1
|
Allen TP, Roennfeldt AE, Reckdharajkumar M, Sullivan AE, Liu M, Quinn RJ, Russell DL, Peet DJ, Whitelaw ML, Bersten DC. dFLASH; dual FLuorescent transcription factor activity sensor for histone integrated live-cell reporting and high-content screening. Nat Commun 2025; 16:3298. [PMID: 40195317 PMCID: PMC11977238 DOI: 10.1038/s41467-025-58488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Live-cell transcription factor (TF) activity reporting is crucial for synthetic biology, drug discovery and functional genomics. Here we present dFLASH (dual FLuorescent transcription factor Activity Sensor for Histone-integrated live-cell reporting), a modular, genome-integrated TF sensor. dFLASH homogeneously and specifically detects endogenous Hypoxia Inducible Factor (HIF) and Progesterone Receptor (PGR) activities, as well as coactivator recruitment to synthetic TFs. The dFLASH system produces dual-color nuclear fluorescence, enabling normalized, dynamic, live-cell TF activity sensing with strong signal-to-noise ratios and robust screening performance (Z' = 0.61-0.74). We validate dFLASH for functional genomics and drug screening, demonstrating HIF regulation via CRISPRoff and application to whole-genome CRISPR KO screening. Additionally, we apply dFLASH for drug discovery, identifying HIF pathway modulators from a 1600-compound natural product library using high-content imaging. Together, this versatile platform provides a powerful tool for studying TF activity across diverse applications.
Collapse
Affiliation(s)
- Timothy P Allen
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Alison E Roennfeldt
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | | - Adrienne E Sullivan
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Darryl L Russell
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Murray L Whitelaw
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore, 308433, Singapore
| | - David C Bersten
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Shi Y, Gilkes DM. HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects. Cell Mol Life Sci 2025; 82:44. [PMID: 39825916 PMCID: PMC11741981 DOI: 10.1007/s00018-024-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance. HIF-1 and HIF-2 are well known and widely described. Although these proteins share a high degree of homology, HIF-1 and HIF-2 have non-redundant roles in cancer. In this review, we summarize the similarities and differences between HIF-1α and HIF-2α in their structure, expression, and DNA binding. We also discuss the canonical and non-canonical regulation of HIF-1α and HIF-2α under hypoxic and normal conditions. Finally, we outline recent strategies aimed at targeting HIF-1α and/or HIF-2α.
Collapse
Affiliation(s)
- Yi Shi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Wang R, Yang L, Zhen Y, Li X, Huang S, Wen H, Sun Q. eIF4E plays the role of a pathogenic gene in psoriasis, and the inhibition of eIF4E phosphorylation ameliorates psoriasis-like skin damage. Exp Dermatol 2024; 33:e14997. [PMID: 38284198 DOI: 10.1111/exd.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Psoriasis is a complex inflammatory skin disease with uncertain pathogenesis. eIF4E (eukaryotic translation initiation factor 4E) and its phosphorylation state p-eIF4E are highly expressed in psoriatic tissues. However, the role eIF4E played in psoriasis is still unclear. To investigate the function of eIF4E and p-eIF4E in psoriasis and to figure out whether eFT-508 (Tomivosertib, eIF4E phosphorylation inhibitor) can relieve the disease severity and become a promising candidate for the psoriasis treatment. We first verified the expression of eIF4E and p-eIF4E in psoriasis patients' lesional skin. Then, we demonstrated the effect of eIF4E and p-eIF4E on the abnormal proliferation and inflammatory state of keratinocytes by using eIF4E-specific small interfering RNA (si-eIF4E) and eFT-508. In this study, all cell experiments were performed under the psoriasis-model condition. Moreover, the external application of eFT-508 on imiquimod (IMQ)-induced psoriasis mice was performed to explore its potential clinical value. Results showed that eIF4E and p-eIF4E were significantly overexpressed in skin lesions of psoriasis patients. Knocking down eIF4E or adding eFT-508 can relieve the abnormal proliferation and the excessive inflammatory state of keratinocytes by reducing the expression of cyclin D1, IL-1β, CXCL10, IL23, Wnt 5a, NBS1 and p-AKT from mRNA or protein levels. Furthermore, these results were consistent with those obtained from the in vitro experiments. Then, we conclude that eIF4E plays the role of the pathogenic gene in psoriasis, and eFT-508 may be a promising candidate for anti-prosoriasis drugs.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Luan Yang
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunyue Zhen
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shan Huang
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - He Wen
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Li K, Zeng X, Liu P, Zeng X, Lv J, Qiu S, Zhang P. The Role of Inflammation-Associated Factors in Head and Neck Squamous Cell Carcinoma. J Inflamm Res 2023; 16:4301-4315. [PMID: 37791117 PMCID: PMC10544098 DOI: 10.2147/jir.s428358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), which originates in the head or neck tissues, is characterized by high rates of recurrence and metastasis. Inflammation is important in HNSCC prognosis. Inflammatory cells and their secreted factors contribute to the various stages of HNSCC development through multiple mechanisms. In this review, the mechanisms through which inflammatory factors, signaling pathways, and cells contribute to the initiation and progression of HNSCC have been discussed in detail. Furthermore, the diagnostic and therapeutic potential of targeting inflammation in HNSCC has been discussed to gain new insights into improving patient prognosis.
Collapse
Affiliation(s)
- Kang Li
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xiaoxia Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi, People’s Republic of China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Catalano M, Roviello G, Santi R, Villari D, Spatafora P, Galli IC, Sessa F, Conte FL, Mini E, Cai T, Nesi G. Inflammation in Urological Malignancies: The Silent Killer. Int J Mol Sci 2023; 24:866. [PMID: 36614308 PMCID: PMC9821648 DOI: 10.3390/ijms24010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Several studies have investigated the role of inflammation in promoting tumorigenesis and cancer progression. Neoplastic as well as surrounding stromal and inflammatory cells engage in well-orchestrated reciprocal interactions to establish an inflammatory tumor microenvironment. The tumor-associated inflammatory tissue is highly plastic, capable of continuously modifying its phenotypic and functional characteristics. Accumulating evidence suggests that chronic inflammation plays a critical role in the development of urological cancers. Here, we review the origins of inflammation in urothelial, prostatic, renal, testicular, and penile cancers, focusing on the mechanisms that drive tumor initiation, growth, progression, and metastasis. We also discuss how tumor-associated inflammatory tissue may be a diagnostic marker of clinically significant tumor progression risk and the target for future anti-cancer therapies.
