1
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway. Phytother Res 2024; 38:349-367. [PMID: 37922566 DOI: 10.1002/ptr.8040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays a central role in cell growth and survival and is disturbed in various pathologies. The PI3K is a kinase that generates phosphatidylinositol-3,4,5-trisphosphate (PI (3-5) P3), as a second messenger responsible for the translocation of AKT to the plasma membrane and its activation. However, due to the crucial role of the PI3K/AKT pathway in regulation of cell survival processes, it has been introduced as a main therapeutic target for natural compounds during the progression of different pathologies. Berberine, a plant-derived isoquinone alkaloid, is known because of its anti-inflammatory, antioxidant, antidiabetic, and antitumor properties. The effect of this natural compound on cell survival processes has been shown to be mediated by modulation of the intracellular pathways. However, the effects of this natural compound on the PI3K/AKT pathway in various pathologies have not been reviewed so far. Therefore, this paper aims to review the PI3K/AKT-mediated effects of Berberine in different types of cancer, diabetes, cardiovascular, and central nervous system diseases.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Goel A. Current understanding and future prospects on Berberine for anticancer therapy. Chem Biol Drug Des 2023; 102:177-200. [PMID: 36905314 DOI: 10.1111/cbdd.14231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Berberine (BBR) is a potential plant metabolite and has remarkable anticancer properties. Many kinds of research are being focused on the cytotoxic activity of berberine in in vitro and in vivo studies. A variety of molecular targets which lead to the anticancer effect of berberine ranges from p-53 activation, Cyclin B expression for arresting cell cycles; protein kinase B (AKT), MAP kinase and IKB kinase for antiproliferative activity; effect on beclin-1 involved in autophagy; reduced expression of MMP-9 and MMP-2 for the inhibition of invasion and metastasis etc. Berberine also interferes with transcription factor-1 (AP-1) activity responsible for the expression of oncogenes and neoplastic transformation of the cell. It also leads to the inhibition of various enzymes which are directly or indirectly involved in carcinogenesis like N acetyl transferase, Cyclo-oxygenase-2, Telomerase and Topoisomerase. In addition to these actions, Berberine plays a role in, the regulation of reactive oxygen species and inflammatory cytokines in preventing cancer formation. Berberine anticancer properties are demonstrated due to the interaction of berberine with micro-RNA. The summarized information presented in this review article may help and lead the researchers, scientists/industry persons to use berberine as a promising candidate against cancer.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, 281 46, Uttar Pradesh, India
| |
Collapse
|
4
|
Devarajan N, Nathan J, Mathangi R, Mahendra J, Ganesan SK. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management. J Biochem Mol Toxicol 2023; 37:e23278. [PMID: 36588295 DOI: 10.1002/jbt.23278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/27/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
Berberine (BBR), a traditional Chinese phytomedicine extracted from various parts of Berberis plants, is an isoquinoline alkaloid used for centuries to treat diabetes, hypercholesterolemia, hypertension, and so forth. It has recently received immense attention worldwide to treat cancer due to its potent pro-apoptotic, antiproliferative, and anti-inflammatory properties. BBR efficiently induces tumor apoptosis, replicative quiescence and abrogates cell proliferation, epithelial-mesenchymal transition, tumor neovascularization, and metastasis by modulating diverse molecular and cell signaling pathways. Furthermore, BBR could also reverse drug resistance, make tumor cells sensitive to current cancer treatment and significantly minimize the harmful side effects of cytotoxic therapies. This review comprehensively analyzed the pharmacological effects of BBR against the development, growth, progression, metastasis, and therapy resistance in wide varieties of cancer. Also, it critically discusses the significant limitations behind the development of BBR into pharmaceuticals to treat cancer and the future research directions to overcome these limitations.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research - MAHER (Deemed to be University), Chennai, Tamilnadu, India
| | - Jhansi Nathan
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Ramalingam Mathangi
- Department of Biochemistry, Sree Balaji Dental College and Hospital, BIHER, Chennai, Tamil Nadu, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Ghobadi-Oghaz N, Asoodeh A, Mohammadi M. Fabrication, characterization and in vitro cell exposure study of zein-chitosan nanoparticles for co-delivery of curcumin and berberine. Int J Biol Macromol 2022; 204:576-586. [PMID: 35157902 DOI: 10.1016/j.ijbiomac.2022.02.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
For the first time, we synthesized the co-delivery nanopolymers using zein protein as the core and chitosan polysaccharide as the shell to deliver curcumin (Cur) and berberine (Ber) in MDA-MB-231 breast cancer cells. It has been shown that Cur and Ber altogether have synergistic effects on multiple cancers. Herein, the curcumin-zein-berberine-chitosan (Cur-Z-Ber-Ch) nanoparticles were fabricated and their organization procedure was reported. Physicochemical properties of synthesized nanoparticles were determined by Fourier transform infrared (FTIR) spectroscopy, XRD and fluorescence spectroscopy analyses. The nanoparticles included relatively small particles (d = 168.24 nm) with +36.76 mV zeta potential. The resulting nanoparticles had high entrapment efficiency (about 75%) for Cur and 60% for Ber. The Cur-Z-Ber-Ch nanoparticles represented ideal redispersibility and storage stability after 4 months. Drug release of the freeze-dried nanoparticles had pH-sensitive characteristic. In vitro cytoxicity assay demonstrated that Cur-Z-Ber-Ch nanoparticles induced elevated cytotoxic effect in MDA-MB-231 and A549 cancer cells. In vitro studies in MDA-MB-231 cells demonstrated that the Cur-Z-Ber-Ch nanoparticles could successfully increase cellular uptake and apoptosis with significant inhibition of IL-8 pro-inflammatory cytokines in comparison to the free Cur + Ber bioactive molecules. These bio-nanoparticles are the co-delivery vehicle for Cur and Ber which could be beneficial for participating them into pharmaceutical products.
