1
|
Thi TN, Thanh HD, Nguyen VT, Kwon SY, Moon C, Hwang EC, Jung C. Complement regulatory protein CD46 promotes bladder cancer metastasis through activation of MMP9. Int J Oncol 2024; 65:71. [PMID: 38847230 PMCID: PMC11173367 DOI: 10.3892/ijo.2024.5659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
CD46, a transmembrane protein known for protecting cells from complement‑mediated damage, is frequently dysregulated in various types of cancer. Its overexpression in bladder cancers safeguards the cancer cells against both complement and antibody‑mediated cytotoxicity. The present study explored a new role of CD46 in facilitating cancer cell invasion and metastasis, examining its regulatory effect on matrix metalloproteases (MMPs) and their effect on the metastatic capability of bladder cancer cells. Specifically, CD46 alteration positively influenced MMP9 expression, but not MMP2, in several bladder cancer cell lines. Furthermore, CD46 overexpression triggered phosphorylation of p38 MAPK and protein kinase B (AKT), leading to enhanced activator protein 1 (AP‑1) activity via c‑Jun upregulation. The inhibition of p38 or AKT pathways attenuated the CD46‑induced MMP9 and AP‑1 upregulation, indicating that the promotion of MMP9 by CD46 involved activating both p38 MAPK and AKT. Functionally, the upregulation of MMP9 by CD46 translated to increased migratory and invasive capabilities of bladder cancer cells, as well as enhanced in vivo metastasis. Overall, the present study revealed a novel role for CD46 as a metastasis promoter through MMP9 activation in bladder cancers and highlighted the regulatory mechanism of CD46‑mediated MMP9 promotion via p38 MAPK and AKT activation.
Collapse
Affiliation(s)
- Thuy Nguyen Thi
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hien Duong Thanh
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Van-Tan Nguyen
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Se-Young Kwon
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
2
|
Khan A, Hussain S, Iyer JK, Kaul A, Bonnewitz M, Kaul R. Human papillomavirus-mediated expression of complement regulatory proteins in human cervical cancer cells. Eur J Obstet Gynecol Reprod Biol 2023; 288:222-228. [PMID: 37572452 DOI: 10.1016/j.ejogrb.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVES This study aimed to evaluate the expression pattern of complement regulatory proteins (CRPs) CD46, CD59, and CD55 in HPV-positive (HPV+) & negative (HPV-) cervical cancer cell lines in search of a reliable differential biomarker. STUDY DESIGN We analysed the expression of CRPs in HPV 16-positive SiHa cell line, HPV 18-positive HeLa cell line, and HPV-negative cell line C33a using RT-qPCR, Western blotting, flow cytometry, and confocal microscopy. RESULTS We observed a differential expression profile of CRPs in HPV+ and HPV- cervical cancer cell lines. The mRNA level of CD59 & CD55 showed a higher expression pattern in HPV+ cells when compared to HPV- cancer cells. However, flow cytometry-based experiments revealed that CD46 was preferentially expressed more in HPV 16-positive SiHa cells followed by HPV 18-positive HeLa cells when compared to HPV- C33a cells. Interestingly, confocal microscopy revealed a high level of CD59 expression in Hela cells and SiHa cells but low expression in HPV- C33a cells. In addition, HPV 18-positive HeLa cells expressed more CD55, which was lower in SiHa cells and very weak in C33a cells. CONCLUSION The study demonstrates the differential expression of CRPs in both HPV+ and HPV- cervical cancer cells for the first time, and their potential to serve as an early diagnostic marker for cervical carcinogenesis.