Collapse
Affiliation(s)
- Martina Catalano
- School of Human Health Sciences, University of Florence, 50134 Florence, Italy
| | - Giandomenico Roviello
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Raffaella Santi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Donata Villari
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Pietro Spatafora
- Unit of Urological Robotic Surgery and Renal Transplantation, Careggi Teaching Hospital, 50134 Florence, Italy
| | - Ilaria Camilla Galli
- Histopathology and Molecular Diagnostics, Careggi Teaching Hospital, 50139 Florence, Italy
| | - Francesco Sessa
- Unit of Urological Robotic Surgery and Renal Transplantation, Careggi Teaching Hospital, 50134 Florence, Italy
| | | | - Enrico Mini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, 38122 Trento, Italy
| | - Gabriella Nesi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy
| |
Collapse
|
6
|
Synthesis and Evaluation of Celastrol Derivatives as HIF-1α Inhibitors. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Li N, Li C, Zhang J, Jiang Q, Wang Z, Nie S, Gao Z, Li G, Fang H, Ren S, Li X. Discovery of semisynthetic celastrol derivatives exhibiting potent anti-ovarian cancer stem cell activity and STAT3 inhibition. Chem Biol Interact 2022; 366:110172. [PMID: 36096161 DOI: 10.1016/j.cbi.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
The hallmark of ovarian cancer is its high mortality rate attributed to the existence of cancer stem cells (CSCs) subpopulations which result in therapy recurrence and metastasis. A series of C-29-substituted and/or different A/B ring of celastrol derivatives were synthesized and displayed potential inhibition against ovarian cancer cells SKOV3, A2780 and OVCAR3. Among them, compound 6c exhibited the most potent anti-proliferative activity and selectivity, gave superior anti-CSC effects through inhibition of the sphere formation and downregulation of the percentage of CD44+CD24- and ALDH+ cells. Further mechanism research demonstrated that compound 6c could attenuate the expression of STAT3 and p-STAT3. The results suggested that the inhibition of celastrol derivative 6c on ovarian cancer cells may be related to resistance to cancer stem-like characters and regulation of STAT3 pathway.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Chaobo Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Juan Zhang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Qian Jiang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhaoxue Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Shaozhen Nie
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Zhenzhen Gao
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China
| | - Guangyao Li
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Shaoda Ren
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
| | - Xiaojing Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252000, PR China; Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
8
|
Zhang X, Zhou J, Zhu Y, Wong YK, Liu D, Gao P, Lin Q, Zhang J, Chen X, Wang J. Quantitative chemical proteomics reveals anti-cancer targets of Celastrol in HCT116 human colon cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154096. [PMID: 35452923 DOI: 10.1016/j.phymed.2022.154096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Celastrol (Cel) is a naturally-derived compound with anti-cancer properties and exerts beneficial effects against various diseases. Although an extensive body of research already exists for Cel, the vast majority are inductive studies with limited validation of specific pathways and functions. The cellular targets that bind to Cel remain poorly characterized, which limits attempts to uncover its mechanism of action. PURPOSE The present study aims to comprehensively identify the protein targets of Cel in HCT116 cells in an unbiased manner, and elucidate the mechanism of the anti-cancer activity of Cel based on target information. METHODS A comprehensive analysis of protein targets that bind to Cel was performed in HCT116 colon cancer cells using a quantitative chemical biology method. A Cel probe (Cel-P) was synthesized to allow in situ monitoring of treatment in living HCT116 cells, and specific targets were identified with a quantitative chemical biology method (isobaric tags for relative and absolute quantitation) using mass spectrometry. RESULTS In total, 100 protein targets were identified as specific targets of Cel. Pathways associated with the targets were investigated. Multiple pathways were demonstrated to be potential effectors of Cel. These pathways included the suppression of protein synthesis, deregulation of cellular reactive oxygen species, and suppression of fatty acid metabolism, and they were validated with in vitro experiments. CONCLUSION The extensive information on the protein targets of Cel and their functions uncovered by this study will enhance the current understanding of the mechanism of action of Cel and serve as a valuable knowledge base for future studies.
Collapse
Affiliation(s)
- Xing Zhang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Zhou
- Department of physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530022, China; Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning 530022, China
| | - Yongping Zhu
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Urology, the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Dandan Liu
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Gao
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China.
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Jigang Wang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences, Beijing 100700, China; Department of physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530022, China; Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning 530022, China; Department of Urology, the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China; Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523125, China; Central People's Hospital of Zhanjiang, Zhanjiang 524037, China; Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
9
|
Zheng Z, Xu T, Liu Z, Tian W, Jiang ZH, Zhu GY, Li T, Gao J, Bai LP. Cryptolepine suppresses breast adenocarcinoma via inhibition of HIF-1 mediated glycolysis. Biomed Pharmacother 2022; 153:113319. [PMID: 35753261 DOI: 10.1016/j.biopha.2022.113319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
As a characteristic transcription factor in solid tumors, hypoxia inducible factor-1 (HIF-1) acts as a master regulator in breast cancer progression. Cryptolepine, as a natural alkaloid, noticeably inhibited HIF-1 transcriptional activity and decreased the protein expression of hypoxia-induced HIF-1α in breast cancer cells. Further study showed that cryptolepine blocked HIF-1-mediated glycolysis and suppressed the expression of multiple glycolysis enzymes, resulting in a decrease in ATP production in hypoxic T47D and 4T1 cells. Meanwhile, cryptolepine displayed potent suppressive effect on tumor growth in a dose-dependent manner. In 4T1 tumor xenografts, cryptolepine reduced HIF-1α protein expression, and thus decreased the levels of both lactate acid and ATP productions. The mechanistic study revealed that cryptolepine could effectively suppress the process of HIF-1α mRNA translation rather than transcription, which was attributed to the inhibition on the phosphorylation of eIF4E regulated by both MAPK and mTOR signaling pathways. Collectively, current findings suggested that cryptolepine possesses the potential to treat breast cancers by modulating HIF-1 both in vitro and in vivo.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Ting Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Zhiyan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Wenyue Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), 999078, Macau, People's Republic of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), 999078, Macau, People's Republic of China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China
| | - Jin Gao
- IncreasePharm (Hengqin) Institute Co., Ltd, Zhu Hai, Guangdong 519031, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, 999078, Macau, People's Republic of China; Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology), 999078, Macau, People's Republic of China.
