1
|
Singh AA, Khan F, Song M. Alleviation of Neurological Disorders by Targeting Neurodegenerative-Associated Enzymes: Natural and Synthetic Molecules. Int J Mol Sci 2025; 26:4707. [PMID: 40429850 PMCID: PMC12112699 DOI: 10.3390/ijms26104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Neurological disorders, encompassing neurodegenerative and neuroinflammatory conditions, present significant public health and clinical challenges. Recent research has elucidated the pivotal role of various enzymes in the onset and progression of these disorders. This review explores the therapeutic potential of targeting these enzymes with natural and synthetic molecules. Key enzymes, including acetylcholinesterase, monoamine oxidase, beta-secretase, tau kinases, caspases, and cyclooxygenase-2, are implicated in diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Modulating these enzymes can alleviate symptoms, slow disease progression, or reverse pathological changes. Natural molecules derived from plants, microbes, seaweeds, and animals have long been noted for their therapeutic potential. Their ability to interact with specific enzymes with high specificity and minimal side effects makes them promising candidates for treatment. These natural agents provide a foundation for developing targeted therapies with improved safety profiles. Simultaneously, the development of synthetic chemistry has resulted in molecules designed to inhibit neurodegenerative enzymes with precision. This review examines the progress in creating small molecules, peptides, and enzyme inhibitors through sophisticated drug design techniques. It evaluates the efficacy, safety, and mechanisms of these synthetic agents, highlighting their potential for clinical application. The review offers a comprehensive overview of recent advancements in enzyme-targeted therapies for neurological disorders, covering both natural and synthetic molecules investigated in preclinical and clinical settings. It discusses the mechanisms through which these molecules exert their effects, the challenges faced in their development, and future research directions. By synthesizing current knowledge, this paper aims to illuminate the potential of enzyme-targeted interventions in managing neurological disorders, showcasing both the promise and limitations of these approaches.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
2
|
Esmaeili Z, Shavali Gilani P, Khosravani M, Motamedi M, Maleknejad S, Adabi M, Sadighara P. Nanotechnology-driven EGCG: bridging antioxidant and therapeutic roles in metabolic and cancer pathways. Nanomedicine (Lond) 2025; 20:621-636. [PMID: 39924937 PMCID: PMC11881875 DOI: 10.1080/17435889.2025.2462521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the primary polyphenol in green tea, is renowned for its potent antioxidant properties. EGCG interacts with various cellular targets, inhibiting cancer cell proliferation through apoptosis and cell cycle arrest induction, while also modulating metabolic pathways. Studies have demonstrated its potential in addressing cancer development, obesity, and diabetes. Given the rising prevalence of metabolic diseases and cancers, EGCG is increasingly recognized as a promising therapeutic agent. This review provides a comprehensive overview of the latest findings on the effects of both free and nano-encapsulated EGCG on mechanisms involved in the management and prevention of hyperlipidemia, diabetes, and gastrointestinal (GI) cancers. The review highlights EGCG role in modulating key signaling pathways, enhancing bioavailability through nano-formulations, and its potential applications in clinical settings.