Collapse
Affiliation(s)
- Niloofar Ghobadi-Oghaz
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Zhao T, Zhang K, Shi G, Ma K, Wang B, Shao J, Wang T, Wang C. Berberine Inhibits the Adhesion of Candida albicans to Vaginal Epithelial Cells. Front Pharmacol 2022; 13:814883. [PMID: 35295335 PMCID: PMC8918845 DOI: 10.3389/fphar.2022.814883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is an inflammatory disease of the vagina mainly caused by Candida albicans (C. albicans), which affects around three-quarters of all women during their reproductive age. Although some antifungal drugs such as azoles have been applied clinically for many years, their therapeutic value is very limited due to the emergence of drug-resistant strains. Previous studies have shown that the adhesion of C. albicans to vaginal epithelial cells is essential for the pathogenesis of VVC. Therefore, preventing the adhesion of C. albicans to vaginal epithelial cells may be one of the most effective strategies for the treatment of VVC. Berberine (BBR) is a biologically active herbal alkaloid that was used to treat VVC. However, so far, its mechanism has remained unclear. This study shows BBR significantly inhibits the adhesion of C. albicans to vaginal epithelial cells by reducing the expressions of ICAM-1, mucin1, and mucin4 in vaginal epithelial cells, which play the most important role in modulating the adhesion of C. albicans to host cells, and balancing IL-2 and IL-4 expressions, which play a key effect on regulating the inflammatory response caused by C. albicans infection. Hence, our findings demonstrate that BBR may be a potential therapeutic agent for VVC by interfering with the adhesion of C. albicans to vaginal epithelial cells and represents a new pathway for developing antifungal therapies agents from natural herbs.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Kang Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Gaoxiang Shi
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Kelong Ma
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Benfan Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Tianming Wang, ; Changzhong Wang,
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Tianming Wang, ; Changzhong Wang,
| |
Collapse
|
7
|
Bibak B, Shakeri F, Keshavarzi Z, Mollazadeh H, Javid H, Jalili-Nik M, Sathyapalan T, Afshari AR, Sahebkar A. Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy. Curr Med Chem 2022; 29:4507-4528. [PMID: 35209812 DOI: 10.2174/0929867329666220224112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The most typical malignant brain tumor, glioblastoma multiforme (GBM), seems to have a grim outcome, despite the intensive multi-modality interventions. Literature suggests that biologically active phytomolecules may exert anticancer properties by regulating several signaling pathways. Berberine, an isoquinoline alkaloid, has various pharmacological applications to combat severe diseases like cancer. Mechanistically, Berberine inhibits cell proliferation and invasion, suppresses tumor angiogenesis, and induces cell apoptosis. The effect of the antitumoral effect of Berberine in GBM is increasingly recognized. This review sheds new light on the regulatory signaling mechanisms of Berberine in various cancer, proposing its potential role as a therapeutic agent for GBM. .
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Javid
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Tong J, Hou X, Cui D, Chen W, Yao H, Xiong B, Cai L, Zhang H, Jiang L. A berberine hydrochloride-carboxymethyl chitosan hydrogel protects against Staphylococcus aureus infection in a rat mastitis model. Carbohydr Polym 2022; 278:118910. [PMID: 34973731 DOI: 10.1016/j.carbpol.2021.118910] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus (S. aureus) is the major pathogen responsible for mastitis in dairy cows, an important threat to their health, but prevention of S. aureus infection of the mammary gland remains challenging. Berberine hydrochloride (BH), a naturally occurring phytochemical, exhibits a wide range of activities, including antibacterial effects on S. aureus. In this study, we prepared a novel berberine hydrochloride-carboxymethyl chitosan hydrogel (BH-CMCH) with excellent thermosensitivity, injectability and in vitro antibacterial activity. In a rat model of mastitis induced by S. aureus, mammary duct injection of BH-CMCH reduced the bacterial load in infected mammary gland tissue and protected the tissue from damage from infection. In addition, proteomics analysis showed that mammary duct injection of BH-CMCH enhanced autolysosome degradation and promoted the innate immune response by activating the lysosomal pathway and up-regulating related significantly differentially expressed proteins (SDEPs). Taken together, the findings support the potential of BH-CMCH as an antibacterial agent against S. aureus-induced mastitis.