| |
Collapse
|
10
|
Zhao K, Jiang Y, Zhang J, Shi J, Zheng P, Yang C, Chen Y. Celastrol inhibits pathologic neovascularization in oxygen-induced retinopathy by targeting the miR-17-5p/HIF-1α/VEGF pathway. Cell Cycle 2022; 21:2091-2108. [PMID: 35695424 DOI: 10.1080/15384101.2022.2087277] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Retinopathy of prematurity (ROP), which is characterized by retinal neovascularization (RNV), is a major cause of neonatal blindness. The primary treatment for ROP is anti-vascular endothelial growth factor (VEGF) therapy, which is costly and can rapidly lead to desensitization. Celastrol, a bioactive compound extracted from Tripterygium wilfordii Hook F. ("Thunder of God Vine"), has been shown to exert anticancer and anti-inflammatory effects. However, whether celastrol has antiangiogenic activity and can suppress inflammation to inhibit ROP progression is unclear. This was investigated in the present study in vitro as well as in vivo using a mouse model of oxygen-induced retinopathy (OIR). Our results showed that celastrol treatment reduced neovascular and avascular areas in the retina and inhibited microglia activation and inflammation in OIR mice. Celastrol also inhibited proliferation, migration, and tube formation in cultured human retinal microvascular endothelial cells, and reversed the activation of the microRNA (miR)-17-5p/hypoxia-inducible factor (HIF)-1α/VEGF pathway in the retina of OIR mice. These results indicate that celastrol alleviates pathologic RNV in the retina by protecting neuroglia and suppressing inflammation via inhibition of miR-17-5p/HIF-1α/VEGF signaling, and thus has therapeutic potential for the prevention and treatment of ROP.Abbreviations: BSA, bovine serum albumin; COX2, cyclooxygenase 2; ECM, endothelial cell medium; FBS, fetal bovine serum; HDAC, histone deacetylase; HIF-1, hypoxia-inducible factor 1; HRMEC, human retinal microvascular endothelial cell; Hsp70, heat shock protein; IB4, isolectin B4; ICAM-1, intercellular adhesion molecule 1; IL-1β/6, interleukin 1 beta/6; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein 1; miRNA, microRNA; MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor-kappa B; OIR, oxygen-induced retinopathy; PBS, phosphate-buffered saline; PCNA, proliferating cell nuclear antigen; PI3K, phosphatidylinositol-3-kinase; qRT-PCR, quantitative real-time PCR; RNV, retinal neovascularization; ROP, retinopathy of prematurity; RTCA, real-time cell analyzer; RVO, retinal vaso-obliteration; TNF-α, tumor necrosis factor alpha; VCAM-1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth factor.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Pengxiang Zheng
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
11
|
Li M, Xie F, Wang L, Zhu G, Qi LW, Jiang S. Celastrol: An Update on Its Hepatoprotective Properties and the Linked Molecular Mechanisms. Front Pharmacol 2022; 13:857956. [PMID: 35444532 PMCID: PMC9013942 DOI: 10.3389/fphar.2022.857956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The liver plays an important role in glucose and lipid homeostasis, drug metabolism, and bile synthesis. Metabolic disorder and inflammation synergistically contribute to the pathogenesis of numerous liver diseases, such as metabolic-associated fatty liver disease (MAFLD), liver injury, and liver cancer. Celastrol, a triterpene derived from Tripterygium wilfordii Hook.f., has been extensively studied in metabolic and inflammatory diseases during the last several decades. Here we comprehensively review the pharmacological activities and the underlying mechanisms of celastrol in the prevention and treatment of liver diseases including MAFLD, liver injury, and liver cancer. In addition, we also discuss the importance of novel methodologies and perspectives for the drug development of celastrol. Although celastrol has been claimed as a promising agent against several metabolic diseases, both preclinical and clinical studies are highly required to accelerate the clinical transformation of celastrol in treating different liver illness. It is foreseeable that celastrol-derived therapeutics is evolving in the field of liver ailments.
Collapse
Affiliation(s)
- Mengzhen Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Faren Xie
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Celastrol Protects against Cerebral Ischemia/Reperfusion Injury in Mice by Inhibiting Glycolysis through Targeting HIF-1 α/PDK1 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7420507. [PMID: 35035665 PMCID: PMC8754601 DOI: 10.1155/2022/7420507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury is closely related to dysfunctional glucose metabolism. Celastrol is a bioactive compound that has been found to exhibit neuroprotective effects in cerebral ischemia, while whether it can protect against cerebral I/R injury by regulating glycolysis remains unclear. The goal of this study is to investigate the role of celastrol on cerebral I/R injury and its underlying mechanisms in transient middle cerebral artery occlusion (tMCAO) mice. Methods. To observe the protective effect of celastrol and select its optimal dosage for further study, neurological score, TTC staining, and HE staining were used to evaluate neurological function, cerebral infarct volume, and cortical cell damage, respectively. QRT-PCR and Western blot were used to detect the mRNA and protein expression of hypoxia inducible factor-1α (HIF-1α), pyruvate dehydrogenasekinase1 (PDK1), lactate dehydrogenase A (LDHA), glucose transporter1 (GLUT1), and hexokinase2 (HK2), respectively. The lactate production, ATP level, and glucose content were assessed by assay kits. Results. Our results indicated that celastrol dose-dependently improved neurological function and reduced cerebral infarct volume and cortical cell death of tMCAO mice, and its optimal dosage was 4.5 mg/kg. In addition, celastrol significantly blocked I/R-induced increase of LDHA, GLUT1, HK2, and lactate production as well as decrease of ATP level and glucose content. Moreover, celastrol inhibited the I/R-induced upregulation of HIF-1α and PDK1. Overexpression of HIF-1α by DMOG reversed the protective effect of celastrol on cerebral I/R injury and blocked celastrol-induced suppression of glycolysis. Conclusions. Taken together, these results suggested that celastrol protected against cerebral I/R injury through inhibiting glycolysis via the HIF-1α/PDK1 axis.