Collapse
Affiliation(s)
- Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Shavali Gilani
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Motamedi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokofeh Maleknejad
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Garcia B, Dominguez MF, Spangenberg L, Fernandez-Calero T. Salivary microbiota characterization of Yerba Mate consumers in Uruguay. Clin Oral Investig 2025; 29:131. [PMID: 39954023 DOI: 10.1007/s00784-025-06209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Yerba Mate (YM) is a green-colored infusion, derived from the Ilex paraguariensis plant, very popular and commonly consumed in Latin American countries (southern Brazil, Argentina, Paraguay, and Uruguay), rapidly gaining penetration in global markets, It's a beverage rich in polyphenols, alkaloids, and saponins, making its impact on the oral microbiome particularly interesting. OBJECTIVES This study aimed to characterize the composition of salivary microbiota in Uruguayan YM consumers and non-consumers, exploring potential implications for oral health. MATERIALS AND METHODS Salivary samples were collected from 24 YM consumers and 28 non-consumers in Uruguay (n = 52). Participants were dentistry students, aged 18 to 35, with no reported pathologies and who had no oral conditions after visual inspection. 16S rRNA gene metabarcoding Illumina sequencing was employed to analyze their microbial composition. Bioinformatic analysis was conducted to identify and compare microbial taxa between the two groups. Relevant demographic and dietary data were also collected and analyzed. RESULTS The salivary microbiome of YM consumers is not completely different from non-consumers, however, several particular characteristics were found in each group. Both YM consumers and non-consumers exhibited a high relative abundance of Streptococcus species, with Streptococcus oralis being more abundant in a subset of non-consumers suggesting that YM may help maintain a balanced oral microbiota. Although no significant differences were observed in the Shannon diversity index, YM consumers might have a more diverse microbiome than non-consumers (YM consumers showed significantly higher species richness (Chao1 index), a greater number of amplicon sequence variants (ASVs), and broader microbial diversity, as confirmed by multivariate analyses). While the presence of Prevotella spp. in YM consumers aligns with previous research on polyphenol-rich beverages, its role in oral health warrants further investigation. CONCLUSIONS This study highlights the influence of YM consumption on salivary microbiota composition and diversity. YM consumption was associated with increased microbial diversity and species richness, which may contribute to oral microbiome resilience and health. These findings underscore the impact of dietary habits on oral microbial communities and their potential implications for oral health management and disease prevention.
Collapse
Affiliation(s)
- Barbara Garcia
- Departamento de Fisiopatología, Facultad de Odontología, Universidad de La República (UDELAR), Montevideo, Uruguay
| | - María Fernanda Dominguez
- Departamento de Genética, Facultad de Medicina, Universidad de La República (UDELAR), Montevideo, Uruguay
- Universidad Católica del Uruguay, 11600, Montevideo, Uruguay
| | - Lucia Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de La República (UDELAR), Montevideo, Uruguay.
| | - Tamara Fernandez-Calero
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Departmento de Ciencias Exactas y Naturales, Universidad Católica del Uruguay, 11600, Montevideo, Uruguay.
| |
Collapse
|
4
|
Farhan M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. Int J Mol Sci 2022; 23:ijms231810713. [PMID: 36142616 PMCID: PMC9501439 DOI: 10.3390/ijms231810713] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Green tea’s (Camellia sinensis) anticancer and anti-inflammatory effects are well-known. Catechins are the most effective antioxidants among the physiologically active compounds found in Camellia sinesis. Recent research demonstrates that the number of hydroxyl groups and the presence of specific structural groups have a substantial impact on the antioxidant activity of catechins. Unfermented green tea is the finest source of these chemicals. Catechins have the ability to effectively neutralize reactive oxygen species. The catechin derivatives of green tea include epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG). EGCG has the greatest anti-inflammatory and anticancer potential. Notably, catechins in green tea have been explored for their ability to prevent a variety of cancers. Literature evidence, based on epidemiological and laboratory studies, indicates that green tea catechins have certain properties that can serve as the basis for their consideration as lead molecules in the synthesis of novel anticancer drugs and for further exploration of their role as pharmacologically active natural adjuvants to standard chemotherapeutics. The various sections of the article will focus on how catechins affect the survival, proliferation, invasion, angiogenesis, and metastasis of tumors by modulating cellular pathways.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
5
|
Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, AL-Yasari IH. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules 2022; 27:5452. [PMID: 36080219 PMCID: PMC9458090 DOI: 10.3390/molecules27175452] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is still one of the most widespread diseases globally, it is considered a vital health challenge worldwide and one of the main barriers to long life expectancy. Due to the potential toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative treatments is a top priority. Plant-derived natural products have high potential in cancer treatment due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of natural product or natural products with chemotherapeutic drugs was provided. This review should provide a strong platform for researchers and clinicians to improve basic and clinical research in the development of alternative anticancer medicines.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Aya O. Azzam
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 964, Iraq
| |
Collapse
|
6
|
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Aggarwal D, Barwal TS, Jain A, Kaur G, Sak K, Varol M, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2022; 80:256-275. [PMID: 32461153 DOI: 10.1016/j.semcancer.2020.05.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka 1205, Bangladesh
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Erin E Ritzer
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400 056, Maharastra, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla TR48000, Turkey
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| |
Collapse
|
7
|
Luo H, Ge H. Hot Tea Consumption and Esophageal Cancer Risk: A Meta-Analysis of Observational Studies. Front Nutr 2022; 9:831567. [PMID: 35479756 PMCID: PMC9035825 DOI: 10.3389/fnut.2022.831567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Many laboratory studies have shown that tea consumption protected against the development of esophageal cancer (EC). However, in epidemiological studies, inconsistent or even contradictory results were frequently observed, especially when drinking tea at higher temperatures. Methods We conducted a meta-analysis based on published observational studies to explore whether hot tea consumption was a risk factor of EC. Relevant studies were searched in PubMed, Embase, and Web of science up to October 13, 2021, and we also manually retrieved the literature in the included studies and recent reviews. Results A total of 23 eligible reports were identified, including 5,050 cases and 10,609 controls, and a meta-analysis with Comprehensive Meta-Analysis (CMA) software (version 2.0) was conducted. A statistically significant increased EC risk was observed when drinking tea at higher temperature (odds ratios (ORs) = 1.79, 95% CI: 1.48–2.15, p = 0.00). Except for esophageal adenocarcinoma (EAC), this increased risk was also found in the majority of subgroups, which are the European and Australian populations. Conclusions This meta-analysis showed that people who drank hot tea had a significantly increased risk of Esophageal squamous cell carcinoma (ESCC), but no significant association for EAC.