Collapse
Affiliation(s)
- Asiya Khan
- Dr. Babasaheb R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; Amity Institute of Biotechnology, Amity University, Noida 201303, India
| | - Showket Hussain
- Division of Molecular Oncology & Molecular Diagnostics, Indian Council of Medical Research-National Institute of Cancer Prevention and Research, Noida 201301, India
| | - Janaki K Iyer
- Department of Biochemistry and Microbiology, Oklahoma State University Centre for Health Sciences, 1111 West 17(th) Street, Tulsa, OK 74107, USA; Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - Anil Kaul
- Health Care Administration, Oklahoma State University Centre for Health Sciences, Tulsa, OK 74107, USA
| | - Mackenzie Bonnewitz
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Centre for Health Sciences, 1111 West 17(th) Street, Tulsa, OK 74107, USA.
| |
Collapse
|
3
|
Fan Y, Liao J, Wang Y, Wang Z, Zheng H, Wang Y. miR-132-3p regulates antibody-mediated complement-dependent cytotoxicity in colon cancer cells by directly targeting CD55. Clin Exp Immunol 2023; 211:57-67. [PMID: 36571232 PMCID: PMC9993456 DOI: 10.1093/cei/uxac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
The overexpression of membrane-bound complement regulatory proteins (mCRPs) on tumour cells helps them survive complement attacks by suppressing antibody-mediated complement-dependent cytotoxicity (CDC). Consequently, mCRP overexpression limits monoclonal antibody drug immune efficacy. CD55, an mCRP, plays an important role in inhibiting antibody-mediated CDC. However, the mechanisms regulating CD55 expression in tumour cells remain unclear. Here, the aim was to explore CD55-targeting miRNAs. We previously constructed an in vitro model comprising cancer cell lines expressing α-gal and serum containing natural antibodies against α-gal and complement. This was used to simulate antibody-mediated CDC in colon cancer cells. We screened microRNAs that directly target CD55 using LoVo and Ls-174T colon cell lines, which express CD55 at low and high levels, respectively. miR-132-3p expression was dramatically lower in Ls-174T cells than in LoVo cells. miR-132-3p overexpression or inhibition transcriptionally regulated CD55 expression by specifically targeting its mRNA 3'-untranslated regions. Further, miR-132-3p modulation regulated colon cancer cell sensitivity to antibody-mediated CDC through C5a release and C5b-9 deposition. Moreover, miR-132-3p expression was significantly reduced, whereas CD55 expression was increased, in colon cancer tissues compared to levels in adjacent normal tissues. CD55 protein levels were negatively correlated with miR-132-3p expression in colon cancer tissues. Our results indicate that miR-132-3p regulates colon cancer cell sensitivity to antibody-mediated CDC by directly targeting CD55. In addition, incubating the LoVo human tumour cell line, stably transfected with the xenoantigen α-gal, with human serum containing natural antibodies comprises a stable and cheap in vitro model to explore the mechanisms underlying antibody-mediated CDC.
Collapse
Affiliation(s)
- Yu Fan
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Liao
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhu Wang
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zheng
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Wang
- Correspondence: Yanping Wang, 5# Gongxing Street, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Nierenberg D, Flores O, Fox D, Sip YYL, Finn CM, Ghozlan H, Cox A, Coathup M, McKinstry KK, Zhai L, Khaled AR. Macromolecules Absorbed from Influenza Infection-Based Sera Modulate the Cellular Uptake of Polymeric Nanoparticles. Biomimetics (Basel) 2022; 7:biomimetics7040219. [PMID: 36546919 PMCID: PMC9775140 DOI: 10.3390/biomimetics7040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Optimizing the biological identity of nanoparticles (NPs) for efficient tumor uptake remains challenging. The controlled formation of a protein corona on NPs through protein absorption from biofluids could favor a biological identity that enables tumor accumulation. To increase the diversity of proteins absorbed by NPs, sera derived from Influenza A virus (IAV)-infected mice were used to pre-coat NPs formed using a hyperbranched polyester polymer (HBPE-NPs). HBPE-NPs, encapsulating a tracking dye or cancer drug, were treated with sera from days 3-6 of IAV infection (VS3-6), and uptake of HBPE-NPs by breast cancer cells was examined. Cancer cells demonstrated better uptake of HBPE-NPs pre-treated with VS3-6 over polyethylene glycol (PEG)-HBPE-NPs, a standard NP surface modification. The uptake of VS5 pre-treated HBPE-NPs by monocytic cells (THP-1) was decreased over PEG-HBPE-NPs. VS5-treated HBPE-NPs delivered a cancer drug more efficiently and displayed better in vivo distribution over controls, remaining stable even after interacting with endothelial cells. Using a proteomics approach, proteins absorbed from sera-treated HBPE-NPs were identified, such as thrombospondin-1 (TSP-1), that could bind multiple cancer cell receptors. Our findings indicate that serum collected during an immune response to infection is a rich source of macromolecules that are absorbed by NPs and modulate their biological identity, achieving rationally designed uptake by targeted cell types.