Collapse
|
13
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
14
|
Pitakbut T, Spiteller M, Kayser O. In Vitro Production and Exudation of 20-Hydroxymaytenin from Gymnosporia heterophylla (Eckl. and Zeyh.) Loes. Cell Culture. PLANTS (BASEL, SWITZERLAND) 2021; 10:1493. [PMID: 34451538 PMCID: PMC8398937 DOI: 10.3390/plants10081493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/27/2022]
Abstract
The metabolite 20-Hydroxymaytenin (20-HM) is a member of the quinone-methide pentacyclic triterpenoids (QMTs) group. This metabolite group is present only in Celastraceae plants, and it has shown various biological activities from antioxidant to anticancer properties. However, most QMTs metabolites including 20-HM cannot be synthesized in a laboratory. Therefore, we optimized a plant tissue culture protocol and examined the potential of Gymnosporia heterophylla (synonym. Maytenus heterophylla) to produce 20-HM in an in vitro experiment. For the first time, we reported the optimum callus induction medium with a high percentage success rate of 82% from the combination of 1 mg/L indole-3-butyric acid and 5 mg/L naphthalene acetic acid. Later, our cell suspension culture cultivated in the optimum medium provided approximately 0.35 mg/g fresh weight of 20-HM. This concentration is roughly 87.5 times higher than a concentration of 20-HM presenting in Elaeodendron croceum (Celastraceae) leaves. In addition, we also found that 20-HM presented in a cultivation medium, suggesting that G. heterophylla cells secreted 20-HM as an exudate in our experiment. Noticeably, 20-HM was missing when Penicillium cf. olsonii occurred in the medium. These findings hint at an antifungal property of 20-HM.
Collapse
Affiliation(s)
- Thanet Pitakbut
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany;
| | - Michael Spiteller
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
| | - Oliver Kayser
- Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany;
| |
Collapse
|
15
|
The role of long noncoding RNAs in regulating invasion and metastasis of malignant tumors. Anticancer Drugs 2021; 31:319-325. [PMID: 32011368 DOI: 10.1097/cad.0000000000000899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of non-protein-coding transcripts exceeding 200 nucleotides in length, which are emerging as key players in various fundamental biological processes. Furthermore, it is increasingly recognized that mutation and dysregulation of lncRNAs contribute importantly to a variety of human diseases, particularly human cancers. Previous studies have revealed that altered lncRNAs have a close association with tumorigenesis, metastasis, prognosis and diagnosis of cancers. The present review aims to exhibit a brief overview of the associated reports of lncRNAs in cancers, including colorectal cancer, gastric cancer, lung adenocarcinoma, nasopharyngeal carcinoma, cervical cancer and esophageal cancer. Altogether, we argue that lncRNAs have potential as new biomarkers in cancer prognosis and diagnosis, and as promising therapeutic targets for the prevention and treatment of human cancers.
Collapse
|
16
|
Nalini D, Selvaraj J, Kumar GS. Herbal nutraceuticals: safe and potent therapeutics to battle tumor hypoxia. J Cancer Res Clin Oncol 2020; 146:1-18. [PMID: 31724069 DOI: 10.1007/s00432-019-03068-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Growing solid tumors mostly outstrip blood supply and become hypoxic (low oxygen supply). To survive under this pathological milieu, tumors overexpress a potent oncogenic factor, hypoxia-inducible factor-1α (HIF-1α). HIF-1α up-regulate HIF-1 signaling pathways and subsequently activate genes that promote cancer growth even under hypoxia. Also, HIF-1 pathway activation leads to aggressive tumor growth, metastasis, therapy resistance and ultimately poor patient prognosis as evidential by several clinical studies. Hence, targeting HIF-1 pathway is regarded as a promising strategy to treat cancer. To date, several synthetic HIF-1 pathway inhibitors have been developed to treat hypoxic tumors; however, they are clinically ineffective due to off-target effects, low potency and high toxicity. Hence, there is an urgent need to explore safe and promising drugs to combat hypoxic tumors. RESULTS This article extensively reviews the therapeutic potential of various herbal nutraceuticals against wide varieties of hypoxic tumors. The inhibitory effects of each herbal nutraceutical on the pathological consequences of HIF-1 signaling pathway and also their ability to improve the response of hypoxic cancer cells to conventional cancer therapies are discussed. Furthermore, we have provided new directions to overcome challenges behind conducting in vivo and preclinical hypoxia research and developing herbal nutraceuticals into pharmaceuticals to treat cancer. CONCLUSIONS The present review strongly suggests that herbal nutraceuticals are highly effective in combating the oncogenic effects of the HIF-1 pathway in wide varieties of tumors. However, more in vivo studies using zebrafish as a model system and extensive clinical studies in cancer patients with elevated tumor HIF-1α levels are highly warranted to ascertain the effective utilization of herbal nutraceuticals as adjunct/ alternative medicine in clinical practice to treat cancer.
Collapse
Affiliation(s)
- Devarajan Nalini
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Maduravoyal, Chennai, Tamilnadu, India
| | - Jayaraman Selvaraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamilnadu, India
| | - Ganesan Senthil Kumar
- Laboratory of Translational Genetics, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, TRUE Campus, CN Block-6, Sector V, Salt Lake, Kolkata, 700 091, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Hong M, Shi H, Wang N, Tan HY, Wang Q, Feng Y. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol 2019; 10:696. [PMID: 31297056 PMCID: PMC6606950 DOI: 10.3389/fphar.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1)-induced angiogenesis has been involved in numerous pathological conditions, and it may be harmful or beneficial depending on the types of diseases. Exploration on angiogenesis has sparked hopes in providing novel therapeutic approaches on multiple diseases with high mortality rates, such as cancer and ischemic stroke. The HIF-1 pathway is considered to be a major regulator of angiogenesis. HIF-1 seems to be involved in the vascular formation process by synergistic correlations with other proangiogenic factors in cancer and cerebrovascular disease. The regulation of HIF-1-dependent angiogenesis is related to the modulation of HIF-1 bioactivity by regulating HIF-1α transcription or protein translation, HIF-1α DNA binding, HIF-1α and HIF-1α dimerization, and HIF-1 degradation. Traditional Chinese herbal medicines have a long history of clinical use in both cancer and stroke treatments in Asia. Growing evidence has demonstrated potential proangiogenic benefits of Chinese herbal medicines in ischemic stroke, whereas tumor angiogenesis could be inhibited by the active components in Chinese herbal medicines. The objective of this review is to provide comprehensive insight on the effects of Chinese herbal medicines on angiogenesis by regulating HIF-1 pathways in both cancer and ischemic stroke.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
18
|
Gao Y, Zhou S, Pang L, Yang J, Li HJ, Huo X, Qian SY. Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer. Free Radic Res 2019; 53:324-334. [PMID: 30773944 DOI: 10.1080/10715762.2019.1575512] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The thunder god vine (Tripterygium wilfordii Hook. F) is traditionally used for inflammation-related diseases in traditional Chinese medicine. In recent years, celastrol (a natural compound from the root of the thunder god vine) has attracted great interest for its potential anticancer activities. The free radical nitric oxide (NO) is known to play a critical role in colorectal cancer growth by promoting tumour angiogenesis. However, how celastrol influences the NO pathway and its mechanism against colorectal cancer is largely unknown. In this study, we investigated the effects and mechanism of celastrol on nitric oxide synthase (NOS) and the angiogenesis pathway in colorectal cancer. Our data show that celastrol inhibited HT-29 and HCT116 cell proliferation, migration, and NOS activity in the cytoplasm. The antiproliferation activity of celastrol was associated with the inhibition of iNOS and eNOS in colorectal cancer cells. Treatment with celastrol inhibited colorectal cancer cell growth and migration, and was associated with suppression of the expression of key genes (TYMP, CDH5, THBS2, LEP, MMP9, and TNF) and proteins (IL-1b, MMP-9, PDGF, Serpin E1, and TIMP-4) involved in the angiogenesis pathway. In addition, combinational use of celastrol with 5-fluorouracil, salinomycin, 1400 W, and L-NIO showed enhanced inhibition of colorectal cancer cell proliferation and migration. In sum, our study suggests that celastrol could suppress colorectal cancer cell growth and migration, likely through suppressing NOS activity and inhibiting the angiogenesis pathway.
