1
|
Li Q, Fu T, Wei N, Wang Q, Zhang X. Bmi-1 promotes the proliferation, migration and invasion, and inhibits cell apoptosis of human retinoblastoma cells via RKIP. Sci Rep 2024; 14:14544. [PMID: 38914697 PMCID: PMC11196667 DOI: 10.1038/s41598-024-65011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Retinoblastoma is one of the most common ocular malignancies in children. Bmi-1, a member of the Polycomb group family of transcriptional repressors, is expressed in a variety of tumors. The purpose of our study was to explore the role of Bmi-1 in retinoblastoma. RT-qPCR and western blot were used for calculating the mRNA and protein levels of Bmi-1 and RKIP. MTT, Wound healing and Transwell assays were performed to measure the proliferation, migration and invasion in retinoblastoma cells. Cell apoptosis was detected by flow cytometry. The volume and mass of transplanted tumors were detected in nude mice. Bmi-1 was over expressed, and RKIP was low expressed in retinoblastoma cells. Bmi-1 promoted cell proliferation, migration and invasion and suppressed cell apoptosis of Y79 and SO-RB50 cells. Downregulation of Bmi-1 and overexpression of RKIP inhibited cell proliferation, migration and invasion, and increased cell apoptosis. The functions of Bmi-1 knockdown on retinoblastoma cells were blocked by RKIP knockdown, but promoted by RKIP. Down-regulated Bmi-1 inhibited xenograft tumor growth, and RKIP exacerbated this inhibitory effect. Bmi-1 served as a potential therapeutic target for improving the efficacy of clinical treatment in retinoblastoma. All the findings revealed the functions of Bmi-1/RKIP axis in retinoblastoma tumorigenesis.
Collapse
Affiliation(s)
- Qian Li
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Te Fu
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Ning Wei
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Qiaoling Wang
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Xin Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China.
| |
Collapse
|
2
|
Ebrahimi K, Bagheri R, Gholamhosseinian H, Keramati MR, Rafatpanah H, Iranshahi M, Rassouli FB. Umbelliprenin improved anti-proliferative effects of ionizing radiation on adult T-cell leukemia/lymphoma cells via interaction with CDK6; an in vitro and in silico study. Int J Immunopathol Pharmacol 2024; 38:3946320241287873. [PMID: 39313767 PMCID: PMC11437583 DOI: 10.1177/03946320241287873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy with poor survival rates. The efficacy of radiotherapy in ATL needs enhancement with radiosensitizing agents. This study investigated whether umbelliprenin (UMB) could improve the therapeutic effects of ionizing radiation (IR) in ATL cells. UMB, a naturally occurring prenylated coumarin, exhibits anticancer properties and has shown synergistic effects when combined with chemotherapeutic drugs. Despite this promising profile, there is a notable lack of research on its potential combinatorial effects with IR, particularly for ATL treatment. UMB was extracted from Ferula persica using thin layer chromatography. MT-2 cells were treated with UMB alone and in combination with various doses of IR, and cell proliferation was assessed via alamarBlue assay. Flow cytometry with annexin V and PI staining was conducted, and candidate gene expression was analyzed by qPCR. In silico analysis involved identifying pathogenic targets of ATL, constructing protein-protein interaction (PPI) networks, and evaluating CDK6 expression in MT-2 cells. Molecular docking was used to determine the interaction between UMB and CDK6. The alamarBlue assay and flow cytometry showed that pretreating ATL cells with UMB significantly (p < .0001) enhanced anti-proliferative effects of IR. The combination index indicated a synergistic effect between UMB and IR. qPCR revealed significant (p < .0001) downregulation of CD44, CDK6, c-MYC, and cFLIPL, and overexpression of cFLIPS. Computational analysis identified CDK6 as a hub gene in the PPI network, and CDK6 overexpression was confirmed in MT-2 cells. Molecular docking revealed a favorable binding interaction between UMB and the ATP-binding site of CDK6, with a JAMDA score of -2.131, surpassing the control selonsertib. The current study provides evidence that UMB enhances the anti-proliferative effects of IR on ATL cells, and highlights the significance of targeting CDK6 in combinatorial approaches.
Collapse
Affiliation(s)
- Keyhan Ebrahimi
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Bagheri
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Gholamhosseinian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Lei Y, Shen HF, Li QW, Yang S, Xie HT, Li XF, Chen ML, Xia JW, Wang SC, Dai GQ, Zhou Y, Li YC, Huang SH, He DH, Zhou ZH, Cong JG, Lin XL, Lin TY, Wu AB, Xiao D, Xiao SJ, Zhang XK, Jia JS. Hairy gene homolog increases nasopharyngeal carcinoma cell stemness by upregulating Bmi-1. Aging (Albany NY) 2023; 15:204742. [PMID: 37219449 DOI: 10.18632/aging.204742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.
