1
|
Wang L, Li N, Chen Y, Qiao Y, Song Y, Zhang X, Zhao H, Ran W, Li G, Xing X. GPSM1 interacts and cooperates with MMP19 to promote proliferation and EMT in colorectal cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119903. [PMID: 39855604 DOI: 10.1016/j.bbamcr.2025.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Among patients with colorectal cancer (CRC), metastasis accounts for the majority of deaths, and epithelial-mesenchymal transition (EMT) is important in the metastatic process. However, the mechanism underlying the correlation between the two in CRC is unknown. Here, we verified that a receptor-independent protein, G-protein signaling modulator 1 (GPSM1), was increased in CRC and had a significant positive correlation with matrix metalloproteinase 19 (MMP19). GPSM1 and MMP19 knockdown or overexpression decreased and increased proliferation, migration and invasion of CRC cells, respectively. In addition, overexpression or knockdown of GPSM1 and MMP19 upregulated and inhibited EMT, respectively. Interfering with MMP19 reversed EMT activation via GPSM1 overexpression. Apoptosis was induced by GPSM1 and MMP19 knockdown and activated the caspase3/Bcl-2/Bax signaling pathway. In conclusion, these results support the role of GPSM1 and MMP19 in CRC progression.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Na Li
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Chen
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yehua Qiao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaolin Song
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangyan Zhang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Zhao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenwen Ran
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guangqi Li
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoming Xing
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Buijs JT, van Beijnum R, Anijs RJS, Laghmani EH, Sensuk L, Minderhoud C, Ünlü B, Klok FA, Kuppen PJK, Cannegieter SC, Versteeg HH. The association of tumor-expressed REG4, SPINK4 and alpha-1 antitrypsin with cancer-associated thrombosis in colorectal cancer. J Thromb Thrombolysis 2024; 57:370-380. [PMID: 38066386 PMCID: PMC10961291 DOI: 10.1007/s11239-023-02907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 03/26/2024]
Abstract
Novel biomarkers are needed to improve current imperfect risk prediction models for cancer-associated thrombosis (CAT). We recently identified an RNA-sequencing profile that associates with CAT in colorectal cancer (CRC) patients, with REG4, SPINK4, and SERPINA1 as the top-3 upregulated genes at mRNA level. In the current study, we investigated whether protein expression of REG4, SPINK4 and alpha-1 antitrypsin (A1AT, encoded by SERPINA1) in the tumor associated with CAT in an independent cohort of CRC patients. From 418 patients with resected CRC, 18 patients who developed CAT were age, sex, and tumor stage-matched to 18 CRC patients without CAT. Protein expression was detected by immunohistochemical staining and scored blindly by assessing the H-score (percentage positive cells*scoring intensity). The association with CAT was assessed by means of logistic regression, using patients with an H-score below 33 as reference group. The odds ratios (ORs) for developing CAT for patients with A1AThigh, REG4high, SPINK4high tumors were 3.5 (95%CI 0.8-14.5), 2.0 (95%CI 0.5-7.6) and 2.0 (95%CI 0.5-7.4) when compared to A1ATlow, REG4low, SPINK4low, respectively. The OR was increased to 24.0 (95%CI 1.1-505.1) when two proteins were combined (A1AThigh/REG4high). This nested case-control study shows that combined protein expression of A1AT and REG4 associate with CAT in patients with colorectal cancer. Therefore, REG4/A1AT are potential biomarkers to improve the identification of patients with CRC who may benefit from thromboprophylaxis.