Collapse
Affiliation(s)
- Yanfeng Gao
- a Department of Anesthesiology , the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Shuang Zhou
- b Department of Neurosurgery , Neuroscience Institute, Baylor Scott and White Health , Temple , USA
| | - Lizhi Pang
- c Department of Pharmaceutical Sciences , North Dakota State University , Fargo , USA
| | - Juechen Yang
- d Department of Computer Science , North Dakota State University , Fargo , USA
| | - Han John Li
- e Department of Pharmacy , Medical Center Hospital , Odessa , USA
| | - Xiongwei Huo
- f Department of General Surgery , the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, China
| | - Steven Y Qian
- c Department of Pharmaceutical Sciences , North Dakota State University , Fargo , USA
| |
Collapse
|
19
|
Zhou ZD, Selvaratnam T, Lee JCT, Chao YX, Tan EK. Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson's disease. Transl Neurodegener 2019; 8:6. [PMID: 30740222 PMCID: PMC6360798 DOI: 10.1186/s40035-019-0145-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, which is characterized by the progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta concomitant with Lewy body formation in affected brain areas. The detailed pathogenic mechanisms underlying the selective loss of dopaminergic neurons in PD are unclear, and no drugs or treatments have been developed to alleviate progressive dopaminergic neuron degeneration in PD. However, the formation of α-synuclein-positive protein aggregates in Lewy body has been identified as a common pathological feature of PD, possibly stemming from the consequence of protein misfolding and dysfunctional proteostasis. Proteostasis is the mechanism for maintaining protein homeostasis via modulation of protein translation, enhancement of chaperone capacity and the prompt clearance of misfolded protein by the ubiquitin proteasome system and autophagy. Deregulated protein translation and impaired capacities of chaperone or protein degradation can disturb proteostasis processes, leading to pathological protein aggregation and neurodegeneration in PD. In recent years, multiple molecular targets in the modulation of protein translation vital to proteostasis and dopaminergic neuron degeneration have been identified. The potential pathophysiological and therapeutic significance of these molecular targets to neurodegeneration in PD is highlighted.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| | - Thevapriya Selvaratnam
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Ji Chao Tristan Lee
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Yin Xia Chao
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Eng-King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| |
Collapse
|
20
|
Xu LN, Zhao N, Chen JY, Ye PP, Nan XW, Zhou HH, Jiang QW, Yang Y, Huang JR, Yuan ML, Xing ZH, Wei MN, Li Y, Shi Z, Yan XJ. Celastrol Inhibits the Growth of Ovarian Cancer Cells in vitro and in vivo. Front Oncol 2019; 9:2. [PMID: 30746340 PMCID: PMC6360154 DOI: 10.3389/fonc.2019.00002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
Celastrol is a natural triterpene isolated from the Chinese plant Thunder God Vine with potent antitumor activity. However, the effect of celastrol on the growth of ovarian cancer cells in vitro and in vivo is still unclear. In this study, we found that celastrol induced cell growth inhibition, cell cycle arrest in G2/M phase and apoptosis with the increased intracellular reactive oxygen species (ROS) accumulation in ovarian cancer cells. Pretreatment with ROS scavenger N-acetyl-cysteine totally blocked the apoptosis induced by celastrol. Additionally, celastrol inhibited the growth of ovarian cancer xenografts in nude mice. Altogether, these findings suggest celastrol is a potential therapeutic agent for treating ovarian cancer.
Collapse
Affiliation(s)
- Li-Na Xu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Zhao
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin-Yan Chen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Piao-Piao Ye
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing-Wei Nan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Hong Zhou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi-Wei Jiang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yang Yang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jia-Rong Huang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng-Ling Yuan
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Hao Xing
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Meng-Ning Wei
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yao Li
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao-Jian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
21
|
Chen SR, Dai Y, Zhao J, Lin L, Wang Y, Wang Y. A Mechanistic Overview of Triptolide and Celastrol, Natural Products from Tripterygium wilfordii Hook F. Front Pharmacol 2018; 9:104. [PMID: 29491837 PMCID: PMC5817256 DOI: 10.3389/fphar.2018.00104] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022] Open
Abstract
Triptolide and celastrol are predominantly active natural products isolated from the medicinal plant Tripterygium wilfordii Hook F. These compounds exhibit similar pharmacological activities, including anti-cancer, anti-inflammation, anti-obesity, and anti-diabetic activities. Triptolide and celastrol also provide neuroprotection and prevent cardiovascular and metabolic diseases. However, toxicity restricts the further development of triptolide and celastrol. In this review, we comprehensively review therapeutic targets and mechanisms of action, and translational study of triptolide and celastrol. We systemically discuss the structure-activity-relationship of triptolide, celastrol, and their derivatives. Furthermore, we propose the use of structural derivatives, targeted therapy, and combination treatment as possible solutions to reduce toxicity and increase therapeutic window of these potent natural products from T. wilfordii Hook F.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yan Dai
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
22
|
Xiong XX, Qiu XY, Hu DX, Chen XQ. Advances in Hypoxia-Mediated Mechanisms in Hepatocellular Carcinoma. Mol Pharmacol 2017; 92:246-255. [PMID: 28242743 DOI: 10.1124/mol.116.107706] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common and the third most deadly malignant tumor worldwide. Hypoxia and related oxidative stress are heavily involved in the process of HCC development and its therapies. However, direct and accurate measurement of oxygen concentration and evaluation of hypoxic effects in HCC prove difficult. Moreover, the hypoxia-mediated mechanisms in HCC remain elusive. Here, we summarize recent major evidence of hypoxia in HCC lesions shown by measuring partial pressure of oxygen (pO2), the clinical importance of hypoxic markers in HCC, and recent advances in hypoxia-related mechanisms and therapies in HCC. For the mechanisms, we focus mainly on the roles of oxygen-sensing proteins (i.e., hypoxia-inducible factor and neuroglobin) and hypoxia-induced signaling proteins (e.g., matrix metalloproteinases, high mobility group box 1, Beclin 1, glucose metabolism enzymes, and vascular endothelial growth factor). With respect to therapies, we discuss mainly YQ23, sorafenib, 2-methoxyestradiol, and celastrol. This review focuses primarily on the results of clinical and animal studies.
