1
|
Halder N, Yadav S, Lal G. Neuroimmune communication of the cholinergic system in gut inflammation and autoimmunity. Autoimmun Rev 2024; 23:103678. [PMID: 39500481 DOI: 10.1016/j.autrev.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Neuroimmune communication in the body forms a bridge between two central regulatory systems of the body, i.e., nervous and immune systems. The cholinergic system is a crucial modulatory neurotransmitter in the central and peripheral nervous system. It includes the neurotransmitter acetylcholine (ACh), the enzyme required for the synthesis of ACh (choline acetyltransferase, ChAT), the enzyme required for its degradation (acetylcholinesterase, AChE), and cholinergic receptors (Nicotinic acetylcholine receptors and muscarinic acetylcholine receptors). The cholinergic system in neurons is well known for its role in cognitive function, sensory perception, motor control, learning, and memory processes. It has been shown that the non-neuronal cholinergic system (NNCS) is present in various tissues and immune cells and forms a neuroimmune communications system. In the present review, we discussed the NNCS on immune cells, its role in homeostasis and inflammatory reactions in the gut, and how it can be exploited in treating inflammatory responses.
Collapse
Affiliation(s)
- Namrita Halder
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Sourabh Yadav
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
2
|
Kononenko V, Joukhan A, Bele T, Križaj I, Kralj S, Turk T, Drobne D. Gelatin nanoparticles loaded with 3-alkylpyridinium salt APS7, an analog of marine toxin, are a promising support in human lung cancer therapy. Biomed Pharmacother 2024; 177:117007. [PMID: 38906020 DOI: 10.1016/j.biopha.2024.117007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
This study demonstrates the potential of gelatin nanoparticles as a nanodelivery system for antagonists of nicotinic acetylcholine receptors (nAChRs) to improve chemotherapy efficacy and reduce off-target effects. Too often, chemotherapy for lung cancer does not lead to satisfactory results. Therefore, new approaches directed at multiple pharmacological targets in cancer therapy are being developed. Following the activation of nAChRs (e.g. by nicotine), cancer cells begin to proliferate and become more resistant to chemotherapy-induced apoptosis. This work shows that the 3-alkylpyridinium salt, APS7, a synthetic analog of a toxin from the marine sponge Haliclona (Rhizoneira) sarai, acts as an nAChR antagonist that inhibits the pro-proliferative and anti-apoptotic effects of nicotine on A549 human lung adenocarcinoma cells. In this study, gelatin-based nanoparticles filled with APS7 (APS7-GNPs) were prepared and their effects on A549 cells were compared with that of free APS7. Both APS7 and APS7-GNPs inhibited Ca2+ influx and increased the efficacy of cisplatin chemotherapy in nicotine-stimulated A549 cells. However, significant benefits from APS7-GNPs were observed - a stronger reduction in the proliferation of A549 lung cancer cells and a much higher selectivity in cytotoxicity towards cancer cells compared with non-tumorigenic lung epithelial BEAS-2B cells.
Collapse
Affiliation(s)
- Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana SI-1000, Slovenia.
| | - Ahmad Joukhan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Tadeja Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia; Faculty of medicine, University of Ljubljana, Vrazov trg 2, Ljubljana SI-1000, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Tom Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana SI-1000, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
3
|
Romero Villela PN, Evans LM, Palviainen T, Border R, Kaprio J, Palmer RHC, Keller MC, Ehringer MA. Loci on chromosome 20 interact with rs16969968 to influence cigarettes per day in European ancestry individuals. Drug Alcohol Depend 2024; 257:111126. [PMID: 38387257 PMCID: PMC11062023 DOI: 10.1016/j.drugalcdep.2024.111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND The understanding of the molecular genetic contributions to smoking is largely limited to the additive effects of individual single nucleotide polymorphisms (SNPs), but the underlying genetic risk is likely to also include dominance, epistatic, and gene-environment interactions. METHODS To begin to address this complexity, we attempted to identify genetic interactions between rs16969968, the most replicated SNP associated with smoking quantity, and all SNPs and genes across the genome. RESULTS Using the UK Biobank European subsample, we found one SNP, rs1892967, and two genes, PCNA and TMEM230, that showed a significant genome-wide interaction with rs16969968 for log10 CPD and raw CPD, respectively, in a sample of 116 442 individuals who self-reported currently or previously smoking. We extended these analyses to individuals of South Asian descent and meta-analyzed the combined sample of 117 212 individuals of European and South Asian ancestry. We replicated the gene findings in a meta-analysis of five Finnish samples (N=40 140): FinHealth, FINRISK, Finnish Twin Cohort, GeneRISK, and Health-2000-2011. CONCLUSIONS To our knowledge, this represents the first reliable epistatic association between single nucleotide polymorphisms for smoking behaviors and provides a novel direction for possible future functional studies related to this interaction. Furthermore, this work demonstrates the feasibility of these analyses by pooling multiple datasets across various ancestries, which may be applied to other top SNPs for smoking and/or other phenotypes.