Collapse
|
8
|
Ashry R, Elhussiny M, Abdellatif H, Elkashty O, Abdel-Ghaffar HA, Gaballa ET, Mousa SA. Genetic Interpretation of the Impacts of Honokiol and EGCG on Apoptotic and Self-Renewal Pathways in HEp-2 Human Laryngeal CD44 high Cancer Stem Cells. Nutr Cancer 2021; 74:2152-2173. [PMID: 34590505 DOI: 10.1080/01635581.2021.1981404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most current larynx cancer therapies are generally aimed at the global mass of tumor, targeting the non-tumorigenic cells, and unfortunately sparing the tumorigenic cancer stem cells (CSCs) that are responsible for sustained growth, metastasis, and chemo- and radioresistance. Phytochemicals and herbs have recently been introduced as therapeutic sources for eliminating CSCs. Therefore, we assessed the anti-tumor effects of two herbal ingredients, the green tea extract "Epigallocatechin-3-gallate (EGCG)" and Honokiol (HNK), on parental cells or CD44high CSCs of the human laryngeal squamous cell carcinoma cell line HEp-2. Results revealed that EGCG had a preeminent apoptotic potential on HEp-2 laryngeal CSCs. HNK conferred higher cytotoxic impacts on parental cells mostly by necrosis induction, especially with higher doses, but apoptosis induction with lower doses was also observed. The Notch signaling pathway genes were more potently suppressed by EGCG than HNK. However, HNK surpassed EGCG in downregulating the β-catenin and the Sonic Hedgehog signaling pathways genes. On a genetic basis, both agents engaged the BCL-2 family-regulated and caspase-dependent intrinsic apoptotic pathway, but EGCG and HNK triggered apoptosis via p53-independent and p53-dependent pathways, respectively. Taken together, EGCG and HNK eradicated HEp-2 human larynx cancer cells through targeting multiple self-renewal pathways and activating diverse cell death modalities.
Collapse
Affiliation(s)
- Ramy Ashry
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.,Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mahmoud Elhussiny
- Institute of Global Health and Human Ecology, American University in Cairo (AUC), Cairo, Egypt.,Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.,Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama Elkashty
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Craniofacial Tissue and Stem Cell Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Hassan A Abdel-Ghaffar
- Hematology Laboratory, Oncology Center, Mansoura University, Mansoura, Egypt.,Hematology section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Essam T Gaballa
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Oral Pathology Department, Faculty of Dentistry, Delta University, Mansoura, Egypt
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
9
|
Batool A, Hazafa A, Ahmad S, Khan HA, Abideen HMZ, Zafar A, Bilal M, Iqbal HMN. Treatment of lymphomas via regulating the Signal transduction pathways by natural therapeutic approaches: A review. Leuk Res 2021; 104:106554. [PMID: 33684680 DOI: 10.1016/j.leukres.2021.106554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Lymphoma is a heterogeneous group of malignancies, which comprises 4.2 % of all new cancer cases and 3.3 % of all cancer deaths in 2019, globally. The dysregulation of immune system, certain bacterial or viral infections, autoimmune diseases, and immune suppression are associated with a high risk of lymphoma. Although several conventional strategies have improved during the past few decades, but their detrimental impacts remain an obstacle to be resolved. However, natural compounds are considered a good option in the treatment of lymphomas because of their easy accessibility, specific mode of action, high biodegradability, and cost-effectiveness. Vegetables, fruits, and beverages are the primary sources of natural active compounds. The present review investigated the activities of different natural medicinal compounds including curcumin, MK615, resveratrol, bromelain, EGCG, and Annonaceous acetogenins to treat lymphomas. Moreover, in vitro and in vivo studies, classification, risk factors, and diagnosis of lymphoma are also discussed in the present review. The accumulated data proposed that natural compounds regulate the signaling pathways at the level of cell proliferation, apoptosis, and cell cycle to exhibit anti-lymphoma activities both in-vivo and in-vitro studies and suggested that these active compounds could be a good therapeutic option in the treatment of different types of lymphomas.