Collapse
Affiliation(s)
- Ye Lei
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Hong-Fen Shen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qi-Wen Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong-Ting Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xu-Feng Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530000, China
| | - Mei-Ling Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Sheng-Chun Wang
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Guan-Qi Dai
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying-Chun Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shi-Hao Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dan-Hua He
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Hao Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin-Ge Cong
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Tao-Yan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ai-Bing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Dong Xiao
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
- Guangzhou Southern Medical Laboratory Animal Sci and Tech Co. Ltd., Guangzhou 510515, China
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Xin-Ke Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun-Shuang Jia
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Wang H, Zhu Y, Hu L, Li Y, Liu G, Xia T, Xiong D, Luo Y, Liu B, An Y, Li M, Huang Y, Zhong Q, Zeng M. Internal Ribosome Entry Sites Mediate Cap-Independent Translation of Bmi1 in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:1678. [PMID: 33014838 PMCID: PMC7506037 DOI: 10.3389/fonc.2020.01678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/29/2020] [Indexed: 01/03/2023] Open
Abstract
Bmi1 is overexpressed in multiple human cancers. We previously reported the oncogenic function and the transcription regulation mechanisms of Bmi1 in nasopharyngeal carcinoma (NPC). In this study, we observed that the mRNA and the protein levels of Bmi1 were strictly inconsistent in NPC cell lines and cancer tissues. The inhibitors of proteasome and lysosome could not enhance the protein level of Bmi1, indicating that Bmi1 may be post-transcriptionally regulated. The IRESite analysis showed that there were two potential internal ribosome entry sites (IRESs) in the 5'-untranslated region (5'-UTR) of Bmi1. The luciferase assay demonstrated that the 5'-UTR of Bmi1 has IRES activity, which may mediate cap-independent translation. The IRES activity of the Bmi1 5'-UTR was significantly reduced after the mutation of the two IRES elements. Taken together, these results suggested that the IRES elements mediating translation is a novel post-transcriptional regulation mechanism of Bmi1.
Collapse
Affiliation(s)
- Hongbo Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunjia Zhu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijuan Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Yangyang Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Guihong Liu
- Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Tianliang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Laboratory Medicine, Luohu District People's Hospital, Shenzhen, China
| | - Yiling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Binliu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Manzhi Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuehua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
5
|
Liu Y, Yang M, Luo J, Zhou H. Radiotherapy targeting cancer stem cells "awakens" them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci 2020; 12:19. [PMID: 32576817 PMCID: PMC7311531 DOI: 10.1038/s41368-020-00087-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is one of the most common treatments for oral cancer. However, in the clinic, recurrence and metastasis of oral cancer occur after radiotherapy, and the underlying mechanism remains unclear. Cancer stem cells (CSCs), considered the “seeds” of cancer, have been confirmed to be in a quiescent state in most established tumours, with their innate radioresistance helping them survive more easily when exposed to radiation than differentiated cancer cells. There is increasing evidence that CSCs play an important role in recurrence and metastasis post-radiotherapy in many cancers. However, little is known about how oral CSCs cause tumour recurrence and metastasis post-radiotherapy. In this review article, we will first summarise methods for the identification of oral CSCs and then focus on the characteristics of a CSC subpopulation induced by radiation, hereafter referred to as “awakened” CSCs, to highlight their response to radiotherapy and potential role in tumour recurrence and metastasis post-radiotherapy as well as potential therapeutics targeting CSCs. In addition, we explore potential therapeutic strategies targeting these “awakened” CSCs to solve the serious clinical challenges of recurrence and metastasis in oral cancer after radiotherapy.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Reid P, Marcu LG, Olver I, Moghaddasi L, Staudacher AH, Bezak E. Diversity of cancer stem cells in head and neck carcinomas: The role of HPV in cancer stem cell heterogeneity, plasticity and treatment response. Radiother Oncol 2019; 135:1-12. [PMID: 31015153 DOI: 10.1016/j.radonc.2019.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) resulting from oncogenic transformations following human papillomavirus (HPV) infection consistently demonstrate better treatment outcomes than HNSCC from other aetiologies. Squamous cell carcinoma of the oropharynx (OPSCC) shows the highest prevalence of HPV involvement at around 70-80%. While strongly prognostic, HPV status alone is not sufficient to predict therapy response or any potential dose de-escalation. Cancer stem cell (CSC) populations within these tumour types represent the most therapy-resistant cells and are the source of recurrence and metastases, setting a benchmark for tumour control. This review examines clinical and preclinical evidence of differences in response to treatment by the HPV statuses of HNSCC and the role played by CSCs in treatment resistance and their repopulation from non-CSCs. Evidence was collated from literature searches of PubMed, Scopus and Ovid for differential treatment response by HPV status and contribution by critical biomarkers including CSC fractions and chemo-radiosensitivity. While HPV and CSC are yet to fulfil promise as biomarkers of treatment response, understanding how HPV positive and negative aetiologies affect CSC response to treatment and tumour plasticity will facilitate their use for greater treatment individualisation.