Collapse
Affiliation(s)
- Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Robin van Beijnum
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rayna J S Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lily Sensuk
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cas Minderhoud
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Betül Ünlü
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Frederikus A Klok
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Suzanne C Cannegieter
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Epidemiology, LUMC, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Zhang CY, Zhang R, Zhang L, Wang ZM, Sun HZ, Cui ZG, Zheng HC. Regenerating gene 4 promotes chemoresistance of colorectal cancer by affecting lipid droplet synthesis and assembly. World J Gastroenterol 2023; 29:5104-5124. [PMID: 37744296 PMCID: PMC10514755 DOI: 10.3748/wjg.v29.i35.5104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Regenerating gene 4 (REG4) has been proved to be carcinogenic in some cancers, but its manifestation and possible carcinogenic mechanisms in colorectal cancer (CRC) have not yet been elucidated. Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism. AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance. METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC. The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells. We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells. Finally, we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells. RESULTS Compared to normal mucosa, REG4 mRNA expression was high in CRC (P < 0.05) but protein expression was low. An inverse correlation existed between lymph node and distant metastases, tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression (P < 0.05), but vice versa for REG4 protein expression. REG4-related genes included: Chemokine activity; taste receptors; protein-DNA and DNA packing complexes; nucleosomes and chromatin; generation of second messenger molecules; programmed cell death signals; epigenetic regulation and DNA methylation; transcription repression and activation by DNA binding; insulin signaling pathway; sugar metabolism and transfer; and neurotransmitter receptors (P < 0.05). REG4 exposure or overexpression promoted proliferation, antiapoptosis, migration, and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway. REG4 was involved in chemoresistance not through de novo lipogenesis, but lipid droplet assembly. REG4 inhibited the transcription of acetyl-CoA carboxylase 1 (ACC1) and ATP-citrate lyase (ACLY) by disassociating the complex formation of anti-acetyl (AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY. CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly. REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.
Collapse
Affiliation(s)
- Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang 110042, Liaoning Province, China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Zi-Mo Wang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
4
|
Zheng HC, Xue H, Zhang CY. REG4 promotes the proliferation and anti-apoptosis of cancer. Front Cell Dev Biol 2022; 10:1012193. [PMID: 36172286 PMCID: PMC9511136 DOI: 10.3389/fcell.2022.1012193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerating islet-derived 4 (REG4) gene was discovered by high-throughput sequencing of ulcerative colitis cDNA libraries. REG4 is involved in infection and inflammation by enhancing macrophage polarization to M2, via activation of epidermal growth factor receptor (EGFR)/Akt/cAMP-responsive element binding and the killing inflammatory Escherichia coli, and closely linked to tumorigenesis. Its expression was transcriptionally activated by caudal type homeobox 2, GATA binding protein 6, GLI family zinc finger 1, SRY-box transcription factor 9, CD44 intracytoplasmic domain, activating transcription factor 2, and specificity protein 1, and translationally activated by miR-24. REG4 can interact with transmembrane CD44, G protein-coupled receptor 37, mannan and heparin on cancer cells. Its overexpression was observed in gastric, colorectal, pancreatic, gallbladder, ovarian and urothelial cancers, and is closely linked to their aggressive behaviors and a poor prognosis. Additionally, REG4 expression and recombinant REG4 aggravated such cellular phenotypes as tumorigenesis, proliferation, anti-apoptosis, chemoradioresistance, migration, invasion, peritoneal dissemination, tumor growth, and cancer stemness via EGFR/Akt/activator protein-1 and Akt/glycogen synthase kinase three β/β-catenin/transcription factor 4 pathways. Sorted REG4-positive deep crypt secretory cells promote organoid formation of single Lgr5 (+) colon stem cells by Notch inhibition and Wnt activation. Histologically, REG4 protein is specifically expressed in neuroendocrine tumors and signet ring cell carcinomas of the gastrointestinal tract, pancreas, ovary, and lung. It might support the histogenesis of gastric intestinal–metaplasia–globoid dysplasia–signet ring cell carcinoma. In this review, we summarized the structure, biological functions, and effects of REG4 on inflammation and cancer. We conclude that REG4 may be employed as a biomarker of tumorigenesis, subsequent progression and poor prognosis of cancer, and may be a useful target for gene therapy.