Collapse
Affiliation(s)
- Jinjin Tong
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, PR China
| | - Xiaolin Hou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, PR China
| | - Defeng Cui
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, PR China
| | - Wu Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, PR China
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, PR China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lirong Cai
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, PR China
| | - Hua Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, PR China.
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, PR China.
| |
Collapse
|
9
|
Lee HP, Wu YC, Chen BC, Liu SC, Li TM, Huang WC, Hsu CJ, Tang CH. Soya-cerebroside reduces interleukin production in human rheumatoid arthritis synovial fibroblasts by inhibiting the ERK, NF-κB and AP-1 signalling pathways. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1766426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Bo-Cheng Chen
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Son J, Lee SY. Small molecule DTDQ exerts anti-metastatic effects in DU145 human castration-resistant prostate cancer cells via modulations of ERK, JNK, p38 and c-Myc signaling pathways. Bioorg Med Chem Lett 2020; 30:127223. [DOI: 10.1016/j.bmcl.2020.127223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/24/2022]
|
11
|
Habtemariam S. Recent Advances in Berberine Inspired Anticancer Approaches: From Drug Combination to Novel Formulation Technology and Derivatization. Molecules 2020; 25:molecules25061426. [PMID: 32245062 PMCID: PMC7144379 DOI: 10.3390/molecules25061426] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Berberine is multifunctional natural product with potential to treat diverse pathological conditions. Its broad-spectrum anticancer effect through direct effect on cancer cell growth and metastasis have been established both in vitro and in vivo. The cellular targets that account to the anticancer effect of berberine are incredibly large and range from kinases (protein kinase B (Akt), mitogen activated protein kinases (MAPKs), cell cycle checkpoint kinases, etc.) and transcription factors to genes and protein regulators of cell survival, motility and death. The direct effect of berberine in cancer cells is however relatively weak and occur at moderate concentration range (10–100 µM) in most cancer cells. The poor pharmacokinetics profile resulting from poor absorption, efflux by permeability-glycoprotein (P-gc) and extensive metabolism in intestinal and hepatic cells are other dimensions of berberine’s limitation as anticancer agent. This communication addresses the research efforts during the last two decades that were devoted to enhancing the anticancer potential of berberine. Strategies highlighted include using berberine in combination with other chemotherapeutic agents either to reduce toxic side effects or enhance their anticancer effects; the various novel formulation approaches which by order of magnitude improved the pharmacokinetics of berberine; and semisynthetic approaches that enhanced potency by up to 100-fold.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, ME4 4TB Kent, UK
| |
Collapse
|
12
|
Gu H, Liu A, Ma W, Ni J, Ma C, Zhou X, Liu Z, Xia D, Tian X, Shi L, Zhu L. Berberine hydrochloride mitigates acute pancreatitis by suppressing the TLR4/IκBα/NFκB pathway. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1765885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Huali Gu
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Aiguo Liu
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Weiping Ma
- Department of Editorial, Medical College of Qingdao University, Qingdao, People’s Republic of China
| | - Jianmin Ni
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Chengtai Ma
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiumei Zhou
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhenfang Liu
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Di Xia
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xintao Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lei Shi
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Liang Zhu
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
13
|
Yao M, Fan X, Yuan B, Takagi N, Liu S, Han X, Ren J, Liu J. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. Altern Ther Health Med 2019; 19:216. [PMID: 31412862 PMCID: PMC6694465 DOI: 10.1186/s12906-019-2615-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
Background Breast cancer is still the most common malignant tumor that threatens the female’s life in the world, especially triple-negative breast cancer (TNBC), one of the most difficult subtypes. Lack of targeted therapies brings about urgent demand for novel treatments. In this study we aim to investigate the anti-tumor activity of Berberine (BBR), a Chinese plant-derived alkaloid, against the TNBC cell line MDA-MB-231 and elucidate its mechanism referring to anti-inflammation. Methods Cell inhibition rate was measured by Cell Proliferation Assay, the cytotoxic effects was detected by Lactate dehydrogenase (LDH) leakage assay, the colony formation and migration potential were evaluated by colony formation assay and wound healing assay, the release of inflammatory cytokines was detected by EMD multifactor detection, and alterations of proteins and genes related to the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway were analyzed using western blotting and real-time Polymerase Chain Reaction (PCR). Results BBR reduce the viability of MDA-MB-231 cells and increased the release of LDH from the cells in a dose-dependent manner, with and inhibition of colony formation potential and migration of the cells. BBR also caused a marked reduction in the secretion of proinflammatory cytokines, Interleukin-1α (IL-1α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Besides, a down-regulated behavior was observed with the expression of P2X purinoceptor 7 (P2X7), NLRP3, pro-caspase-1, apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1 p20, Interleukin-18 (IL-18), IL-1β proteins and NLRP3, Caspase-1 and ASC mRNAs in the NLRP3 inflammasome cascade. Conclusions Our results confirmed that BBR can effectively affect both tumor outgrowth and spontaneous metastasis in TNBC, and that we identified a new mechanism associated with inhibition the NLRP3 inflammasome pathway, suggesting its potential therapeutic relevance in clinical use.