Collapse
Affiliation(s)
- Paul Reid
- School of Health Sciences, University of South Australia, Adelaide, Australia; Cancer Research Institute, University of South Australia, Adelaide, Australia.
| | - Loredana G Marcu
- School of Health Sciences, University of South Australia, Adelaide, Australia; Faculty of Science, University of Oradea, Romania
| | - Ian Olver
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Leyla Moghaddasi
- Department of Physics, University of Adelaide, Australia; Genesis Care, Department of Medical Physics, Adelaide, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; School of Medicine, University of Adelaide, Australia
| | - Eva Bezak
- School of Health Sciences, University of South Australia, Adelaide, Australia; Cancer Research Institute, University of South Australia, Adelaide, Australia; Department of Physics, University of Adelaide, Australia
| |
Collapse
|
7
|
Griffith J, Andrade D, Mehta M, Berry W, Benbrook DM, Aravindan N, Herman TS, Ramesh R, Munshi A. Silencing BMI1 radiosensitizes human breast cancer cells by inducing DNA damage and autophagy. Oncol Rep 2017; 37:2382-2390. [PMID: 28260023 PMCID: PMC5367353 DOI: 10.3892/or.2017.5478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Overexpression of BMI1 in human cancer cells, a member of the polycomb group of repressive complexes, correlates with advanced stage of disease, aggressive clinico-pathological behavior, poor prognosis, and resistance to radiation and chemotherapy. Studies have shown that experimental reduction of BMI1 protein level in tumor cells results in inhibition of cell proliferation, induction of apoptosis and/or senescence, and increased susceptibility to cytotoxic agents and radiation therapy. Although a role for BMI1 in cancer progression and its importance as a molecular target for cancer therapy has been established, information on the impact of silencing BMI1 in triple-negative breast cancer (TNBC) and its consequence on radiotherapy have not been well studied. Therefore, in the present study we investigated the potential therapeutic benefit of radiation therapy in BMI1-silenced breast cancer cells and studied the mechanism(s) of radiosensitization. Human MDA-MB-231 and SUM159PT breast cancer cells that were either stably transfected with a lentiviral vector expressing BMI1 shRNA (shBMI1) or control shRNA (shControl) or transient transfection with a BMI1-specific siRNA were used. Silencing of BMI1 resulted in marked reduction in BMI1 both at the mRNA and protein level that was accompanied by a significant reduction in cell migration compared to control cells. Further, BMI1 knockdown produced a marked enhancement of DNA damage as evidenced by Comet Assay and γH2AX foci, resulting in a dose-dependent radiosensitization effect. Molecular studies revealed modulation of protein expression that is associated with the DNA damage response (DDR) and autophagy pathways. Our results demonstrate that BMI1 is an important therapeutic target in breast cancer and suppression of BMI1 produces radiation sensitivity. Further, combining BMI1-targeted therapeutics with radiation might benefit patients diagnosed with TNBC.
Collapse
Affiliation(s)
- James Griffith
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel Andrade
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - William Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
8
|
Li S, Hang L, Ma Y, Wu C. Distinctive microRNA expression in early stage nasopharyngeal carcinoma patients. J Cell Mol Med 2016; 20:2259-2268. [PMID: 27489139 PMCID: PMC5134390 DOI: 10.1111/jcmm.12906] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022] Open
Abstract
The goal of this study was to investigate microRNAs (miRs) expression at different stages of nasopharyngeal carcinoma (NPC). MiR expression profiling at various stages of NPC was performed by miR array and further verified using quantitative real-time RT-PCR. Pathway enrichment analysis was carried out to identify the functional pathways regulated by the miRs. The expression of a selected group of identified miRs was verified in stage I NPC by in situ hybridization (ISH). A total of 449 miRs were identified with significantly different expressions between NPC tissues and normal pharyngeal tissues. Eighty-four miRs were dysregulated only in stage I NPC, among which 45 miRs were up-regulated and the other 39 were down-regulated. Pathway enrichment assay revleaed that three significantly down-regulated and three significantly up-regulated miRs involved in 12 pathways associating with tumour formation and progression. Quantitative RT-PCR confirmed the miR array result. In addition, the low expression levels of hsa-miR-4324, hsa-miR-203a and hsa-miR-199b-5p were further validated in stage I NPC by ISH. This present study identifed the miR signature in stage I NPC, providing the basis for early detection and treatment of NPC.