Collapse
Affiliation(s)
- Xin Xin Xiong
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yao Qiu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dian Xing Hu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Qian Chen
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
ZHANG RUIJIE, ZHU YU, DONG XIAOQING, LIU BEIBEI, ZHANG NANA, WANG XIAOXUE, LIU LEI, XU CHONG, HUANG SHILE, CHEN LONG. Celastrol Attenuates Cadmium-Induced Neuronal Apoptosis via Inhibiting Ca 2+ -CaMKII-Dependent Akt/mTOR Pathway. J Cell Physiol 2017; 232:2145-2157. [PMID: 27891586 PMCID: PMC9218942 DOI: 10.1002/jcp.25703] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022]
Abstract
Cadmium (Cd), an environmental and industrial pollutant, affects the nervous system and consequential neurodegenerative disorders. Recently, we have shown that celastrol prevents Cd-induced neuronal cell death partially by suppressing Akt/mTOR pathway. However, the underlying mechanism remains to be elucidated. Here, we show that celastrol attenuated Cd-elevated intracellular-free calcium ([Ca2+ ]i ) level and apoptosis in neuronal cells. Celastrol prevented Cd-induced neuronal apoptosis by inhibiting Akt-mediated mTOR pathway, as inhibition of Akt with Akt inhibitor X or ectopic expression of dominant negative Akt reinforced celastrol's prevention of Cd-induced phosphorylation of S6K1/4E-BP1 and cell apoptosis. Furthermore, chelating intracellular Ca2+ with BAPTA/AM or preventing [Ca2+ ]i elevation using EGTA potentiated celastrol's repression of Cd-induced [Ca2+ ]i elevation and consequential activation of Akt/mTOR pathway and cell apoptosis. Moreover, celastrol blocked Cd-elicited phosphorylation of CaMKII, and pretreatment with BAPTA/AM or EGTA enhanced celastrol's suppression of Cd-increased phosphorylation of CaMKII in neuronal cells, implying that celastrol hinders [Ca2+ ]i -mediated CaMKII phosphorylation. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of Akt/mTOR pathway and cell apoptosis, and this was strengthened by celastrol. Taken together, these data demonstrate that celastrol attenuates Cd-induced neuronal apoptosis via inhibiting Ca2+ -CaMKII-dependent Akt/mTOR pathway. Our findings underscore that celastrol may act as a neuroprotective agent for the prevention of Cd-induced neurodegenerative disorders. J. Cell. Physiol. 232: 2145-2157, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- RUIJIE ZHANG
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - YU ZHU
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - XIAOQING DONG
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - BEIBEI LIU
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - NANA ZHANG
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - XIAOXUE WANG
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - LEI LIU
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - CHONG XU
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - SHILE HUANG
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - LONG CHEN
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
24
|
Cascão R, Fonseca JE, Moita LF. Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Front Med (Lausanne) 2017; 4:69. [PMID: 28664158 PMCID: PMC5471334 DOI: 10.3389/fmed.2017.00069] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
The identification of new bioactive compounds derived from medicinal plants with significant therapeutic properties has attracted considerable interest in recent years. Such is the case of the Tripterygium wilfordii (TW), an herb used in Chinese medicine. Clinical trials performed so far using its root extracts have shown impressive therapeutic properties but also revealed substantial gastrointestinal side effects. The most promising bioactive compound obtained from TW is celastrol. During the last decade, an increasing number of studies were published highlighting the medicinal usefulness of celastrol in diverse clinical areas. Here we systematically review the mechanism of action and the therapeutic properties of celastrol in inflammatory diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel diseases, osteoarthritis and allergy, as well as in cancer, neurodegenerative disorders and other diseases, such as diabetes, obesity, atherosclerosis, and hearing loss. We will also focus in the toxicological profile and limitations of celastrol formulation, namely, solubility, bioavailability, and dosage issues that still limit its further clinical application and usefulness.
Collapse
Affiliation(s)
- Rita Cascão
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Luis F Moita
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
25
|
Celastrol and Its Role in Controlling Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:267-289. [PMID: 27671821 DOI: 10.1007/978-3-319-41334-1_12] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to limit disease progression and facilitate recovery, where feasible. The major cell signaling pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT pathway, PI3K/Akt/mTOR pathway, and antioxidant defense mechanisms. Furthermore, celastrol modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein response, innate and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the mechanisms of action of celastrol and information about its disease-modulating activities in experimental models have set the stage for testing celastrol in clinical studies as a therapeutic agent for several chronic human diseases.
Collapse
|
26
|
Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, Lee SJ. Cytotoxic effect of celastrol alone or in combination with paclitaxel on anaplastic thyroid carcinoma cells. Tumour Biol 2017; 39:1010428317698369. [DOI: 10.1177/1010428317698369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The influence of celastrol alone or in combination with paclitaxel on survival of anaplastic thyroid carcinoma cells was investigated. In 8505C and SW1736 cells, after treatment of celastrol, cell viability decreased, and cytotoxic activity increased. The protein levels of heat shock protein (hsp) 90, hsp70, Bax, death receptor 5, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase, phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-c-Jun N-terminal kinase (JNK) were elevated, and those of Bcl2, phospho-nuclear factor-kappaB (NF-κB), and total and phospho-Akt were reduced. The endoplasmic reticulum stress markers expression and reactive oxygen species production were enhanced. In celastrol-treated cells, N-acetylcysteine increased cell viability and phospho-NF-κB protein levels, and decreased reactive oxygen species production and cytotoxic activity. The protein levels of cyclooxygenase 2, phospho-ERK1/2, phospho-JNK and Bip were diminished. After treatment of both celastrol and paclitaxel, compared with paclitaxel alone, cell viability and the percentage of viable cells were reduced, and death rate and cytotoxic activity were elevated. The protein levels of phospho-ERK1/2, phospho-JNK, Bip, and cyclooxygenase 2, and reactive oxygen species production were enhanced. All of the Combination Index values calculated by Chou–Talalay equation were lower than 1.0, implying the synergism between celastrol and paclitaxel in induction of cell death. In conclusion, our results suggest that celastrol induces cytotoxicity through involvement of Bcl2 family proteins and death receptor, and modulation of phospho-NF-κB, Akt, and mitogen-activated protein kinase in association with endoplasmic reticulum stress and reactive oxygen species production in anaplastic thyroid carcinoma cells. Moreover, celastrol synergizes with paclitaxel in induction of cytotoxicity in anaplastic thyroid carcinoma cells.