Collapse
|
14
|
Belanova A, Beseda D, Chmykhalo V, Stepanova A, Belousova M, Khrenkova V, Gavalas N, Zolotukhin P. Berberine Effects on NFκB, HIF1A and NFE2L2/AP-1 Pathways in HeLa Cells. Anticancer Agents Med Chem 2019; 19:487-501. [DOI: 10.2174/1871520619666181211121405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
Background:
Berberine has multitudinous anti-cancer stem cells effects making it a highly promising
candidate substance for the next-generation cancer therapy. However, berberine modes of action predispose it to
significant side-effects that probably limit its clinical testing and application.
Materials and Methods:
HeLa cells were treated with two concentrations of berberine (30 and 100 µM) for 24
hours to assess the functioning of the NFE2L2/AP-1, NFκB and HIF1A pathways using 22 RNAs expression
qPCR-based analysis.
Results:
Berberine effects appeared to be highly dose-dependent, with the lower concentration being capable of
suppressing the NFκB functioning and the higher concentration causing severe signaling side-effects seen in the
HIF1A pathway and the NFE2L2 sub-pathways, and especially and more importantly in the AP-1 sub-pathway.
Conclusion:
The results of the study suggest that berberine has clinically valuable anti-NFκB effects however
jeopardized by its side effects on the HIF1A and especially NFE2L2/AP-1 pathways, its therapeutic window
phenomenon and its cancer type-specificity. These, however, may be ameliorated using the cocktail approach,
provided there is enough data on signaling effects of berberine.
Collapse
Affiliation(s)
- Anna Belanova
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Darya Beseda
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Victor Chmykhalo
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Alisa Stepanova
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| | - Mariya Belousova
- English Language Department for Natural Sciences Faculties, Southern Federal University, 5 Sorge st., 344090, Rostov-on-Don, Russian Federation
| | - Vera Khrenkova
- Rostov State Medical University, 119 Suvorova st., 344022, Rostov-on-Don, Russian Federation
| | - Nikolaos Gavalas
- Division of Clinical Therapeutics, National and Kapodistrian University of Athens, 80 Vas. Sofias Av., 11521, Athens, Greece
| | - Peter Zolotukhin
- Biomedical Innovations LLC, 112 Mechnikova st., 344013, Rostov-on-Don, Russian Federation
| |
Collapse
|
15
|
MiR-940 inhibits migration and invasion of tongue squamous cell carcinoma via regulatingCXCR2/NF-κB system-mediated epithelial-mesenchymal transition. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1359-1369. [PMID: 31214736 DOI: 10.1007/s00210-019-01671-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Tongue squamous cell carcinoma (TSCC) is one of the most common incident oral cancers, which is accompanied by high rate of metastasis and recurrence. It has been demonstrated that elevated interleukin-8 (IL-8) promoted metastasis of various cancers via regulating epithelial-mesenchymal transition (EMT) process, whereas the accurate mechanism is left to be elucidated. The present work was aimed to investigate the role of microRNA-940 (miR-940)/C-X-C chemokine receptor type 2 (CXCR2) system in the metastasis ability and EMT process of IL-8-treated TSCC cells and further explore the underlying mechanisms. We found that miR-940 up-regulation inhibited IL-8-induced migration and invasion, which could be deprived by CXCR2 silence. We also observed that miR-940 suppressed epithelial marker E-cadherin expression while increased mesenchymal markers N-cadherin and Twist levels in IL-8-stimulated TSCC cells. Besides, IL-8-induced invasion and EMT process of TSCC cells were impeded in the present of the NF-κB inhibitor, PDTC or BAY117082. In conclusion, our data demonstrated that miR-940/CXCR2 system regulated the metastasis of TSCC cells via NF-κB-induced EMT process.
Collapse
|
16
|
Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol 2019; 128:240-255. [PMID: 30991130 DOI: 10.1016/j.fct.2019.04.012] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022]
Abstract
Cancer is one of the leading causes of death across the world. Different environmental and anthropogenic factors initiate mutations in different functional genes of growth factors and their receptors, anti-apoptotic proteins, self-renewal developmental proteins, tumor suppressors, transcription factors, etc. This phenomenon leads to altered protein homeostasis of the cell which in turn induces cancer initiation, development, progression and survival. From ancient times various natural products have been used as traditional medicine against different diseases. Natural products are readily applicable, inexpensive, accessible and acceptable therapeutic approach with minimum cytotoxicity. As most of the target-specific anticancer drugs failed to achieve the expected result so far, new multi-targeted therapies using natural products have become significant. In this review, we have summarized the efficacy of different natural compounds against cancer. They are capable of modulating cancer microenvironment and diverse cell signaling cascades; thus playing a major role in combating cancer. These compounds are found to be effective against several signaling pathways, mainly cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch pathway, Wnt pathway and Hedgehog pathway). This review article is expected to be helpful in understanding the recent progress of natural product research for the development of anticancer drug.