Collapse
Affiliation(s)
- Pamela N Romero Villela
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
| | - Luke M Evans
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, USA
| | - Richard Border
- Departments of Neurology and Computer Science, University of California, Los Angeles, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, USA
| | - Rohan H C Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Departments of Neurology and Computer Science, University of California, Los Angeles, USA; Department of Integrative Physiology, University of Colorado, Boulder, USA.
| |
Collapse
|
4
|
He Z, Xu Y, Rao Z, Zhang Z, Zhou J, Zhou T, Wang H. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169604. [PMID: 38157907 DOI: 10.1016/j.scitotenv.2023.169604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Nicotine enters the environment mainly through human activity, as well as natural sources. This review article examines the increasing evidence implicating nicotine in the initiation and progression of lung cancer. Moreover, it primarily focuses on elucidating the activation mechanism of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, regulated by α7 subtype nicotinic acetylcholine receptor (α7-nAChR), in relation to the proliferation, invasion, and metastasis of lung cancer cells induced by nicotine, as well as nicotine-mediated anti-apoptotic effects. This process involves PI3K/AKT phosphorylated-B-cell lymphoma-2 (Bcl-2) family proteins, PI3K/AKT/mammalian target of rapamycin (mTOR), PI3K/AKT/nuclear factor-κB (NF-κB), hepatocyte growth factor (HGF)/cellular-mesenchymal epithelial transition factor (c-Met)-induced PI3K/AKT and PI3K/AKT activated-hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathways. In addition, we also deliberated on the related challenges and upcoming prospects within this field. These lay the foundation for further study on nicotine, lung tumorigenesis, and PI3K/AKT related molecular mechanisms. This work has the potential to significantly contribute to the treatment and prognosis of gastric cancer in smokers. Besides, the crucial significance of PI3K/AKT signaling pathway in multiple molecular pathways also suggests that its target antagonists may inhibit the development and progression of lung cancer, providing a possible new perspective for solving the problem of nicotine-promoted lung cancer. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the environmental assessment of tobacco and other nicotine-containing products.
Collapse
Affiliation(s)
- Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
5
|
Richter K, Grau V. Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes. Pharmacol Res 2023; 191:106727. [PMID: 36966897 DOI: 10.1016/j.phrs.2023.106727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
6
|
Wen X, Liu HX, Chen LZ, Qu W, Yan HY, Hou LF, Zhao WH, Feng YT, Ping J. Asthma susceptibility in prenatal nicotine-exposed mice attributed to β-catenin increase during CD4 + T cell development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113572. [PMID: 35533447 DOI: 10.1016/j.ecoenv.2022.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Cigarette smoke is a common global environmental pollutant. Asthma, the most frequent allergic airway disease, is related to maternal exposure to cigarette smoke. Our previous studies demonstrated that prenatal exposure to nicotine (PNE), the major active product of smoking, impairs fetal thymopoiesis and CD4+ T cell development after birth. This study aimed to investigate whether PNE contributes to asthma susceptibility through CD4+ T cell development alterations. First, A PNE model was established by administering 3 mg/kg/day nicotine to maternal mice, and then an ovalbumin-induced asthma model was established in the offspring. Further, β-catenin and downstream pathways were inhibited in vitro to confirm the molecular mechanisms underlying the phenotype observed during the in vivo phase. The results showed that PNE induced Th2 and Th17 biases at developmental checkpoints and aggravated asthma symptoms in the offspring. In fetuses, PNE up-regulated α7 nAChR, activated PI3K-AKT, promoted β-catenin level increase, and established potential Th2- and Th17-biased gene expression patterns during thymopoiesis, which persisted after birth. Similar results were also observed in 1 μM nicotine-treated thymocytes in vitro. Moreover, inhibiting PI3K-AKT by LY294002 abrogated nicotine-mediated β-catenin level increase and thymopoiesis abnormalities, and an α7 nAChR antagonist (α-btx) also reversed nicotine-induced PI3K-AKT activation. Our findings provide strong evidence that PNE is a risk factor for T cell deviation and postnatal asthma, and revealed that nicotine-induced β-catenin level increase induces thymopoiesis abnormalities.