Collapse
Affiliation(s)
- Ammara Batool
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38000, Pakistan; International Society of Engineering Science and Technology, Coventry, CV1 5EH, United Kingdom.
| | - Saeed Ahmad
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Hamid Ali Khan
- Institute of Biological Sciences, Sarhad University of Science and Information Technology, Peshawar, 25000, Pakistan
| | - Hafiz M Z Abideen
- Institute of Public Health, The University of Lahore, Lahore, 54590, Pakistan
| | - Ayesha Zafar
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849, Monterrey, NL, Mexico
| |
Collapse
|
10
|
Lee Y, Lee J, Lim C. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Sci Biotechnol 2021; 30:321-340. [PMID: 33868744 PMCID: PMC8017064 DOI: 10.1007/s10068-021-00899-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Since researchers began studying the mechanism of flavonoids' anticancer activity, little attention has been focused on the modulation of redox state in cells as a potential chemotherapeutic strategy. However, recent studies have begun identifying that the anticancer effect of flavonoids occurs both in their antioxidative activity which scavenges ROS and their prooxidative activity which generates ROS. Against this backdrop, this study attempts to achieve a comprehensive analysis of the individual and separate study findings regarding flavonoids' modulation of redox state in cancer cells. It focuses on the mechanism behind the anticancer effect, and mostly on the modulation of redox potential by flavonoids such as quercetin, hesperetin, apigenin, genistein, epigallocatechin-3-gallate (EGCG), luteolin and kaempferol in both in vitro and animal models. In addition, the clinical applications of and bioavailability of flavonoids were reviewed to help build a treatment strategy based on flavonoids' prooxidative potential.
Collapse
Affiliation(s)
- Yongkyu Lee
- Foood and Nutrition, College of Science and Engineering, Dongseo University, Jurae-ro 47, Sasang-Gu, Busan, 47011 Korea
| | - Jehyung Lee
- Department of Medicine, College of Medicine, Dong-A University, Daesingongwon-ro 32, Seo-Gu, Busan, 49201 Korea
| | - Changbaek Lim
- Central Research & Development Center, Daewoo Pharmaceutical Co, LTD. 153, Dadae-ro, Saha-gu, Busan, 49393 Korea
| |
Collapse
|
11
|
Fan X, Xiao X, Mao X, Chen D, Yu B, Wang J, Yan H. Tea bioactive components prevent carcinogenesis via anti-pathogen, anti-inflammation, and cell survival pathways. IUBMB Life 2021; 73:328-340. [PMID: 33368980 DOI: 10.1002/iub.2445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023]
Abstract
Cancer seriously impairs human health and survival. Many perturbations, such as increased oxidative stress, pathogen infection, and inflammation, promote the accumulation of DNA mutations, and ultimately lead to carcinogenesis. Tea is one of the most highly consumed beverages worldwide and has been linked to improvements in human health. Tea contains many active components, including tea polyphenols, tea polysaccharides, L-theanine, tea pigments, and caffeine among other common components. Several studies have identified components in tea that can directly or indirectly reduce carcinogenesis with some being used in a clinical setting. Many previous studies, in vitro and in vivo, have focused on the mechanisms that functional components of tea utilized to protect against cancer. One particular mechanism that has been well described is an improvement in antioxidant capacity seen with tea consumption. However, other mechanisms, including anti-pathogen, anti-inflammation and alterations in cell survival pathways, are also involved. The current review focuses on these anti-cancer mechanisms. This will be beneficial for clinical utilization of tea components in preventing and treating cancer in the future.