Collapse
Affiliation(s)
- Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
17
|
Lin YS, Chiu YC, Tsai YH, Tsai YF, Wang JY, Tseng LM, Chiu JH. Different mechanisms involved in the berberine-induced antiproliferation effects in triple-negative breast cancer cell lines. J Cell Biochem 2019; 120:13531-13544. [PMID: 30957305 DOI: 10.1002/jcb.28628] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Berberine (BBR) is known to be effective at inhibiting cell proliferation and promoting apoptosis in various cancer cells. However, the effects of BBR on triple-negative breast cancer (TNBC) cells remain unclear. The aim of this study was to investigate the cell inhibition effects of BBR on different subtypes of TNBC cells. METHODS Using human TNBC cell lines of different subtypes, namely, MDA-MB-231, MDA-MB-468, MDA-MB-453, and BT-549 as in vitro models, antiproliferative effects of BBR were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue exclusion assay, and clonogenic assay. Furthermore, cell apoptosis and autophagy were analyzed by flow cytometry, immunofluorescent staining, and LC3 I/II-targeted Western blotting. Various cell growth-related signaling pathways (AKT/ERK/p38) and the expression of proteins present in various cell cycle kinase complexes were analyzed by Western blotting. RESULTS BBR concentration-dependently suppressed cell proliferation in MDA-MB-468 (0, 3, 6, and 12 μM) and MDA-MB-231 (0, 6.25, 12.5, and 25 μM). The inhibitory effect was not brought about by inducing cell apoptosis, necrosis, or autophagy. Cell cycle analysis disclosed an increased S+G2/M fraction among the BBR-treated MDA-MB-231 and MDA-MB-453 cells; while with the BBR-treated MDA-MB-468 and BT-549 lines, an increased G0/G1 fraction was found. In MDA-MB-231 and MDA-MB-453 cells, by Western blotting, BBR decreased the expression of Cyclin A and CDK1, On the other hand, in BBR-treated MDA-MB-468 and BT-549 cells, there was a decrease in Cyclin D and CDK4 expression. CONCLUSION Our results demonstrate that the antiproliferation effects of BBR occur via different mechanisms in different subtypes of TNBC cells, which suggests that BBR has potential as a personalized treatment for TNBC patients.
Collapse
Affiliation(s)
- Yen-Shu Lin
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Chou Chiu
- Division of General Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Yi-Hsiu Tsai
- School of Medicine, Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yi-Fang Tsai
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Jir-You Wang
- Department of Orthopedics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Jen-Hwey Chiu
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,Division of General Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC.,School of Medicine, Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
18
|
Zhu L, Gu P, Shen H. Protective effects of berberine hydrochloride on DSS-induced ulcerative colitis in rats. Int Immunopharmacol 2019; 68:242-251. [PMID: 30743078 DOI: 10.1016/j.intimp.2018.12.036] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Berberine hydrochloride is one the effective compound among Rhizoma Coptidis, Cortex Phellodendri, and other plants. There are several clinical functions of berberine hydrochloride including anti-inflammation, antitumor and immunoregulatory. However, the anti-inflammatory of berberine hydrochloride in ulcerative colitis is barely understood. In this study, we aimed to explore the effects of berberine hydrochloride on dextran sulfate sodium (DSS)-induced rats model of ulcerative colitis. METHODS The severity of colitis were measured by body weight, survial rate, colon length and disease activity index (DAI) score. The cytokines expression include IL-1, IL-1β, IL-4, IL-6, IL-10, IL-12, TNF-α, TGF-β and IFN-γ were performed by RT-PCR and ELISA. Signaling pathway proteins such as p-STAT3, STAT3, p-NF-κB p65 and NF-κB p65 were analyzed by western blot and immunofluorescence. The proteins expression of tight junction were explored using western blotting and immunohistochemistry. RESULT Rats were administered berberine hydrochloride showed less weight loss and longer colon length than the DSS-induced group. The expression of IL-1, IL-1β, IL-6, IL-12, TNF-α, TGF-β and IFN-γ were suppressed, yet the expression of IL-4 and IL-10 were up-regulated by berberine hydrochloride and sulphasalazine treatment compared to the model group. Meanwhile, treatment with berberine hydrochloride effectively increased the expression of SIgA and decreased the expression of iNOS, MPO, MDA. In terms of the biochemical analyses, the results showed that the expression of p-STAT3 was signifcantly increased, while the expression of p-NF-κB (p65) was suppressed compared to the model group via western blot and immunofluorescence analysis. CONCLUSIONS Berberine hydrochloride has beneficial effects in UC. The possible mechanism of anti-inflammatory response by berberine hydrochloride may involve in the blocking of the IL-6/STAT3/NF-κB signaling pathway. Collectively, these fndings provide evidence that berberine hydrochloride might be a useful herb medicine and serve as a promising novel therapy in the treatment of UC in humans.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiang Su Province Hospital of TCM), Nan Jing, 210029, Jiang Su Province, China
| | - PeiQing Gu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiang Su Province Hospital of TCM), Nan Jing, 210029, Jiang Su Province, China
| | - Hong Shen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiang Su Province Hospital of TCM), Nan Jing, 210029, Jiang Su Province, China.