Collapse
Affiliation(s)
- Daniel Nierenberg
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Orielyz Flores
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - David Fox
- NanoScience Technology Science Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, College of Science, University of Central Florida, Orlando, FL 32816, USA
| | - Yuen Yee Li Sip
- NanoScience Technology Science Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, College of Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Caroline M. Finn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Heba Ghozlan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Amanda Cox
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Melanie Coathup
- Biionix Cluster and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Karl Kai McKinstry
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- NanoScience Technology Science Center, University of Central Florida, Orlando, FL 32826, USA
| | - Lei Zhai
- NanoScience Technology Science Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, College of Science, University of Central Florida, Orlando, FL 32816, USA
- Department of Materials Science and Engineering, College of Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Annette R. Khaled
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- NanoScience Technology Science Center, University of Central Florida, Orlando, FL 32826, USA
- Correspondence: ; Tel.: +1-407-266-7035
| |
Collapse
|
5
|
The role of let-7b in the inhibition of hepatic stellate cell activation by rSjP40. PLoS Negl Trop Dis 2021; 15:e0009472. [PMID: 34161325 PMCID: PMC8221521 DOI: 10.1371/journal.pntd.0009472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hepatic stellate cells (HSCs) are one of the main cell types involved in liver fibrosis induced by many factors, including schistosomes. Previous studies in our lab have shown that recombinant P40 protein from Schistosoma japonicum (rSjP40) can inhibit HSC activation in vitro. Let-7b is a member of the let-7 microRNA family and plays an inhibitory role in a variety of diseases and inflammatory conditions. In this study, we investigated the role of let-7b in the inhibition of HSC activation by rSjP40. METHODS Expression of let-7b was detected by quantitative real-time PCR. A dual luciferase assay was used to confirm direct interaction between let-7b and collagen I. We also used western blot to assess protein levels of TGFβRI and collagen type I α1 (COL1A1). RESULTS We found that rSjP40 up-regulates expression of let-7b in HSCs. Let-7b inhibits collagen I expression by directly targeting the 3'UTR region of the collagen I gene. Furthermore, we discovered that let-7b inhibitor partially restores the loss of collagen I expression caused by rSjP40. CONCLUSION Our research clarifies the role of let-7b in the inhibition of HSC activation by rSjP40 and will provide new insights and ideas for the inhibition of HSC activation and treatment of liver fibrosis.