Collapse
Affiliation(s)
- Xiangqi Fan
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Xiangjun Xiao
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| | - Hui Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key Laboratory of Animal Disease-Resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Chengdu, China
| |
Collapse
|
12
|
Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:25. [PMID: 33495733 PMCID: PMC7816146 DOI: 10.1186/s43094-020-00161-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Natural plants and plant-derived formulations have been used by mankind from the ancient period of time. For the past few years, many investigations elaborated the therapeutic potential of various secondary chemicals present in the plants. Literature revealed that the various secondary metabolites, viz. phenolics and flavonoids, are responsible for a variety of therapeutic action in humans. MAIN BODY In the present review, an attempt has been made to compile the exploration of natural phenolic compounds with major emphasis on flavonoids and their therapeutic potential too. Interestingly, long-term intake of many dietary foods (rich in phenolics) proved to be protective against the development and management of diabetes, cancer, osteoporosis, cardiovascular diseases and neurodegenerative diseases, etc. CONCLUSION This review presents an overview of flavonoid compounds to use them as a potential therapeutic alternative in various diseases and disorders. In addition, the present understanding of phenolics and flavonoids will serve as the basis for the next scientific studies.
Collapse
Affiliation(s)
- Rakesh E. Mutha
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Anilkumar U. Tatiya
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Sanjay J. Surana
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| |
Collapse
|
13
|
Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer. Molecules 2020; 25:molecules25143146. [PMID: 32660101 PMCID: PMC7397003 DOI: 10.3390/molecules25143146] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), an active compound of green tea and its role in diseases cure and prevention has been proven. Its role in diseases management can be attributed to its antioxidant and anti-inflammatory properties. The anti-cancer role of this green tea compound has been confirmed in various types of cancer and is still being under explored. EGCG has been proven to possess a chemopreventive effect through inhibition of carcinogenesis process such as initiation, promotion, and progression. In addition, this catechin has proven its role in cancer management through modulating various cell signaling pathways such as regulating proliferation, apoptosis, angiogenesis and killing of various types of cancer cells. The additive or synergistic effect of epigallocatechin with chemopreventive agents has been verified as it reduces the toxicities and enhances the anti-cancerous effects. Despite its effectiveness and safety, the implications of EGCG in cancer prevention is certainly still discussed due to a poor bioavailability. Several studies have shown the ability to overcome poor bioavailability through nanotechnology-based strategies such as encapsulation, liposome, micelles, nanoparticles and various other formulation. In this review, we encapsulate therapeutic implication of EGCG in cancer management and the mechanisms of action are discussed with an emphasis on human clinical trials.
Collapse
|
14
|
Asghar A, Rasool MS, Younas T, Basit M, Amjad O, Lillah. Precision Nutraceutical Approaches for the Prevention and Management of Cancer. 'ESSENTIALS OF CANCER GENOMIC, COMPUTATIONAL APPROACHES AND PRECISION MEDICINE 2020:431-449. [DOI: 10.1007/978-981-15-1067-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Liu C, Li P, Qu Z, Xiong W, Liu A, Zhang S. Advances in the Antagonism of Epigallocatechin-3-gallate in the Treatment of Digestive Tract Tumors. Molecules 2019; 24:molecules24091726. [PMID: 31058847 PMCID: PMC6539113 DOI: 10.3390/molecules24091726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Due to changes in the dietary structure of individuals, the incidence of digestive tract tumors has increased significantly in recent years, causing a serious threat to the life and health of patients. This has in turn led to an increase in cancer prevention research. Many studies have shown that epigallocatechin-3-gallate (EGCG), an active ingredient in green tea, is in direct contact with the digestive tract upon ingestion, which allows it to elicit a significant antagonizing effect on digestive tract tumors. The main results of EGCG treatment include the prevention of tumor development in the digestive tract and the induction of cell cycle arrest and apoptosis. EGCG can be orally administered, is safe, and combats other resistances. The synergistic use of cancer drugs can promote the efficacy and reduce the anti-allergic properties of drugs, and is thus, favored in medical research. EGCG, however, currently possesses several shortcomings such as poor stability and low bioavailability, and its clinical application prospects need further development. In this paper, we have systematically summarized the research progress on the ability of EGCG to antagonize the activity and mechanism of action of digestive tract tumors, to achieve prevention, alleviation, delay, and even treat human gastrointestinal tract tumors via exogenous dietary EGCG supplementation or the development of new drugs containing EGCG.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China.