Collapse
Affiliation(s)
- Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lan-Zhou Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University School of Resource and Environmental Sciences, Wuhan 430079, China
| | - Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Wen-Hao Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi-Ting Feng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
7
|
Afrashteh Nour M, Hajiasgharzadeh K, Kheradmand F, Asadzadeh Z, Bolandi N, Baradaran B. Nicotinic acetylcholine receptors in chemotherapeutic drugs resistance: An emerging targeting candidate. Life Sci 2021; 278:119557. [PMID: 33930371 DOI: 10.1016/j.lfs.2021.119557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
There is no definitive cure for cancer, and most of the current chemotherapy drugs have limited effects due to the development of drug resistance and toxicity at high doses. Therefore, there is an ongoing need for identifying the causes of chemotherapeutic resistance, and it will be possible to develop innovative treatment approaches based on these novel targeting candidates. Cigarette smoking is known to be one of the main causes of resistance to chemotherapeutic agents. Nicotine as a component of cigarette smoke is an exogenous activator of nicotinic acetylcholine receptors (nAChRs). It can inhibit apoptosis, increase cell proliferation and cell survival, reducing the cytotoxic effects of chemotherapy drugs and cause a reduced therapeutic response. Recent studies have demonstrated that nAChRs and their downstream signaling pathways have considerable implications in different cancer's initiation, progression, and chemoresistance. In some previous studies, nAChRs have been targeted to obtain better efficacies for chemotherapeutics. Besides, nAChRs-based therapies have been used in combination with chemotherapy drugs to reduce the side effects. This strategy requires lower doses of chemotherapy drugs compared to the conditions that must be used alone. Here, we discussed the experimental and clinical studies that show the nAChRs involvement in response to chemotherapy agents. Also, controversies relating to the effects of nAChR on chemotherapy-induced apoptosis are in our focus in this review article. Delineating the complex influences of nAChRs would be of great interest in establishing new effective chemotherapy regimens.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Terpinskaya TI, Osipov AV, Kryukova EV, Kudryavtsev DS, Kopylova NV, Yanchanka TL, Palukoshka AF, Gondarenko EA, Zhmak MN, Tsetlin VI, Utkin YN. α-Conotoxins and α-Cobratoxin Promote, while Lipoxygenase and Cyclooxygenase Inhibitors Suppress the Proliferation of Glioma C6 Cells. Mar Drugs 2021; 19:118. [PMID: 33669933 PMCID: PMC7956437 DOI: 10.3390/md19020118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, β2 and β4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.