Collapse
|
6
|
Zeng J, Xu H, Huang C, Sun Y, Xiao H, Yu G, Zhou H, Zhang Y, Yao W, Xiao W, Hu J, Wu L, Xing J, Wang T, Chen Z, Ye Z, Chen K. CD46 splice variant enhances translation of specific mRNAs linked to an aggressive tumor cell phenotype in bladder cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:140-153. [PMID: 33767911 PMCID: PMC7972933 DOI: 10.1016/j.omtn.2021.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/19/2021] [Indexed: 01/02/2023]
Abstract
CD46 is well known to be involved in diverse biological processes. Although several splice variants of CD46 have been identified, little is known about the contribution of alternative splicing to its tumorigenic functions. In this study, we found that exclusion of CD46 exon 13 is significantly increased in bladder cancer (BCa) samples. In BCa cell lines, enforced expression of CD46-CYT2 (exon 13-skipping isoform) promoted, and CD46-CYT1 (exon 13-containing isoform) attenuated, cell growth, migration, and tumorigenicity in a xenograft model. We also applied interaction proteomics to identify exhaustively the complexes containing the CYT1 or CYT2 domain in EJ-1 cells. 320 proteins were identified that interact with the CYT1 and/or CYT2 domain, and most of them are new interactors. Using an internal ribosome entry site (IRES)-dependent reporter system, we established that CD46 could regulate mRNA translation through an interaction with the translation machinery. We also identified heterogeneous nuclear ribonucleoprotein (hnRNP)A1 as a novel CYT2 binding partner, and this interaction facilitates the interaction of hnRNPA1 with IRES RNA to promote IRES-dependent translation of HIF1a and c-Myc. Strikingly, the splicing factor SRSF1 is highly correlated with CD46 exon 13 exclusion in clinical BCa samples. Taken together, our findings contribute to understanding the role of CD46 in BCa development.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, P.R. China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Chunhua Huang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P.R. China
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, P.R. China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, P.R. China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Hubei Institute of Urology, Wuhan 430030, P.R. China
| |
Collapse
|
7
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
CD46 and Oncologic Interactions: Friendly Fire against Cancer. Antibodies (Basel) 2020; 9:antib9040059. [PMID: 33147799 PMCID: PMC7709105 DOI: 10.3390/antib9040059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
One of the most challenging aspects of cancer therapeutics is target selection. Recently, CD46 (membrane cofactor protein; MCP) has emerged as a key player in both malignant transformation as well as in cancer treatments. Normally a regulator of complement activation, CD46 is co-expressed as four predominant isoforms on almost all cell types. CD46 is highly overexpressed on a variety of human tumor cells. Clinical and experimental data support an association between increased CD46 expression and malignant transformation and metastasizing potential. Further, CD46 is a newly discovered driver of metabolic processes and plays a role in the intracellular complement system (complosome). CD46 is also known as a pathogen magnet due to its role as a receptor for numerous microbes, including several species of measles virus and adenoviruses. Strains of these two viruses have been exploited as vectors for the therapeutic development of oncolytic agents targeting CD46. In addition, monoclonal antibody-drug conjugates against CD46 also are being clinically evaluated. As a result, there are multiple early-phase clinical trials targeting CD46 to treat a variety of cancers. Here, we review CD46 relative to these oncologic connections.
Collapse
|
9
|
Liu F, Luo L, Liu Z, Wu S, Zhang W, Li Q, Peng Y, Wei Y, Li B. A genetic variant in the promoter of CD46 is associated with the risk and prognosis of hepatocellular carcinoma. Mol Carcinog 2020; 59:1243-1255. [PMID: 32869896 DOI: 10.1002/mc.23252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/26/2020] [Accepted: 08/12/2020] [Indexed: 02/05/2023]
Abstract
CD46 (also known as membrane cofactor protein), which is a member of the membrane-bound complement regulatory protein family, has been reported to cause cancer cells to escape complement-dependent cytotoxicity. However, the association between CD46 polymorphisms and the risk of hepatocellular carcinoma (HCC) has not been investigated. This two-stage association study was conducted to assess the relationship between the tagging single nucleotide polymorphisms (tagSNPs) of CD46 and HCC risk and prognosis. A series of functional analyses were performed to study the underlying mechanisms. Among the eight tagSNPs, rs2796267 (P = .003) and rs2796268 (P = .011) were found to modify HCC risk in the discovery set. Only rs2796267 (P < .0001) was confirmed to be associated with HCC susceptibility in the validation set. Compared with the wild-type AA genotype, the GG genotype significantly increased the HCC risk (adjusted odds ratio [OR] = 2.03; 95% confidence interval [CI], 1.34-3.08; P = .001). Moreover, subgroups analysis suggested a positive correlation among male and younger patients, especially among drinkers, smokers, and hepatitis B surface antigen-positive individuals. In functional analyses, we found that the rs2796267 G allele in the promoter region of CD46 could increase the expression of CD46 by affecting the binding affinity of STAT5a. Furthermore, Cox regression analysis revealed that the rs2796267 AG/GG genotype was significantly associated with worse prognosis of resected patients with HCC (hazard ratio = 2.27; 95% CI, 1.27-4.05; P = .006). These results suggest that the CD46 rs2796267 polymorphism may contribute to susceptibility and prognosis of HCC by altering promoter activity.