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
16
|
Yi J, Li S, Wang C, Cao N, Qu H, Cheng C, Wang Z, Wang L, Zhou L. Potential applications of polyphenols on main ncRNAs regulations as novel therapeutic strategy for cancer. Biomed Pharmacother 2019; 113:108703. [DOI: 10.1016/j.biopha.2019.108703] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
|
17
|
Wang LX, Shi YL, Zhang LJ, Wang KR, Xiang LP, Cai ZY, Lu JL, Ye JH, Liang YR, Zheng XQ. Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Esophageal Cancer. Molecules 2019; 24:molecules24050954. [PMID: 30857144 PMCID: PMC6429180 DOI: 10.3390/molecules24050954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
There is epidemiological evidence showing that drinking green tea can lower the risk of esophageal cancer (EC). The effect is mainly attributed to tea polyphenols and their most abundant component, (−)-epigallocatechin-3-gallate (EGCG). The possible mechanisms of tumorigenesis inhibition of EGCG include its suppressive effects on cancer cell proliferation, angiogenesis, DNA methylation, metastasis and oxidant stress. EGCG modulates multiple signal transduction and metabolic signaling pathways involving in EC. A synergistic effect was also observed when EGCG was used in combination with other treatment methods.
Collapse
Affiliation(s)
- Liu-Xiang Wang
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Zhengzhou 450008, Henan, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Long-Jie Zhang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Kai-Rong Wang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Li-Ping Xiang
- National Tea and Tea Product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D. Flavonoids in Cancer and Apoptosis. Cancers (Basel) 2018; 11:cancers11010028. [PMID: 30597838 PMCID: PMC6357032 DOI: 10.3390/cancers11010028] [Citation(s) in RCA: 416] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer is the second leading cause of death globally. Although, there are many different approaches to cancer treatment, they are often painful due to adverse side effects and are sometimes ineffective due to increasing resistance to classical anti-cancer drugs or radiation therapy. Targeting delayed/inhibited apoptosis is a major approach in cancer treatment and a highly active area of research. Plant derived natural compounds are of major interest due to their high bioavailability, safety, minimal side effects and, most importantly, cost effectiveness. Flavonoids have gained importance as anti-cancer agents and have shown great potential as cytotoxic anti-cancer agents promoting apoptosis in cancer cells. In this review, a summary of flavonoids and their effectiveness in cancer treatment targeting apoptosis has been discussed.
Collapse
Affiliation(s)
- Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Sharon Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box 24144, Qatar.
| |
Collapse
|
19
|
Miyata Y, Matsuo T, Araki K, Nakamura Y, Sagara Y, Ohba K, Sakai H. Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer. MEDICINES (BASEL, SWITZERLAND) 2018; 5:medicines5030087. [PMID: 30103466 PMCID: PMC6164790 DOI: 10.3390/medicines5030087] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 05/12/2023]
Abstract
Green tea and green tea polyphenols (GTPs) are reported to inhibit carcinogenesis and malignant behavior in several diseases. Various in vivo and in vitro studies have shown that GTPs suppress the incidence and development of bladder cancer. However, at present, opinions concerning the anticancer effects and preventive role of green tea are conflicting. In addition, the detailed molecular mechanisms underlying the anticancer effects of green tea in bladder cancer remain unclear, as these effects are regulated by several cancer-related factors. A detailed understanding of the pathological roles and regulatory mechanisms at the molecular level is necessary for advancing treatment strategies based on green tea consumption for patients with bladder cancer. In this review, we discuss the anticancer effects of GTPs on the basis of data presented in in vitro studies in bladder cancer cell lines and in vivo studies using animal models, as well as new treatment strategies for patients with bladder cancer, based on green tea consumption. Finally, on the basis of the accumulated data and the main findings, we discuss the potential usefulness of green tea as an antibladder cancer agent and the future direction of green tea-based treatment strategies for these patients.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Yuichiro Nakamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 852-8501 Nagasaki, Japan.