Collapse
Affiliation(s)
- Si Hyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jun Goo Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Chul Sik Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Hee Ihm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Moon Gi Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hyung Joon Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seong Jin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
27
|
Guamán-Ortiz LM, Orellana MIR, Ratovitski EA. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells. Curr Genomics 2017; 18:132-155. [PMID: 28367073 PMCID: PMC5345338 DOI: 10.2174/1389202917666160803150639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis.
Collapse
Affiliation(s)
- Luis Miguel Guamán-Ortiz
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Isabel Ramirez Orellana
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward A Ratovitski
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Zhang R, Zhang N, Zhang H, Liu C, Dong X, Wang X, Zhu Y, Xu C, Liu L, Yang S, Huang S, Chen L. Celastrol prevents cadmium-induced neuronal cell death by blocking reactive oxygen species-mediated mammalian target of rapamycin pathway. Br J Pharmacol 2017; 174:82-100. [PMID: 27764525 PMCID: PMC5341486 DOI: 10.1111/bph.13655] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/06/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence has suggested cadmium (Cd), as an inducer of ROS, is a potential pathogenic factor in human neurodegenerative diseases. Thus, it is important to find effective interventions for Cd-induced oxidative stress in the CNS. Here, we have studied the effects of celastrol, a plant-derived triterpene, on ROS production and cell death in neuronal cells, induced by Cd. EXPERIMENTAL APPROACH PC12, SH-SY5Y cells and primary murine neurons were used to study celastrol neuroprotection against Cd-poisoning. Cd-induced changes in cell viability, apoptosis, ROS and AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the cells were analysed by Trypan blue exclusion, DAPI and TUNEL staining, ROS imaging, immunofluorescence staining and Western blotting. Pharmacological and genetic approaches were employed to investigate the mechanisms underlying Cd neurotoxicity. RESULTS Celastrol attenuated Cd-induced apoptosis by suppressing Cd activation of mTOR, which was attributed to preventing Cd inactivation of AMPK. Inhibition of AMPK with compound C or expression of dominant negative AMPKα prevented celastrol from hindering Cd-induced dephosphorylation of AMPKα, activation of mTOR and apoptosis. Inhibition of mTOR with rapamycin or knockdown of mTOR potentiated prevention by celastrol, of Cd-induced phosphorylation of p70 S6 kinase 1/eukaryotic initiation factor 4E binding protein 1 and apoptosis. Celastrol attenuated Cd-induced cell death by suppressing induction of mitochondrial ROS. CONCLUSIONS AND IMPLICATIONS Celastrol prevented the inactivation of AMPK by mitochondrial ROS, thus attenuating Cd-induced mTOR activation and neuronal apoptosis. Celastrol may be a promising agent for prevention of Cd-induced oxidative stress and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Nana Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Hai Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Chunxiao Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xiaoxue Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yu Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Lei Liu
- Department of Biochemistry and Molecular BiologyLouisiana State University Health Sciences CenterShreveportLAUSA
- Feist‐Weiller Cancer CenterLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Sijun Yang
- ABSL‐III Laboratory for Animal Experiment Center, State Key Laboratory of VirologyWuhan University School of MedicineWuhanChina
| | - Shile Huang
- Department of Biochemistry and Molecular BiologyLouisiana State University Health Sciences CenterShreveportLAUSA
- Feist‐Weiller Cancer CenterLouisiana State University Health Sciences CenterShreveportLAUSA
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
29
|
Wang G, Wang JJ, Fu XL, Guang R, To SST. Advances in the targeting of HIF-1α and future therapeutic strategies for glioblastoma multiforme (Review). Oncol Rep 2016; 37:657-670. [PMID: 27959421 DOI: 10.3892/or.2016.5309] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/09/2016] [Indexed: 11/06/2022] Open
Abstract
Cell metabolism can be reprogrammed by tissue hypoxia leading to cell transformation and glioblastoma multiforme (GBM) progression. In response to hypoxia, GBM cells are able to express a transcription factor called hypoxia inducible factor-1 (HIF-1). HIF-1 belongs to a family of heterodimeric proteins that includes HIF-1α and HIF-1β subunits. HIF-1α has been reported to play a pivotal role in GBM development and progression. In the present review, we discuss the role of HIF-1α in glucose uptake, cancer proliferation, cell mobility and chemoresistance in GBM. Evidence from previous studies indicates that HIF-1α regulates angiogenesis, metabolic and transcriptional signaling pathways. Examples of such are the EGFR, PI3K/Akt and MAPK/ERK pathways. It affects cell migration and invasion by regulating glucose metabolism and growth in GBM cells. The present review focuses on the strategies through which to target HIF-1α and the related downstream genes highlighting their regulatory roles in angiogenesis, apoptosis, migration and glucose metabolism for the development of future GBM therapeutics. Combined treatment with inhibitors of HIF-1α and glycolysis may enhance antitumor effects in clinical settings.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Jun-Jie Wang
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Xing-Li Fu
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Rui Guang
- Department of Hospital Pharmacy, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Shing-Shun Tony To
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong, SAR, P.R. China
| |
Collapse
|
30
|
Li Z, Li J, Zhu L, Zhang Y, Zhang J, Yao L, Liang D, Wang L. Celastrol nanomicelles attenuate cytokine secretion in macrophages and inhibit macrophage-induced corneal neovascularization in rats. Int J Nanomedicine 2016; 11:6135-6148. [PMID: 27920521 PMCID: PMC5125761 DOI: 10.2147/ijn.s117425] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the inhibitory effects of celastrol-loaded nanomicelles (CNMs) on activated macrophage-induced corneal neovascularization (CNV) in rats and cytokine secretion in macrophages. Using an angiogenesis assay in vitro, we detected the effects of CNMs on human umbilical vein endothelial cell (HUVEC) migration and invasion. In addition, the expression levels of cytokines secreted from hypoxia-induced macrophages were assessed through cytokine array analysis. The expression of hypoxia-inducible factors-1α (HIF-1α), nuclear factor-kappa B p65 (NF-κB p65), phospho-nuclear factor-kappa B p65 (phospho-NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2), and phospho-ERK1/2 was analyzed by western blotting. Activated macrophages were elicited through mineral oil lumbar injection, labeled