Collapse
Affiliation(s)
- Fei Liu
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Limei Luo
- Department of Clinical Immunological Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongjian Liu
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Sisi Wu
- Division of Core Facilities, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qin Li
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yufu Peng
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yonggang Wei
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Li
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Nagalo BM, Breton CA, Zhou Y, Arora M, Bogenberger JM, Barro O, Steele MB, Jenks NJ, Baker AT, Duda DG, Roberts LR, Russell SJ, Peng KW, Borad MJ. Oncolytic Virus with Attributes of Vesicular Stomatitis Virus and Measles Virus in Hepatobiliary and Pancreatic Cancers. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:546-555. [PMID: 32839735 PMCID: PMC7437509 DOI: 10.1016/j.omto.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Recombinant vesicular stomatitis virus (VSV)-fusion and hemagglutinin (FH) was developed by substituting the promiscuous VSV-G glycoprotein (G) gene in the backbone of VSV with genes encoding for the measles virus envelope proteins F and H. Hybrid VSV-FH exhibited a multifaceted mechanism of cancer-cell killing and improved neurotolerability over parental VSV in preclinical studies. In this study, we evaluated VSV-FH in vitro and in vivo in models of hepatobiliary and pancreatic cancers. Our results indicate that high intrahepatic doses of VSV-FH did not result in any significant toxicity and were well tolerated by transgenic mice expressing the measles virus receptor CD46. Furthermore, a single intratumoral treatment with VSV-FH yielded improved survival and complete tumor regressions in a proportion of mice in the Hep3B hepatocellular carcinoma model but not in mice xenografted with BxPC-3 pancreatic cancer cells. Our preliminary findings indicate that VSV-FH can induce potent oncolysis in hepatocellular and pancreatic cancer cell lines with concordant results in vivo in hepatocellular cancer and discordant in pancreatic cancer without the VSV-mediated toxic effects previously observed in laboratory animals. Further study of VSV-FH as an oncolytic virotherapy is warranted in hepatocellular carcinoma and pancreatic cancer to understand broader applicability and mechanisms of sensitivity and resistance.
Collapse
Affiliation(s)
- Bolni Marius Nagalo
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | | | - Yumei Zhou
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mansi Arora
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - James M Bogenberger
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Oumar Barro
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael B Steele
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan J Jenks
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexander T Baker
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Dan G Duda
- Department of Radiation Oncology, Steele Laboratories for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lewis Rowland Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology and Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA.,Mayo Clinic Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Laskowski J, Renner B, Pickering MC, Serkova NJ, Smith-Jones PM, Clambey ET, Nemenoff RA, Thurman JM. Complement factor H-deficient mice develop spontaneous hepatic tumors. J Clin Invest 2020; 130:4039-4054. [PMID: 32369457 PMCID: PMC7410061 DOI: 10.1172/jci135105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is difficult to detect, carries a poor prognosis, and is one of few cancers with an increasing yearly incidence. Molecular defects in complement factor H (CFH), a critical regulatory protein of the complement alternative pathway (AP), are typically associated with inflammatory diseases of the eye and kidney. Little is known regarding the role of CFH in controlling complement activation within the liver. While studying aging CFH-deficient (fH-/-) mice, we observed spontaneous hepatic tumor formation in more than 50% of aged fH-/- males. Examination of fH-/- livers (3-24 months) for evidence of complement-mediated inflammation revealed widespread deposition of complement-activation fragments throughout the sinusoids, elevated transaminase levels, increased hepatic CD8+ and F4/80+ cells, overexpression of hepatic mRNA associated with inflammatory signaling pathways, steatosis, and increased collagen deposition. Immunostaining of human HCC biopsies revealed extensive deposition of complement fragments within the tumors. Investigating the Cancer Genome Atlas also revealed that increased CFH mRNA expression is associated with improved survival in patients with HCC, whereas mutations are associated with worse survival. These results indicate that CFH is critical for controlling complement activation in the liver, and in its absence, AP activation leads to chronic inflammation and promotes hepatic carcinogenesis.