| |
Collapse
|
20
|
Antitumor activities of Quercetin and Green Tea in xenografts of human leukemia HL60 cells. Sci Rep 2018; 8:3459. [PMID: 29472583 PMCID: PMC5823936 DOI: 10.1038/s41598-018-21516-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/06/2018] [Indexed: 11/25/2022] Open
Abstract
Quercetin is one of the most abundant flavonoids, present in fruits and vegetables and has been shown to have multiple properties capable of reducing cell growth in cancer cells. Green tea is a widely consumed beverage, known for a potential source of free radical scavenging and anti-cancer activities. Herein, we investigate the in vivo antitumor efficacy of quercetin and green tea in human leukemia. Human tumors were xenografted into NOD/SCID mice. Quercetin and green tea reduced tumor growth in HL-60 xenografts accompanied by decreased expression of anti-apoptotic proteins, BCL-2, BCL-XL and MCL-1 and increased expression of BAX, a pro-apoptotic protein. Moreover, caspase-3 was activated to a greater extent after quercetin and green tea treatment. Quercetin and green tea also mediated G1 phase cell cycle arrest in HL-60 xenografts. Treatment with quercetin and green tea induced conversion of LC3-I to LC3-II as well as activation of autophagy proteins, suggesting that quercetin and green tea initiate the autophagic progression. We have provided evidence that quercetin and green tea induces signaling at the level of apoptosis, cell cycle and autophagy which converge to antigrowth effects in HL-60 xenograft mice suggesting that these compounds may be a compelling ally in cancer treatment.
Collapse
|
21
|
Jiao L, Bi L, Lu Y, Wang Q, Gong Y, Shi J, Xu L. Cancer chemoprevention and therapy using chinese herbal medicine. Biol Proced Online 2018; 20:1. [PMID: 29321719 PMCID: PMC5757296 DOI: 10.1186/s12575-017-0066-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Traditional Chinese medicine (TCM) plays an indispensable role in cancer prevention and treatment. Chinese herbal medicine (CHM) is a key component of TCM and has been practiced for thousands of years. A number of naturally occurring products from Chinese herbs extracts exhibit strong inhibitory properties against carcinogenesis, including CHM single-herb extracts, CHM-derived active components, and CHM formulas (the polyherbal combinations), which regulate JAK/STAT, MAPK, and NF-ҡB pathways. The present review aims to report the cancer-preventive effect of CHM with evidence from cell-line, animal, epidemiological, and clinical experiments. We also present several issues that have yet to be resolved. In the future, cancer prevention by CHM will face unprecedented opportunities and challenges.
Collapse
Affiliation(s)
- Lijing Jiao
- Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China.,Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Yan Lu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Qin Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Jun Shi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| |
Collapse
|
22
|
Amani H, Ajami M, Nasseri Maleki S, Pazoki-Toroudi H, Daglia M, Tsetegho Sokeng AJ, Di Lorenzo A, Nabavi SF, Devi KP, Nabavi SM. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochimie 2017; 142:63-79. [DOI: 10.1016/j.biochi.2017.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
|
23
|
Yao S, Zhong L, Chen M, Zhao Y, Li L, Liu L, Xu T, Xiao C, Gan L, Shan Z, Liu B. Epigallocatechin-3-gallate promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells via PTEN. Int J Oncol 2017; 51:899-906. [PMID: 28766684 DOI: 10.3892/ijo.2017.4086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a distinctive subtype of acute myeloid leukemia (AML) in which the hybrid protein promyelocytic leukemia protein/retinoic acid receptor α (PML/RARα) acts as a transcriptional repressor impairing the expression of genes that are critical to myeloid cell mutation. We aimed at explaining the molecular mechanism of green tea polyphenol epigallocatechin-3-gallate (EGCG) enhancement of ATRA-induced APL cell line differentiation. Tumor suppressor phosphatase and tensin homolog (PTEN) was found downregulated in NB4 cells and rescued by proteases inhibitor MG132. A significant increase of PTEN levels was found in NB4, HL-60 and THP-1 cells upon ATRA combined with EGCG treatment, paralleled by increased myeloid differentiation marker CD11b. EGCG in synergy with ATRA promote degradation of PML/RARα and restores PML expression, and increase the level of nuclear PTEN. Pretreatment of PTEN inhibitor SF1670 enhances the PI3K signaling pathway and represses NB4 cell differentiation. Moreover, the induction of PTEN attenuated the Akt phosphorylation levels, pretreatment of PI3K inhibitor LY294002 in NB4 cells, significantly augmented the cell differentiation and increased the expression of PTEN. These results therefore indicate that EGCG targets PML/RARα oncoprotein for degradation and potentiates differentiation of promyelocytic leukemia cells in combination with ATRA via PTEN.