Collapse
Affiliation(s)
- Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alexey V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Denis S. Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Nina V. Kopylova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Tatsiana L. Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alena F. Palukoshka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Elena A. Gondarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| |
Collapse
|
9
|
Hsu CC, Su YF, Tsai KY, Kuo FC, Chiang CF, Chien CY, Chen YC, Lee CH, Wu YC, Wang K, Liu SY, Shieh YS. Gamma synuclein is a novel nicotine responsive protein in oral cancer malignancy. Cancer Cell Int 2020; 20:300. [PMID: 32669976 PMCID: PMC7350738 DOI: 10.1186/s12935-020-01401-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/06/2020] [Indexed: 12/20/2022] Open
Abstract
Background The mechanisms of neuronal protein γ-synuclein (SNCG) in the malignancy of oral squamous cell carcinoma (OSCC) are not clear. This study tested the hypothesis that SNCG is involved in nicotine-induced malignant behaviors of OSCC. The effect of nicotine on SNCG expression and epithelial-to-mesenchymal transition (EMT) markers were examined. Methods Short hairpin RNA (shRNA) and an antagonist specific for α7-nicotine acetylcholine receptors (α7-nAChRs) were used to examine the role of α7-nAChRs in mediating the effects of nicotine. Knockdown of SNCG in nicotine-treated cells was performed to investigate the role of SNCG in cancer malignancy. The in vivo effect of nicotine was examined using a nude mouse xenotransplantation model. Results Nicotine increased SNCG expression in a time- and dose-dependent manner. Nicotine treatment also increased E-cadherin and ZO-1 and decreased fibronectin and vimentin expression. After specific knockdown of α7-nAChRs and inhibition of the PI3/AKT signal, the effect of nicotine on SNCG expression was attenuated. Silencing of SNCG abolished nicotine-induced invasion and migration of OSCC cells. The xenotransplantation model revealed that nicotine augmented tumor growth and SNCG expression. Conclusion Nicotine upregulated SNCG expression by activating the α7-nAChRs/PI3/AKT signaling that are participated in nicotine-induced oral cancer malignancy.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114 Taiwan
| | - Yu-Fu Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114 Taiwan.,Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Kuo-Yang Tsai
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, 500 Taiwan.,College of Nursing and Health Science, Da-Yeh University, Changhua, 515 Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Chi-Fu Chiang
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec.6, Min-Chuan East Rd., Nei-Hu, Taipei, 114 Taiwan
| | - Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114 Taiwan
| | - Ying-Chen Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, 114 Taiwan
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114 Taiwan
| | - Yu-Chiao Wu
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec.6, Min-Chuan East Rd., Nei-Hu, Taipei, 114 Taiwan
| | - Kun Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shyun-Yeu Liu
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan, 710 Taiwan
| | - Yi-Shing Shieh
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, No.161, Sec.6, Min-Chuan East Rd., Nei-Hu, Taipei, 114 Taiwan.,Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, 114 Taiwan
| |
Collapse
|
10
|
Russo P, Bonassi S, Giacconi R, Malavolta M, Tomino C, Maggi F. COVID-19 and smoking: is nicotine the hidden link? Eur Respir J 2020; 55:13993003.01116-2020. [PMID: 32341101 PMCID: PMC7236819 DOI: 10.1183/13993003.01116-2020] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Leunget al. [1] have recently published, in the European Respiratory Journal, a paper on the expression of angiotensin-converting enzyme II (ACE-2) in the small airway epithelia of smokers and COPD patients, discussing its effects on the risk of severe coronavirus disease 2019 (COVID-19). The authors found an increased expression of the ACE-2 gene in the airways of subjects with COPD and in current smokers. Indeed, a recent systematic review reporting data on the smoking habits of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), concluded that smoking may be associated with a negative progression of the disease and with the adverse outcome [2]. Nicotine via alpha7-nicotinic receptor induces ACE-2 overexpression in human bronchial epithelial cells (HBEpC)https://bit.ly/3eJ5b35
Collapse
Affiliation(s)
- Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Rome, Italy .,Dept of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Rome, Italy.,Dept of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, Rome, Italy
| | - Fabrizio Maggi
- Dept of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
11
|
Russo P, Bonassi S, Giacconi R, Malavolta M, Tomino C, Maggi F. COVID-19 and smoking: is nicotine the hidden link? Eur Respir J 2020. [PMID: 32341101 DOI: 10.1183/13993003.01116‐2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Rome, Italy .,Dept of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Rome, Italy.,Dept of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, Rome, Italy
| | - Fabrizio Maggi
- Dept of Translational Research, University of Pisa, Pisa, Italy.,Virology Division, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
12
|
α7-Nicotine acetylcholine receptor mediated nicotine induced cell survival and cisplatin resistance in oral cancer. Arch Oral Biol 2020; 111:104653. [DOI: 10.1016/j.archoralbio.2020.104653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
|
13
|
