protein expression was found to be significantly lower in breast cancer tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with tumor invasion, lymph node metastasis, clinic stage and histological grade of patients with breast cancer (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function shown that MCF-7 cell transfected BTG1 had a lower survival fraction, higher percentage of the G0/G1 phases, higher cell apoptosis, significant decrease in migration and invasion, and lower CyclinD1, Bcl-2, and MMP-9 protein expression compared with MCF-7 cell untransfected BTG1 (P < 0.05). BTG1 expression decreased in breast cancer and correlated significantly lymph node metastasis, clinic stage, histological grade, poor overall survival, proliferation, and metastasis in breast cancer cell by regulating CyclinD1, Bcl-2, and MMP-9 protein expression, suggesting that BTG1 may play important roles as a negative regulator to breast cancer cell.
Collapse
Affiliation(s)
- S H Sheng
- Department of Breast Surgery, Tangshan Workers Hospital, Tangshan, 063000, China
| | | | | |
Collapse
|
40
|
The expression of BTG1 is downregulated in NSCLC and possibly associated with tumor metastasis. Tumour Biol 2013; 35:2949-57. [PMID: 24264312 DOI: 10.1007/s13277-013-1379-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 01/05/2023] Open
Abstract
This study aimed to analyze the expression, clinical significance of B cell translocation gene 1 (BTG1) in nonsmall cell lung cancer (NSCLC) and the biological effect in its cell line by BTG1 overexpression. Immunohistochemistry and western blot were used to analyze BTG1 protein expression in 82 cases of NSCLC and 38 cases of normal tissues to study the relationship between BTG1 expression and clinical factors. Recombinant lentiviral vector was constructed to overexpress EMP-1 and then infect NSCLC H1299 cell line. Quantitative real-time RT-PCR and western blot were used to detect the mRNA level and protein of BTG1. 3-[4,5-dimethylthiazol -2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis, cell cycles, and migration and invasion assays were also conducted as to the influence of the upregulated expression of BTG1 that might be found on H1299 cells biological effect. The level of BTG1 protein expression was found to be significantly lower in NSCLC tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with lymph node metastasis, clinic stage, and histological grade of patients with NSCLC (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function show that H1299 cell transfected BTG1 had a lower survival fraction; higher percentage of the G0/G1 phases; higher cell apoptosis; significant decrease in migration and invasion; and lower CyclinD1, Bcl-2, and MMP-9 protein expression compared with H1299 cell untransfected BTG1 (P < 0.05). BTG1 expression decreased in NSCLC and correlated significantly with lymph node metastasis; clinical stage; histological grade; poor overall survival; cell proliferation; cell cycles; cell apoptosis; and migration and invasion in NSCLC cell by regulating CyclinD1, Bcl-2, and MMP-9 protein expression, suggesting that BTG1 may play important roles as a negative regulator to NSCLC cell.
Collapse
|