| |
Collapse
|
19
|
Chen J, Ma DN, Fang Y, Zhang N, Zhou JM, Yin XL, Liu F, Chai ZT. Berberine hydrochloride counteracts enhanced IL-8 expression induced by SN 38 in AGS cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:781-792. [PMID: 28679068 DOI: 10.1080/10286020.2017.1346629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
IL-8 over-expression could enhance cancer metastasis. In present study, berberine hydrochloride (BER) triggered proliferative inhibition and G2/M arrest in AGS cells, down-regulated protein expression of cyclin B1, Bcl-2, up-regulated expression of p21, p53 and cleaved caspase 3, but showed no effect on protein expression of CHOP, Bip, and caspase 4. BER could down-regulate the enhanced IL-8 expression through down-regulating ERK1/2 and p38 MAPK over-activation induced by SN 38. The increased IL-8 mediated adhesive ability of AGS cells to HUVECs induced by SN 38, could be reduced by BER. Thus, BER could reduce the side-effect of SN 38 in clinic.
Collapse
Affiliation(s)
- Jin Chen
- b Gamaknife Center, No 411 Hospital of the Chinese People's Liberation Army , Shanghai 200081 , China
| | - De-Ning Ma
- c Department of Liver Surgery , Fudan University Shanghai Cancer Center, Cancer Hospital , Shanghai 200032 , China
| | - Yuan Fang
- d Department of General Surgery , Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Ning Zhang
- c Department of Liver Surgery , Fudan University Shanghai Cancer Center, Cancer Hospital , Shanghai 200032 , China
| | - Jia-Min Zhou
- c Department of Liver Surgery , Fudan University Shanghai Cancer Center, Cancer Hospital , Shanghai 200032 , China
| | - Xiao-Lan Yin
- b Gamaknife Center, No 411 Hospital of the Chinese People's Liberation Army , Shanghai 200081 , China
| | - Feng Liu
- b Gamaknife Center, No 411 Hospital of the Chinese People's Liberation Army , Shanghai 200081 , China
| | - Zong-Tao Chai
- a Department of Hepatic Surgery , Eastern Hepatobiliary Surgery Hospital, Second Military Medical University , Shanghai 200433 , China
| |
Collapse
|
20
|
Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5164314. [PMID: 29849710 PMCID: PMC5925179 DOI: 10.1155/2018/5164314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022]
Abstract
Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS-) induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg), and a dexamethasone (DEX) (5 mg/kg) group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.
Collapse
|
21
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
22
|
Jeong Y, You D, Kang HG, Yu J, Kim SW, Nam SJ, Lee JE, Kim S. Berberine Suppresses Fibronectin Expression through Inhibition of c-Jun Phosphorylation in Breast Cancer Cells. J Breast Cancer 2018; 21:21-27. [PMID: 29628980 PMCID: PMC5880962 DOI: 10.4048/jbc.2018.21.1.21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose The exact mechanism regulating fibronectin (FN) expression in breast cancer cells has not been fully elucidated. In this study, we investigated the pharmacological mechanism of berberine (BBR) with respect to FN expression in triple-negative breast cancer (TNBC) cells. Methods The clinical significance of FN mRNA expression was analyzed using the Kaplan-Meier plotter database (http://kmplot.com/breast). FN mRNA and protein expression levels were analyzed by real-time polymerase chain reaction and western blotting, respectively. Results Using publicly available clinical data, we observed that high FN expression was associated with poor prognosis in patients with breast cancer. FN mRNA and protein expression was increased in TNBC cells compared with non-TNBC cells. As expected, recombinant human FN significantly induced cell spreading and adhesion in MDA-MB231 TNBC cells. We also investigated the regulatory mechanism underlying FN expression. Basal levels of FN mRNA and protein expression were downregulated by a specific activator protein-1 (AP-1) inhibitor, SR11302. Interestingly, FN expression in TNBC cells was dose-dependently decreased by BBR treatment. The level of c-Jun phosphorylation was also decreased by BBR treatment. Conclusion Our findings demonstrate that FN expression is regulated via an AP-1–dependent mechanism, and that BBR suppresses FN expression in TNBC cells through inhibition of AP-1 activity.