Muttenthaler M, Nevin ST, Inserra M, Lewis RJ, Adams DJ, Alewood P. On-resin strategy to label α-conotoxins: Cy5-RgIA, a potent α9α10 nicotinic acetylcholine receptor imaging probe. Aust J Chem 2019; 73:327-333. [PMID: 32394983 PMCID: PMC7212043 DOI: 10.1071/ch19456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In-solution conjugation is the most commonly used strategy to label peptides and proteins with fluorophores. However, lack of site-specific control and high costs of fluorophores are recognised limitations of this approach. Here, we established facile access to grams of Cy5-COOH via a two-step synthetic route, demonstrated that Cy5 is stable to HF treatment and therefore compatible with Boc-SPPS, and coupled Cy5 to the N-terminus of α-conotoxin RgIA while still attached to the resin. Folding of the two-disulfide containing Cy5-RgIA benefitted from the hydrophobic nature of Cy5 resulting in only the globular disulfide bond isomer. In contrast, wild-type α-RgIA folded into the inactive ribbon and bioactive globular isomer under the same conditions. Labelled α-RgIA retained its ability to inhibit acetylcholine(100 μM)-evoked current reversibly with an IC50 of 5.0 nM (Hill coefficient = 1.7) for α-RgIA and an IC50 of 1.6 (Hill coefficient = 1.2) for Cy5-RgIA at the α9α10 nicotinic acetylcholine receptors (nAChRs) heterologeously expressed in Xenopus oocytes. Cy5-RgIA was then used to successfully visualise nAChRs in RAW264.7 mouse macrophage cell line. This work introduced not only a new and valuable nAChR probe, but also a new versatile synthetic strategy that facilitates production of milligram to gram quantities of fluorophore-labelled peptides at low cost, which is often required for in vivo experiments. The strategy is compatible with Boc- and Fmoc-chemistry, allows for site-specific labelling of free amines anywhere in the peptide sequence, and can also be used for the introduction of Cy3/Cy5 FRET pairs.
Collapse
Affiliation(s)
- Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Simon T Nevin
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Marco Inserra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Paul Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Nicotine directly affects milk production in lactating mammary epithelial cells concurrently with inactivation of STAT5 and glucocorticoid receptor in vitro. Toxicol In Vitro 2019; 63:104741. [PMID: 31783125 DOI: 10.1016/j.tiv.2019.104741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 01/20/2023]
Abstract
Nicotine from tobacco smoke is absorbed into the bloodstream and transferred into breast milk in breastfeeding mothers. Smoking causes a decrease in breast milk volume, adverse changes to the milk composition, and a shortened lactation period. Breast milk is produced by mammary epithelial cells (MECs) in mammary glands during lactation. However, it remains unclear whether nicotine directly affects milk production in lactating MECs. To address this issue, we prepared a culture model with high milk production ability and less-permeable tight junctions (TJs) by seeding mouse MECs on a cell culture insert. Lactating MECs showed expression of α2, α3, β2, and β4 of nicotinic acetylcholine receptors. The high concentration of nicotine at 10-100 μM inhibited β-casein secretion and caused abnormal localization of TJ proteins. We subsequently investigated whether nicotine at a physiological concentration could affect lactating MECs. Nicotine at 1.0 μM directly inhibited α- and β-casein secretion in lactating MECs concurrently with inactivation of STAT5 and glucocorticoid receptor without affecting the TJ barrier. Nicotine treatment also induced MEC apoptosis concurrently with inactivation of Akt. These results support the adverse effects of nicotine on breastfeeding in smoking mothers.
Collapse
|
15
|
Malińska D, Więckowski MR, Michalska B, Drabik K, Prill M, Patalas-Krawczyk P, Walczak J, Szymański J, Mathis C, Van der Toorn M, Luettich K, Hoeng J, Peitsch MC, Duszyński J, Szczepanowska J. Mitochondria as a possible target for nicotine action. J Bioenerg Biomembr 2019; 51:259-276. [PMID: 31197632 PMCID: PMC6679833 DOI: 10.1007/s10863-019-09800-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/19/2019] [Indexed: 12/26/2022]
Abstract
Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Dominika Malińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Mariusz R Więckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Bernadeta Michalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Karolina Drabik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Monika Prill
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paulina Patalas-Krawczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jarosław Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jędrzej Szymański
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Marco Van der Toorn
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
16
|
Analysis of Cell Signal Transduction Based on Kullback-Leibler Divergence: Channel Capacity and Conservation of Its Production Rate during Cascade. ENTROPY 2018; 20:e20060438. [PMID: 33265528 PMCID: PMC7512958 DOI: 10.3390/e20060438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/26/2018] [Accepted: 06/03/2018] [Indexed: 11/30/2022]
Abstract
Kullback–Leibler divergence (KLD) is a type of extended mutual entropy, which is used as a measure of information gain when transferring from a prior distribution to a posterior distribution. In this study, KLD is applied to the thermodynamic analysis of cell signal transduction cascade and serves an alternative to mutual entropy. When KLD is minimized, the divergence is given by the ratio of the prior selection probability of the signaling molecule to the posterior selection probability. Moreover, the information gain during the entire channel is shown to be adequately described by average KLD production rate. Thus, this approach provides a framework for the quantitative analysis of signal transduction. Moreover, the proposed approach can identify an effective cascade for a signaling network.