Collapse
Affiliation(s)
- Shifei Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Min Chen
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Yi Zhao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Lianwen Li
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Lu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Xu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Chunlan Xiao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Liugen Gan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Zhiling Shan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
24
|
Cromie MM, Liu Z, Gao W. Epigallocatechin-3-gallate augments the therapeutic effects of benzo[a]pyrene-mediated lung carcinogenesis. Biofactors 2017; 43:529-539. [PMID: 28247504 PMCID: PMC5554095 DOI: 10.1002/biof.1355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022]
Abstract
Our previous study found curcumin and vitamin E to have protective effects against benzo[a]pyrene (BaP) exposure in human normal lung epithelial BEAS-2B cells. The first objective of this study was to determine whether epigallocatechin-3-gallate (EGCG) elicited the same response. Co-treatment with 5 µM BaP and 20 µM EGCG in BEAS-2B promoted a significant reduction in cell viability and greater G2/M cell cycle arrest, induction of ROS, and reductions in BaP-induced CYP1A1/CYP1B1/COMT, EGFR, p-Akt (Ser473), p-p53 (Thr55), and survivin mRNA/protein expression, as well as an increase in p-p53 (Ser15). Based on these findings, the second objective was to extend the investigation by developing a novel BaP-transformed BEAS-2B cell line, BEAS-2BBaP , to examine the effects of EGCG when co-administered with gefitinib, an EGFR tyrosine kinase inhibitor. Cell colony formation assay demonstrated in vitro tumorigenic potential of BEAS-2BBaP , which had an overexpression of EGFR. Viability testing revealed gefitinib co-treatment with EGCG resulted in more cell death compared with gefitinib alone. Co-treated cells had greater reductions in gefitinib-induced CYP1A1/CYB1B1, EGFR, cyclin D1, p-Akt (Ser473), and survivin mRNA/protein expression, as well as an increase in p-p53 (Ser15). Therefore, EGCG was found to promote greater cytotoxicity to BEAS-2B co-treated with BaP and BEAS-2BBaP upon gefitinib co-treatment through regulating metabolism enzymes and signaling pathways involving EGFR and p53. These findings suggest that EGCG did not act as a protective compound in BEAS-2B after acute BaP exposure, but has the potential to be a useful adjuvant chemotherapeutic compound when coupled with gefitinib for chemosensitization. © 2017 BioFactors, 43(4):529-539, 2017.
Collapse
Affiliation(s)
| | | | - Weimin Gao
- Corresponding Author: Weimin Gao, MD, PhD, Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Box 41163, Lubbock, TX 79409. Tel: 806-834-6518; Fax: 806-885-2132;
| |
Collapse
|
25
|
Yi J, Cheng C, Li X, Zhao H, Qu H, Wang Z, Wang L. Protective mechanisms of purified polyphenols from pinecones of Pinus koraiensis on spleen tissues in tumor-bearing S180 mice in vivo. Food Funct 2017; 8:151-166. [DOI: 10.1039/c6fo01235c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study was designed to evaluate the protective effects of the purified polyphenols from pinecones ofPinus koraiensis(PPP-40) on spleen tissues of S180 micein vivo.
Collapse
Affiliation(s)
- Juanjuan Yi
- School of Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Cuilin Cheng
- School of Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Xiaoyu Li
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Haitian Zhao
- School of Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Hang Qu
- School of Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Zhenyu Wang
- School of Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| | - Lu Wang
- School of Chemical Engineering
- Harbin Institute of Technology
- Harbin 150090
- P. R. China
| |
Collapse
|