Collapse
Affiliation(s)
- Shuna Li
- Department of Otolaryngology and Head-Neck Surgery, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lihua Hang
- Department of Anesthesia, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongming Ma
- Department of Otolaryngology and Head-Neck Surgery, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaoyang Wu
- Department of Radiation Oncology, Zhenjiang First People's Hospital, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
XU XINHUA, LIU YANG, SU JIN, LI DAOJUN, HU JUAN, HUANG QIAO, LU MINGQIAN, LIU XIAOYAN, REN JINGHUA, CHEN WEIHONG, SUN LIDAN. Downregulation of Bmi-1 is associated with suppressed tumorigenesis and induced apoptosis in CD44+ nasopharyngeal carcinoma cancer stem-like cells. Oncol Rep 2015; 35:923-31. [DOI: 10.3892/or.2015.4414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/29/2015] [Indexed: 11/05/2022] Open
|
10
|
Xu XH, Liu Y, Li DJ, Hu J, Su J, Huang Q, Lu MQ, Yi F, Bao D, Fu YZ. Effect of shRNA-Mediated Gene Silencing of Bmi-1 Expression on Chemosensitivity of CD44+ Nasopharyngeal Carcinoma Cancer Stem-Like Cells. Technol Cancer Res Treat 2015; 15:NP27-39. [PMID: 26294655 DOI: 10.1177/1533034615599461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
In this study, we investigate the effect of short hairpin RNA-mediated gene silencing of Bmi-1 expression on chemosensitivity of CD44(+) nasopharyngeal carcinoma cancer stem-like cells. The sequence-specific short hairpin RNA lentivirus targeting at human Bmi-1 was synthesized and used to infect CD44(+) nasopharyngeal cells that were sorted by flow cytometry. We also employed flow cytometry to detect transfection efficiency. Real-time polymerase chain reaction was used to detect Bmi-1 and its downstream repressor genes p16(INK4a) and p14(ARF) messenger RNA, while each protein expression level of Bmi-1, p16(INK4a), p14(ARF), and p53 was confirmed by Western blotting protocol. Tumor spheroid assay was used to evaluate the self-renewal capacity. 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and colony formation assay were applied to detect proliferation capacity and colony-forming capacity under different concentrations of chemotherapeutic drugs 5-fluorouracil or cisplatin. Transwell cell migration and invasion assay were employed to observe migration and invasion capacity after cells were exposed to cisplatin for 24 hours. The constructed short hairpin RNA lentivirus targeting Bmi-1 gene successfully infected into the CD44(+) nasopharyngeal carcinoma cells and effectively inhibited the Bmi-1 messenger RNA and protein expression level, while the expression level of Bim-1 target genes, p16(INK4a), p14(ARF), and p53 was significantly increased (P < .05). Notably, the proliferation, colony formation, migration, and invasion capabilities of the sequence-specific short hairpin RNA lentivirus-infected CD44(+) nasopharyngeal carcinoma cells reduced significantly under chemotherapeutic treatments (P < .05). Our results indicated that Bmi-1 may play an important role in the chemosensitivity of CD44(+) nasopharyngeal carcinoma cancer stem-like cells. Bmi-1 may be a potential new target for the treatment of nasopharyngeal carcinoma displaying chemotherapy resistance.
Collapse
Affiliation(s)
- Xin-Hua Xu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Yang Liu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Dao-Jun Li
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Juan Hu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Jin Su
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China
| | - Qiao Huang
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China
| | - Ming-Qian Lu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China
| | - Fang Yi
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Dan Bao
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Yan-Zhi Fu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| |
Collapse
|
11
|
Safety and efficacy study of nasopharyngeal cancer stem cell vaccine. Immunol Lett 2015; 165:26-31. [PMID: 25796196 DOI: 10.1016/j.imlet.2015.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/10/2015] [Indexed: 11/23/2022]
Abstract
In this trial, nasopharyngeal cancer stem cells (CSCs) were separated and cultured to produce a vaccine; its safety and efficacy were prospectively evaluated in low-, medium-, and high-dose groups. Between April and September 2014, we enrolled 90 patients who met the enrolment criteria, and assigned them to three groups (n=30). Throughout the trial, injection site reaction was the most common reaction (81%), and fever was least common (31%); however, there was no difference among the three groups. When the immune responses pre- and post-vaccination were compared, we found that the CSC-specific and -nonspecific response in the medium- and high-dose groups were both significantly enhanced. This study is the first clinical trial of a nasopharyngeal CSC vaccine and preliminarily proves its safety and efficacy.
Collapse
|
12
|
Lun SWM, Cheung ST, Lo KW. Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma. CHINESE JOURNAL OF CANCER 2014; 33:529-38. [PMID: 25223912 PMCID: PMC4244315 DOI: 10.5732/cjc.014.10081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cells. These cancer stem-like cells (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed.
Collapse
Affiliation(s)
- Samantha Wei-Man Lun
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
| | | | | |
Collapse
|