Collapse
Affiliation(s)
- Jennifer Laskowski
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brandon Renner
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Division of Immunology and Inflammation, Department of Medicine, Imperial College of London, London, United Kingdom
| | - Natalie J. Serkova
- Department of Medicine, Radiology
- Department of Medicine, Radiation Oncology, and
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Peter M. Smith-Jones
- Department of Medicine, Radiology
- Department of Medicine, Radiation Oncology, and
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Raphael A. Nemenoff
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joshua M. Thurman
- Department of Medicine, Nephrology and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
12
|
Yu QJ, Liang YZ, Mei XP, Fang TY. Tumor mutation burden associated with miRNA-gene interaction outcome mediates the survival of patients with liver hepatocellular carcinoma. EXCLI JOURNAL 2020; 19:861-871. [PMID: 32665773 PMCID: PMC7355149 DOI: 10.17179/excli2020-1224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Tumor mutation burden (TMB) is associated with immunogenic responses and the survival of cancer patients. This study demonstrates how TMB levels impact the immune-related cells, genes, and miRNAs, and how miRNA/gene interactions respond to variations in the survival rate of patients with liver hepatocellular carcinoma (LIHC). LIHC patients were divided into two groups, either a low TMB (< median) or a high TMB (≥ median) group. We found that high TMB plays a positive role in immune-mediated infiltration, generating more CD4 T-cells and memory B cells. Among the 21 immune genes that altered significantly, only C9orf24 and CYP1A1 were expected to up-regulate in LIHC patients with high TMB. A total of 19 miRNAs, which regulate various functional pathways, were significantly altered in patients with LIHC. One of the miRNA/gene pair, hsa-miR-33a/ALDH1A3 was significantly associated with the survival rate of LIHC patients. Our results suggest that LIHC patients with high TMB can be treated more effectively with immunotherapy.
Collapse
Affiliation(s)
- Qing-Jiang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Yi-Zhi Liang
- Department of Gastroenterology, Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Xiao-Ping Mei
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Tai-Yong Fang
- Department of Gastroenterology, Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
13
|
Jin YJ, Byun S, Han S, Chamberlin J, Kim D, Kim MJ, Lee Y. Differential alternative splicing regulation among hepatocellular carcinoma with different risk factors. BMC Med Genomics 2019; 12:175. [PMID: 31856847 PMCID: PMC6923823 DOI: 10.1186/s12920-019-0635-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatitis B virus (HBV), hepatitis C virus (HCV), and alcohol consumption are predominant causes of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying how differently these causes are implicated in HCC development are not fully understood. Therefore, we investigated differential alternative splicing (AS) regulation among HCC patients with these risk factors. Methods We conducted a genome-wide survey of AS events associated with HCCs among HBV (n = 95), HCV (n = 47), or alcohol (n = 76) using RNA-sequencing data obtained from The Cancer Genome Atlas. Results In three group comparisons of HBV vs. HCV, HBV vs. alcohol, and HCV vs. alcohol for RNA seq (ΔPSI> 0.05, FDR < 0.05), 133, 93, and 29 differential AS events (143 genes) were identified, respectively. Of 143 AS genes, eight and one gene were alternatively spliced specific to HBV and HCV, respectively. Through functional analysis over the canonical pathways and gene ontologies, we identified significantly enriched pathways in 143 AS genes including immune system, mRNA splicing-major pathway, and nonsense-mediated decay, which may be important to carcinogenesis in HCC risk factors. Among eight genes with HBV-specific splicing events, HLA-A, HLA-C, and IP6K2 exhibited more differential expression of AS events (ΔPSI> 0.1). Intron retention of HLA-A was observed more frequently in HBV-associated HCC than HCV- or alcohol-associated HCC, and intron retention of HLA-C showed vice versa. Exon 3 (based on ENST00000432678) of IP6K2 was less skipped in HBV-associated in HCC compared to HCV- or alcohol-associated HCC. Conclusion AS may play an important role in regulating transcription differences implicated in HBV-, HCV-, and alcohol-related HCC development.