Collapse
|
17
|
Paulo JA, Gygi SP. Isobaric Tag-Based Protein Profiling of a Nicotine-Treated Alpha7 Nicotinic Receptor-Null Human Haploid Cell Line. Proteomics 2018; 18:e1700475. [PMID: 29663646 PMCID: PMC5990481 DOI: 10.1002/pmic.201700475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Nicotinic acetylcholine receptors (nAChR), the primary cell surface targets of nicotine, have implications in various neurological disorders. Here we investigate the proteome-wide effects of nicotine on human haploid cell lines (wildtype HAP1 and α7KO-HAP1) to address differences in nicotine-induced protein abundance profiles between these cell lines. We performed an SPS-MS3-based TMT10-plex experiment arranged in a 2-3-2-3 design with two replicates of the untreated samples and three of the treated samples for each cell line. We quantified 8775 proteins across all ten samples, of which several hundred differed significantly in abundance. Comparing α7KO-HAP1 and HAP1wt cell lines to each other revealed significant protein abundance alterations; however, we also measured differences resulting from nicotine treatment in both cell lines. Among proteins with increased abundance levels due to nicotine treatment included those previously identified: APP, APLP2, and ITM2B. The magnitude of these changes was greater in HAP1wt compared to the α7KO-HAP1 cell line, implying a potential role for the α7 nAChR in HAP1 cells. Moreover, the data revealed that membrane proteins and proteins commonly associated with neurons were predominant among those with altered abundance. This study, which is the first TMT-based proteome profiling of HAP1 cells, defines further the effects of nicotine on non-neuronal cellular proteomes.
Collapse
Affiliation(s)
- Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
18
|
Tsuruyama T. The Conservation of Average Entropy Production Rate in a Model of Signal Transduction: Information Thermodynamics Based on the Fluctuation Theorem. ENTROPY 2018; 20:e20040303. [PMID: 33265394 PMCID: PMC7512822 DOI: 10.3390/e20040303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
Cell signal transduction is a non-equilibrium process characterized by the reaction cascade. This study aims to quantify and compare signal transduction cascades using a model of signal transduction. The signal duration was found to be linked to step-by-step transition probability, which was determined using information theory. By applying the fluctuation theorem for reversible signal steps, the transition probability was described using the average entropy production rate. Specifically, when the signal event number during the cascade was maximized, the average entropy production rate was found to be conserved during the entire cascade. This approach provides a quantitative means of analyzing signal transduction and identifies an effective cascade for a signaling network.
Collapse
Affiliation(s)
- Tatsuaki Tsuruyama
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, Shogoin-kawahara-cho 54, Sakyo-ku, Kyoto 606-8057, Japan; ; Tel.: +81-75-366-7694; Fax: +81-75-366-7660
- Department of Drug Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8315, Japan
| |
Collapse
|
19
|
Information Thermodynamics Derives the Entropy Current of Cell Signal Transduction as a Model of a Binary Coding System. ENTROPY 2018; 20:e20020145. [PMID: 33265236 PMCID: PMC7512639 DOI: 10.3390/e20020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/26/2022]
Abstract
The analysis of cellular signaling cascades based on information thermodynamics has recently developed considerably. A signaling cascade may be considered a binary code system consisting of two types of signaling molecules that carry biological information, phosphorylated active, and non-phosphorylated inactive forms. This study aims to evaluate the signal transduction step in cascades from the viewpoint of changes in mixing entropy. An increase in active forms may induce biological signal transduction through a mixing entropy change, which induces a chemical potential current in the signaling cascade. We applied the fluctuation theorem to calculate the chemical potential current and found that the average entropy production current is independent of the step in the whole cascade. As a result, the entropy current carrying signal transduction is defined by the entropy current mobility.