Collapse
Affiliation(s)
- Yisun Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Hyun-Gu Kang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| | - Jonghan Yu
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Won Kim
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Nam
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.,Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangmin Kim
- Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Li J, Liu F, Jiang S, Liu J, Chen X, Zhang S, Zhao H. Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways. Oncol Lett 2018; 15:7409-7414. [PMID: 29725453 DOI: 10.3892/ol.2018.8249] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2017] [Indexed: 12/30/2022] Open
Abstract
Berberine, also known as berberine hydrochloride and isoquinoline alkaloid, is a major alkaloid from Coptis chinensis. Berberine's extensive biological properties have previously been studied, and it has been used clinically for the treatment of diarrhea, hypertension, diabetes and other diseases. The present study aimed to determine the possible anticancer effects of berberine hydrochloride treatment on human non-small cell lung cancer (NSCLC) cell proliferation and apoptosis via the matrix metalloproteinase 2 (MMP-2) and the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) signaling pathway. Human A549 lung carcinoma cells were exposed to various concentrations of berberine hydrochloride in order to analyze the possible anticancer effects on NSCLC cell proliferation and apoptosis, using a MTT assay and an Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis kit. Subsequently, the present study detected the expression of MMP-2, Bcl-2, Bax and Janus kinase 2 (Jak2). Berberine hydrochloride treatment inhibited the expression of vascular endothelial growth factor (VEGF) and nuclear factor κB (NF-κB) and transcription factor AP-1 (AP-1) proteins, in A549 cells. Firstly, it was revealed that berberine hydrochloride treatment may inhibit proliferation, increase cytotoxicity and enhance apoptosis in A549 cells. Subsequently, treatment with berberine hydrochloride significantly downregulated MMP-2 protein expression, increased the activity of the Bcl-2/Bax signaling pathway and suppressed the Jak2/VEGF/NF-κB/AP-1signaling pathways. These results suggest that berberine hydrochloride may be a potential novel anticancer drug, since it inhibits cell proliferation and promotes the rate of apoptosis of NSCLC cells by the suppression of the MMP-2, Bcl-2/Bax and Jak2/VEGF/NF-κB/AP-1 signaling pathways.
Collapse
Affiliation(s)
- Jie Li
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Fang Liu
- Department of Oncology, Dongying City People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Shulong Jiang
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute Shandong Academy of Medical Sciences, Jinan, Shandong 257091, P.R. China
| | - Xiuhong Chen
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shangnuan Zhang
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Haibo Zhao
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
24
|
Liu B, Fu XQ, Li T, Su T, Guo H, Zhu PL, Tse AKW, Liu SM, Yu ZL. Computational and experimental prediction of molecules involved in the anti-melanoma action of berberine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:225-235. [PMID: 28729227 DOI: 10.1016/j.jep.2017.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/07/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Berberine (BBR) is a naturally occurring alkaloid compound that can be found in Chinese medicinal herbs such as Rhizoma Coptidis and Phellodendri Cortex. These BBR containing herbs are commonly used by Chinese medicine doctors to treat cancers including melanoma. In this study, we explored proteins potentially involved in the anti-melanoma effects of BBR using computational and experimental approaches. MATERIALS AND METHODS Target proteins of BBR were predicted using the reverse pharmacophore screening, molecular docking and molecular dynamics. Anti-melanoma activities of BBR in melanoma cells were examined by MTT and EdU proliferation assays. Effects of BBR on activities of target proteins in melanoma cells were examined by Western blotting or fluorescence assay. RESULTS Ten proteins implicated in cancer and with high fit-score in the reverse pharmacophore screening were selected as potential targets of BBR. Molecular docking and molecular dynamics revealed that BBR could stably bind to four of the ten proteins, namely 3-phosphoinositide-dependent protein kinase 1 (PDK1), glucocorticoid receptor (GR), p38 mitogen-activated protein kinase (p38) and dihydroorotate dehydrogenase (DHODH). Cellular experiments showed that BBR inhibited cell proliferation, increased the phosphorylation of GR and p38, and inhibited the activity of DHODH in A375 human melanoma cells. CONCLUSIONS These findings suggest that p38, GR and DHODH are potentially involved in the anti-melanoma action of BBR. This study provided a chemical and pharmacological justification for the clinical use of BBR-containing herbs in melanoma treatment.