Collapse
Affiliation(s)
- Young-Joo Jin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon, South Korea
| | - Seyoun Byun
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Chamberlin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dongwook Kim
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Min Jung Kim
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Pharmacy program, Massachusetts College of Pharmacy and Health Sciences, Worcester, MA, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Geller A, Yan J. The Role of Membrane Bound Complement Regulatory Proteins in Tumor Development and Cancer Immunotherapy. Front Immunol 2019; 10:1074. [PMID: 31164885 PMCID: PMC6536589 DOI: 10.3389/fimmu.2019.01074] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
It has long been understood that the control and surveillance of tumors within the body involves an intricate dance between the adaptive and innate immune systems. At the center of the interplay between the adaptive and innate immune response sits the complement system—an evolutionarily ancient response that aids in the destruction of microorganisms and damaged cells, including cancer cells. Membrane-bound complement regulatory proteins (mCRPs), such as CD46, CD55, and CD59, are expressed throughout the body in order to prevent over-activation of the complement system. These mCRPs act as a double-edged sword however, as they can also over-regulate the complement system to the extent that it is no longer effective at eliminating cancerous cells. Recent studies are now indicating that mCRPs may function as a biomarker of a malignant transformation in numerous cancer types, and further, are being shown to interfere with anti-tumor treatments. This highlights the critical roles that therapeutic blockade of mCRPs can play in cancer treatment. Furthermore, with the complement system having the ability to both directly and indirectly control adaptive T-cell responses, the use of a combinatorial approach of complement-related therapy along with other T-cell activating therapies becomes a logical approach to treatment. This review will highlight the biomarker-related role that mCRP expression may have in the classification of tumor phenotype and predicted response to different anti-cancer treatments in the context of an emerging understanding that complement activation within the Tumor Microenvironment (TME) is actually harmful for tumor control. We will discuss what is known about complement activation and mCRPs relating to cancer and immunotherapy, and will examine the potential for combinatorial approaches of anti-mCRP therapy with other anti-tumor therapies, especially checkpoint inhibitors such as anti PD-1 and PD-L1 monoclonal antibodies (mAbs). Overall, mCRPs play an essential role in the immune response to tumors, and understanding their role in the immune response, particularly in modulating currently used cancer therapeutics may lead to better clinical outcomes in patients with diverse cancer types.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Department of Medicine, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
15
|
Applicability of Traditional In Vitro Toxicity Tests for Assessing Adverse Effects of Monoclonal Antibodies: A Case Study of Rituximab and Trastuzumab. Antibodies (Basel) 2018; 7:antib7030030. [PMID: 31544882 PMCID: PMC6640679 DOI: 10.3390/antib7030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibody (mAb) therapeutics have a promising outlook within the pharmaceutical industry having made positive strides in both research and development as well as commercialisation, however this development has been hampered by manufacturing failures and attrition. This study explores the applicability of traditional in vitro toxicity tests for detecting any off-target adverse effect elicited by mAbs on specific organ systems using hepatocarcinoma cell line (HepG2) and human dermal fibroblasts neonatal (HDFn), respectively. The mechanism of antibody dependent cytotoxicity (ADCC), complement dependent cytotoxicity (CDC) via complement activation, and complement dependent cellular cytotoxicity (CDCC) were assessed. Major results: no apparent ADCC, CDCC, or CDC mediated decrease in cell viability was measured for HepG2 cells. For HDFn cells, though ADCC or CDCC mediated decreases in cell viability wasn’t detected, a CDC mediated decrease in cell viability was observed. Several considerations have been elucidated for development of in vitro assays better suited to detect off target toxicity of mAbs.