Collapse
|
20
|
Liu HX, Liu S, Qu W, Yan HY, Wen X, Chen T, Hou LF, Ping J. α7 nAChR mediated Fas demethylation contributes to prenatal nicotine exposure-induced programmed thymocyte apoptosis in mice. Oncotarget 2017; 8:93741-93756. [PMID: 29212186 PMCID: PMC5706832 DOI: 10.18632/oncotarget.21526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 01/19/2023] Open
Abstract
This study aimed to investigate the effects of prenatal nicotine exposure (PNE) on thymocyte apoptosis and postnatal immune impairments in vivo and further explore the epigenetic mechanisms of the pro-apoptotic effect of nicotine in vitro. The results showed that PNE caused immune impairments in offspring on postnatal day 49, manifested as increased IL-4 production and an increased IgG1/IgG2a ratio in serum. Enhanced apoptosis of total and CD4+SP thymocytes was observed both in fetus and in offspring. Further, by exposing thymocytes to 0–100 μM of nicotine in vitro for 48 h, we found that nicotine increased α7 nicotinic acetylcholine receptor (nAChR) expression, activated the Fas apoptotic pathway, and promoted thymocyte apoptosis in concentration-dependent manners. In addition, nicotine could induce Tet methylcytosine dioxygenase (TET) 2 expression and Fas promoter demethylation, which can be abolished by TET2 siRNA transfection. Moreover, the α7 nAChR specific antagonist α-bungarotoxin can abrogate nicotine-induced TET2 increase, and the following Fas demethylation and Fas-mediated apoptosis. In conclusion, our findings showed, for the first time, that α7 nAChR activation could induce TET2-mediated Fas demethylation in thymocytes and results in the upregulation of Fas apoptotic pathway, which provide evidence for elucidating the PNE-induced programmed thymocyte apoptosis.
Collapse
Affiliation(s)
- Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Sha Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| |
Collapse
|
21
|
Wang Y, Liu Y, Hu C, Ni X, Huang X. Tumor necrosis factor α-induced protein 8-like 1 promotes apoptosis by regulating B-cell leukemia/lymphoma-2 family proteins in RAW264.7 cells. Oncol Lett 2016; 12:3506-3512. [PMID: 27900028 DOI: 10.3892/ol.2016.5090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/19/2016] [Indexed: 01/18/2023] Open
Abstract
Although the newly identified protein tumor necrosis factor α-induced protein 8-like 1 (TNFAIP8L1), also known as TIPE1, has been reported to be able to induce apoptosis in human hepatocellular carcinoma cells, the involvement of TIPE1 in apoptosis remains to be elucidated. The present study investigated the pro-apoptotic effect of TIPE1 in an murine macrophage cell line, RAW264.7. The cell apoptosis rate was detected by flow cytometry. The results revealed that overexpressed TIPE1 could directly enhance the apoptosis and the cisplatin-induced cell death of RAW264.7 cells in vitro. Meanwhile, TIPE1 overexpression could suppress tumor growth in vivo. Furthermore, western blotting revealed that overexpressed TIPE1 could upregulate the expression of B-cell leukemia/lymphoma (Bcl)-2 associated X protein (Bax), Bcl-2 interacting killer (Bik) and p53 upregulated modulator of apoptosis (Puma), and activate the mitogen activated protein kinases (MAPKs) signaling pathway. However, western blotting demonstrated that inhibitors of the MAPKs pathway could not decrease the expression of Bax, Bik or Puma. These results indicated that TIPE1 could promote the apoptosis of RAW264.7 cells by upregulating the pro-apoptotic members of the Bcl-2 family of proteins, and that the MAPKs signaling pathway was not involved in the pro-apoptotic effect of TIPE1.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yao Liu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Chunfang Hu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xiaoyan Ni
- Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Xiaobo Huang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
22
|
Condoluci A, Mazzara C, Zoccoli A, Pezzuto A, Tonini G. Impact of smoking on lung cancer treatment effectiveness: a review. Future Oncol 2016; 12:2149-61. [PMID: 27424719 DOI: 10.2217/fon-2015-0055] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tobacco smoke contains more than 4000 detectable substances, such as polycyclic aromatic hydrocarbons, nicotine, carbon monoxide and heavy metals, which are considered powerful enzymatic inducers that have notable influence on the efficacy and tolerability of many medications through complex pharmacokinetic and pharmacodynamic interactions. As a result, adjustments of drug dosages are required in smokers, both if they continue to smoke or if they quit after smoking cessation treatment. The purpose of this review is to examine the main drug interactions with tobacco smoke clinically relevant, with a closer look on patients developing oncologic diseases.