Collapse
Affiliation(s)
- Bin Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Anfernee Kai-Wing Tse
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Shi-Ming Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China; HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
25
|
Zhang L, Lou WH, Xu XF, Wu W, Rong YF, Jin DY. SN38 increases IL-8 expression through the MAPK pathways in HCT8 cells. Int J Mol Med 2016; 39:217-222. [PMID: 27878250 DOI: 10.3892/ijmm.2016.2810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/09/2016] [Indexed: 11/05/2022] Open
Abstract
The overexpression of interleukin-8 (IL-8) is closely associated with poor tumor differentiation, metastasis and tumor progression. This study aimed to examine the effects and mechanisms of action of SN38 (a metabolite of the camptothecin derivative, CPT-11) on IL-8 expression in HCT8 cells, using ELISA, CCK-8 and western blot analysis. Among jatrorrhizine, evodiamine, 5-fluorouracil and SN38, SN38 was found to inhibit the proliferation of HCT8 cells in a dose-dependent manner, but to increase IL-8 secretion from HCT8 cells. Of the other agents, evodiamine was found to inhibit both IL-8 secretion and cell proliferation, and jatrorrhizine was found to increase IL-8 secretion without any obvious inhibitory effect on cell proliferation. Further experiments revealed that the increased activation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK) by SN38 contributed to the decreased cell proliferation and to the overexpression of IL-8 induced by SN38. Our results suggested that the MAPK pathways are activated by SN38, resulting in the upregulation of IL-8 expression and in the inhibition of cell proliferation in an IL-8-independent manner. Thus, the potential benefit of the use of a combination of camptothecin-11 with other chemical drugs with inhibitory effects on IL-8 expression, should be paid more attention in treating colon cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan Universitiy, Shanghai 200232, P.R. China
| | - Wen-Hui Lou
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan Universitiy, Shanghai 200232, P.R. China
| | - Xue-Feng Xu
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan Universitiy, Shanghai 200232, P.R. China
| | - Wenchuan Wu
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan Universitiy, Shanghai 200232, P.R. China
| | - Ye-Fei Rong
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan Universitiy, Shanghai 200232, P.R. China
| | - Da-Yong Jin
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan Universitiy, Shanghai 200232, P.R. China
| |
Collapse
|
26
|
Gómez EO, Chirino YI, Delgado-Buenrostro NL, López-Saavedra A, Meraz-Cruz N, López-Marure R. Secretome derived from breast tumor cell lines alters the morphology of human umbilical vein endothelial cells. Mol Membr Biol 2016; 33:29-37. [PMID: 27690154 DOI: 10.1080/09687688.2016.1229057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Metastases, responsible for most of the solid tumor associated deaths, require angiogenesis and changes in endothelial cells. In this work, the effect of the secretomes of three breast tumor cell lines (MCF-7, MDA-MB-231 and ZR-75-30) on human umbilical vein endothelial cells (HUVEC) morphology was investigated. HUVEC treated with secretomes from breast cells were analyzed by confocal and time-lapse microscopy. Secretomes from ZR-75-30 and MDA-MB-231 cells modify the morphology and adhesion of HUVEC. These changes may provoke the loss of endothelial monolayer integrity. In consequence, tumor cells could have an increased access to circulation, which would then enhance metastasis.
Collapse
Affiliation(s)
- Erika Olivia Gómez
- a Universidad Autónoma de la Ciudad de México, Colegio de Ciencias y Humanidades , Plantel San Lorenzo Tezonco , México
| | | | | | | | | | - Rebeca López-Marure
- e Departamento de Fisiología (Biología Celular) , Instituto Nacional de Cardiología "Ignacio Chávez" , México
| |
Collapse
|
27
|
Wang HY, Yu HZ, Huang SM, Zheng YL. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells. Mol Med Rep 2016; 14:3855-61. [PMID: 27601129 DOI: 10.3892/mmr.2016.5696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 07/21/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Hai-Zhong Yu
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Sheng-Mou Huang
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Yu-Lan Zheng
- Department of Respiratory Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
28
|
Choi YH. Berberine Hydrochloride Protects C2C12 Myoblast Cells Against Oxidative Stress-Induced Damage via Induction of Nrf-2-Mediated HO-1 Expression. Drug Dev Res 2016; 77:310-8. [DOI: 10.1002/ddr.21325] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/25/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Yung Hyun Choi
- Department of Biochemistry; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
- Anti-Aging Research Center; Dongeui University; Busan 614-714 South Korea
| |
Collapse
|
29
|
Li HL, Wu H, Zhang BB, Shi HL, Wu XJ. MAPK pathways are involved in the inhibitory effect of berberine hydrochloride on gastric cancer MGC 803 cell proliferation and IL-8 secretion in vitro and in vivo. Mol Med Rep 2016; 14:1430-8. [PMID: 27278862 DOI: 10.3892/mmr.2016.5361] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 05/20/2016] [Indexed: 01/05/2023] Open
Abstract
Gastric cancer is the second leading cause of cancer-associated mortality worldwide. This investigation aimed to identify whether the mitogen‑activated protein kinase (MAPK) signaling pathways are involved in the inhibitory effect of berberine hydrochloride (BER) on MGC 803 cells in vitro and in vivo. BER time‑ and dose‑dependently inhibited proliferation of MGC 803 cells. It also suppressed tumorigenesis in nude mice xenografted with MGC 803 cells. Additionally, BER reduced interleukin‑8 (IL‑8) secretion in vitro and in vivo. Further investigation demonstrated that inactivation of p38 MAPK, extracellular-signal regulated kinase 1/2 and c‑Jun N‑terminal kinase by BER contributed to the decreased proliferation and tumorigenesis, and the change in IL‑8 expression levels. However, there was no significant synergistic inhibitory effect of combined BER and evodiamine (EVO) treatment on tumorigenesis, and BER reduced the upregulation of IL‑8 induced by EVO in vivo. The results of the current study suggested that BER may be an effective and safe drug candidate for treating gastric cancer via modulation of the MAPK signaling pathways.
Collapse
Affiliation(s)
- Hong-Li Li
- Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hui Wu
- Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|