Collapse
|
16
|
Chen X, Song B, Lin Y, Cao L, Feng S, Zhang L, Wang F. PTK6 promotes hepatocellular carcinoma cell proliferation and invasion. Am J Transl Res 2016; 8:4354-4361. [PMID: 27830019 PMCID: PMC5095328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
Protein tyrosine kinase 6 (PTK6) is a nonreceptor tyrosine kinase that plays a crucial role in some tumors. However, the role of PTK6 is still unknown in hepatocellular carcinoma (HCC). In this study, we demonstrated that the PTK6 expression was upregulated in HCC tissues compared with adjacent normal tissues. Moreover, PTK6 was upregulated in the HCC cell lines (Bel7402, Hep3B, SMMC7721 and HepG2) compared with the normal liver epithelial cell line (THLE3). Ectopic expression of PTK6 promoted SMMC7721 cell proliferation, colony formation and invasion. Moreover, inhibition PTK6 expression suppressed the SMMC7721 cell proliferation, colony formation and invasion. Overexpression of PTK6 suppressed ERK1/2 phosphorylated expression. These data suggested that PTK6 played an oncogene role in the development of HCC.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Bo Song
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Yuanlong Lin
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Lijun Cao
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Shiyan Feng
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Lin Zhang
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Fuxiang Wang
- Department of Infectious Diseases, The Fourth Affiliatted Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| |
Collapse
|
17
|
Yao M, Wang L, Yao Y, Gu HB, Yao DF. Biomarker-based MicroRNA Therapeutic Strategies for Hepatocellular Carcinoma. J Clin Transl Hepatol 2014. [PMID: 26355266 DOI: 10.14218/jcth.2014.0002026355266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, microRNAs (miRNAs) have emerged as key factors involved in a series of biological processes, ranging from embryogenesis to programmed cell death. Its link to aberrant expression profiles has rendered it a potentially attractive tool for the diagnosis, prognosis, or treatment of various diseases. Accumulating evidence has indicated that miRNAs act as tumor suppressors in hepatocyte malignant transformation by regulating development, differentiation, proliferation, and tumorigenesis. Here, we summarize recent progress in the development of novel biomarker-based miRNA therapeutic strategies for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Min Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China ; Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yao Yao
- The Hospital of Nantong Maternal and Child Care Service, Nantong, Jiangsu, China
| | - Hong-Bing Gu
- The Hospital of Nantong Maternal and Child Care Service, Nantong, Jiangsu, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
18
|
Yao M, Wang L, Yao Y, Gu HB, Yao DF. Biomarker-based MicroRNA Therapeutic Strategies for Hepatocellular Carcinoma. J Clin Transl Hepatol 2014; 2:253-8. [PMID: 26355266 PMCID: PMC4521238 DOI: 10.14218/jcth.2014.00020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023] Open
Abstract
Recently, microRNAs (miRNAs) have emerged as key factors involved in a series of biological processes, ranging from embryogenesis to programmed cell death. Its link to aberrant expression profiles has rendered it a potentially attractive tool for the diagnosis, prognosis, or treatment of various diseases. Accumulating evidence has indicated that miRNAs act as tumor suppressors in hepatocyte malignant transformation by regulating development, differentiation, proliferation, and tumorigenesis. Here, we summarize recent progress in the development of novel biomarker-based miRNA therapeutic strategies for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Min Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yao Yao
- The Hospital of Nantong Maternal and Child Care Service, Nantong, Jiangsu, China
| | - Hong-Bing Gu
- The Hospital of Nantong Maternal and Child Care Service, Nantong, Jiangsu, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|