Collapse
Affiliation(s)
| | - Calogero Mazzara
- Department of Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alice Zoccoli
- Department of Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Aldo Pezzuto
- Cardiovascular & Pulmonary Department, Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | - Giuseppe Tonini
- Department of Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
23
|
Deng CB, Li J, Li LY, Sun FJ. Protective effect of novel substituted nicotine hydrazide analogues against hypoxic brain injury in neonatal rats via inhibition of caspase. Bioorg Med Chem Lett 2016; 26:3195-3201. [PMID: 27216999 DOI: 10.1016/j.bmcl.2016.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 01/28/2023]
Abstract
In hypoxic-ischemic injury of the brain of neonates, the level of caspase-3 was found to be aberrantly activated. Its overexpression leads to the alteration of cytoskeleton protein fodrin and loss of DNA repair enzyme which ultimately results in neurological impairment and disability. Concerning this, the present study was intended to develop novel nicotine hydrazide analogues as caspase inhibitors via efficient synthetic route. These compounds were subsequently tested for inhibitory activity against caspase-3 and -7 where they exhibit highly potent activity against caspase-3 revealing compound 5k as most potent inhibitor (IC50=19.4±2.5μM). In Western blot analysis, 5k considerably inhibits the overexpression of caspase-3. The aryl nicotinate of compound 5k, as indicated by molecular docking was found to engage His121 and critical enzyme thiols, i.e., Cys163 of caspase-3 for its potent activity. Moreover, histopathological examination of brain tissues and hippocampus neurons showed that compound 5k considerably improves the brain injury and exert neuroprotective effects in hypoxic-ischemic (HI). In brain homogenate, 5k significantly improves the activity of MDA, SOD, GSH-Px, CAT and T-AOC to exert its beneficial effect against oxidative stress induced by HI injury.
Collapse
Affiliation(s)
- Chang-Bo Deng
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Juan Li
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Lu-Yi Li
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Feng-Jie Sun
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| |
Collapse
|
24
|
King JR, Kabbani N. Alpha 7 nicotinic receptor coupling to heterotrimeric G proteins modulates RhoA activation, cytoskeletal motility, and structural growth. J Neurochem 2016; 138:532-45. [DOI: 10.1111/jnc.13660] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Justin R. King
- Department of Molecular Neuroscience; Krasnow Institute for Advanced Study; George Mason University; Fairfax Virginia USA
| | - Nadine Kabbani
- Department of Molecular Neuroscience; Krasnow Institute for Advanced Study; George Mason University; Fairfax Virginia USA
| |
Collapse
|
25
|
Jia Y, Sun H, Wu H, Zhang H, Zhang X, Xiao D, Ma X, Wang Y. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells. PLoS One 2016; 11:e0149120. [PMID: 26909550 PMCID: PMC4765889 DOI: 10.1371/journal.pone.0149120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/15/2016] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin.
Collapse
Affiliation(s)
- Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Haiji Sun
- College of Life Science, Shandong Normal University, Jinan, China
| | - Hongqiao Wu
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Huilin Zhang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiuping Zhang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Dongjie Xiao
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
- * E-mail: (XM); (YSW)
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
- * E-mail: (XM); (YSW)
| |
Collapse
|
26
|
Chen WY, Huang CY, Cheng WL, Hung CS, Huang MT, Tai CJ, Liu YN, Chen CL, Chang YJ. Alpha 7-nicotinic acetylcholine receptor mediates the sensitivity of gastric cancer cells to 5-fluorouracil. Tumour Biol 2015; 36:9537-44. [PMID: 26136123 DOI: 10.1007/s13277-015-3668-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/15/2015] [Indexed: 11/25/2022] Open
|
27
|
A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages. PLoS One 2014; 9:e108397. [PMID: 25259522 PMCID: PMC4178160 DOI: 10.1371/journal.pone.0108397] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022] Open
Abstract
Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR) powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS)-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs), has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M), a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3) or two convergent cascades (JAK2/STAT3 and PI3K/STAT3), is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the ‘endotoxin tolerant’ phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases.
Collapse
|