with 1,19-dioctadecyl-3-3-39,39-tetramethylindocarbocyanine (DiI) and implanted into the corneal micro-pocket to induce CNV and to assess the antiangiogenic effect in rats. CNV was morphometrically analyzed using ImageJ software. Histopathological features were evaluated by immunofluorescence immunostaining for vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) on day 2 after surgery. In the present study, the results indicated that CNMs significantly inhibited the migration and invasion of HUVECs; remarkably attenuated the expression of VEGF, tumor necrosis factor-α, interleukin-1α, monocyte chemoattractant protein 1, cytokine-induced neutrophil chemoattractant 3, and MMP-9 protein; and downregulated ERK1/2, p38 MAPK, NF-κB activation, and HIF-1α expression in macrophages. The peritoneal cells elicited using mineral oil were highly purified macrophages, and the length and area of CNV were significantly decreased in the CNMs group compared with the control group. There was a significant reduction in the expression of VEGF and MMP-9 in activated macrophages and corneal tissue after pretreatment with CNMs in this model. In conclusion, CNMs potently suppressed macrophage-induced CNV via the inhibition of VEGF and MMP-9 expression. This effect might be mediated through attenuating macrophages via HIF-1α, MAPK, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhanrong Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Jingguo Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Lei Zhu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Ying Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| | - Lin Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Liya Wang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and Zhengzhou University People's Hospital, Zhengzhou
| |
Collapse
|
31
|
Choi JY, Ramasamy T, Kim SY, Kim J, Ku SK, Youn YS, Kim JR, Jeong JH, Choi HG, Yong CS, Kim JO. PEGylated lipid bilayer-supported mesoporous silica nanoparticle composite for synergistic co-delivery of axitinib and celastrol in multi-targeted cancer therapy. Acta Biomater 2016; 39:94-105. [PMID: 27163403 DOI: 10.1016/j.actbio.2016.05.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Small-molecule drug combination therapies are an attractive approach to enhancing cancer chemotherapeutic responses. Therefore, this study aimed to investigate the potential of axitinib (AXT) and celastrol (CST) in targeting angiogenesis and mitochondrial-based apoptosis in cancer. Therefore, we prepared AXT/CST-loaded combination nanoparticles (ACML) with CST loaded in the mesoporous silica nanoparticles (MSN) and AXT in PEGylated lipidic bilayers. We showed that ACML effectively inhibited angiogenesis and mitochondrial function and was efficiently internalized in SCC-7, BT-474, and SH-SY5Y cells. Furthermore, hypoxia-inducible factor (HIF)-1α expression, which increased under hypoxic conditions in all cell lines exposed to ACML, markedly decreased, which may be critical for tumor inhibition. Western blotting showed the superior anticancer effect of combination nanoparticles in different cancer cells. Compared to the cocktail (AXT/CST), ACML induced synergistic cancer cell apoptosis. The AXT/CST-based combination nanoparticle synergism might be mediated by AXT, which controls vascular endothelial growth factor receptors while CST acts on target cell mitochondria. Importantly, ACML-treated mice showed remarkably higher tumor inhibition (64%) than other groups did in tumor xenograft models. Tumor xenograft immunohistochemistry revealed elevated caspase-3 and poly (ADP-ribose) polymerase and reduced CD31 and Ki-67 expression, clearly suggesting tumor apoptosis through mitochondrial and antiangiogenic effects. Overall, our results indicate that ACML potentially inhibited cell proliferation and induced apoptosis by blocking mitochondrial function, leading to enhanced antitumor efficacy. STATEMENT OF SIGNIFICANCE In this research, we formulated an anticancer drug combination nanoparticle loaded with axitinib (AXT) in the lipidic bilayer of PEGylated liposomes and celastrol (CST) in mesoporous silica nanoparticles. The anticancer effects of the AXT/CST-loaded combination nanoparticle (ACML) were synergistic and superior to the other formulations and involved more efficient drug delivery to the tumor site with enhanced effects on angiogenesis and mitochondrial function. Therefore, our study demonstrated that the inhibition of cell proliferation and induction of apoptosis by ACML, which was mediated by blockade of mitochondrial function and anti-angiogenesis, led to enhanced antitumor efficacy, which may be potentially useful in the clinical treatment of cancer.
Collapse
|
32
|
Venkatesha SH, Dudics S, Astry B, Moudgil KD. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog Dis 2016; 74:ftw059. [PMID: 27405485 DOI: 10.1093/femspd/ftw059] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 12/19/2022] Open
Abstract
Celastrol is a bioactive compound derived from traditional Chinese medicinal herbs of the Celastraceae family. Celastrol is known to possess anti-inflammatory and anti-oxidant activities. Our studies have highlighted the immunomodulatory attributes of celastrol in adjuvant-induced arthritis (AA), an experimental model of human rheumatoid arthritis (RA). RA is an autoimmune disease characterized by chronic inflammation of the synovial lining of the joints, leading eventually to tissue damage and deformities. Identification of the molecular targets of celastrol such as the NF-κB pathway, MAPK pathway, JAK/STAT pathway and RANKL/OPG pathway has unraveled its strategic checkpoints in controlling arthritic inflammation and tissue damage in AA. The pathological events that are targeted and rectified by celastrol include increased production of pro-inflammatory cytokines; an imbalance between pathogenic T helper 17 and regulatory T cells; enhanced production of chemokines coupled with increased migration of immune cells into the joints; and increased release of mediators of osteoclastic bone damage. Accordingly, celastrol is a promising candidate for further testing in the clinic for RA therapy. Furthermore, the results of other preclinical studies suggest that celastrol might also be beneficial for the treatment of a few other autoimmune diseases besides arthritis.
Collapse
Affiliation(s)
- Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Steven Dudics
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Brian Astry
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, Division of Rheumatology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite 380, Baltimore, MD 21201, USA Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
33
|
Faezizadeh Z, Gharib A, Godarzee M. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/zjrms-7364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Liu J, Ma L, Chen X, Wang J, Yu T, Gong Y, Ma A, Zheng L, Liang H. ERK inhibition sensitizes cancer cells to oleanolic acid-induced apoptosis through ERK/Nrf2/ROS pathway. Tumour Biol 2015; 37:8181-7. [DOI: 10.1007/s13277-015-4668-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022] Open
|