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-Chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Li X, Shi X, Mesalam NM, Liu L, Chen Z, Yang B. Mechanism of Lysoforte in Improving Jejuna Morphology and Health in Broiler Chickens. Front Vet Sci 2022; 9:946148. [PMID: 35928108 PMCID: PMC9343761 DOI: 10.3389/fvets.2022.946148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Lysoforte (LFT) plays a vital role in maintaining broilers' health and intestinal morphology. However, the mechanism behind the effects of LFT improving intestinal morphology and health is still unclear. Therefore, this study was implemented to explore the central genes linked to the regulatory effect of LFT. Seventy-five newly hatched Cobb 500 male broilers were randomly divided into three groups: control, LFT500, and LFT1000 groups, with 25 chicks per group. The control chicks were provided with the basal diet, and the birds in LFT500 and LFT1000 groups were offered the same basal diet with 500 g/ton and 1,000 g/ton LFT, respectively. GSE94622 dataset consisted of the control and two LFT-treated groups (LFT500 and LFT1000). Jejuna samples were obtained from Gene Expression Omnibus (GEO). Totally 106–344 DEGs were obtained by comparing LFT500 and LFT1000 vs. control and LFT1000 vs. LFT500. Gene ontology (GO) enrichment suggested that the DEGs are mainly related to the phosphatidylethanolamine biosynthetic process and neuron projection extension. KEGG analysis suggested the DEGs were enriched in AGE-RAGE, fatty acid elongation, ECM-receptor interaction (ECMRI), glycerophospholipid metabolism, focal adhesion, unsaturated fatty acids biosynthesis, and ABC transporters. Moreover, 29 genes, such as REG4, GJB1, KAT2A, APOA5, SERPINE2, ELOVL1, ABCC2, ANKRD9, CYP4V2, and PISD, might be closely related to promoting jejuna morphology in broilers. Taken together, our observation enhances the understanding of LFT in maintaining intestinal architecture and the general health of broiler chickens.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Xiaoli Shi
- College of Animal Science, Guizhou University, Guiyang, China
| | - Noura M. Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, Egypt
| | - Lei Liu
- Center of Reproductive Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhihao Chen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
- *Correspondence: Bing Yang
| |
Collapse
|
6
|
Chen Z, Song H, Zeng X, Quan M, Gao Y. Screening and discrimination of optimal prognostic genes for pancreatic cancer based on a prognostic prediction model. G3 (BETHESDA, MD.) 2021; 11:6355586. [PMID: 34499727 PMCID: PMC8527504 DOI: 10.1093/g3journal/jkab296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
The prognosis of pancreatic cancer is poor because patients are usually asymptomatic in the early stage and the early diagnostic rate is low. Therefore, in this study, we aimed to identify potential prognosis-related genes in pancreatic cancer to improve diagnosis and the outcome of patients. The mRNA expression profile data from The Cancer Genome Atlas database and GSE79668, GSE62452, and GSE28735 datasets from Gene Expression Omnibus were downloaded. The prognosis-relevant genes and clinical factors were analyzed using Cox regression analysis and the optimal gene sets were screened using the Cox proportional model. Next, the Kaplan-Meier survival analysis was used to evaluate the relationship between risk grouping and patient prognosis. Finally, an optimal gene-based prognosis prediction model was constructed and validated using a test dataset to discriminate the model accuracy and reliability. The results showed that 325 expression variable genes were identified, and 48 prognosis-relevant genes and three clinical factors, including lymph node stage (pathologic N), new tumor, and targeted molecular therapy were preliminarily obtained. In addition, a gene set containing 16 optimal genes was identified and included FABP6, MAL, KIF19, and REG4, which were significantly associated with the prognosis of pancreatic cancer. Moreover, a prognosis prediction model was constructed and validated to be relatively accurate and reliable. In conclusion, a gene set consisting of 16 prognosis-related genes was identified and a prognosis prediction model was constructed, which is expected to be applicable in the clinical diagnosis and treatment guidance of pancreatic cancer in the future.
Collapse
Affiliation(s)
| | | | | | - Ming Quan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| |
Collapse
|
7
|
Sninsky JA, Bishnupuri KS, González I, Trikalinos NA, Chen L, Dieckgraefe BK. Reg4 and its downstream transcriptional activator CD44ICD in stage II and III colorectal cancer. Oncotarget 2021; 12:278-291. [PMID: 33659040 PMCID: PMC7899555 DOI: 10.18632/oncotarget.27896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Reg4 is highly expressed in gastrointestinal malignancies and acts as a mitogenic and pro-invasive factor. Our recent works suggest that Reg4 binds with CD44 and induces its proteolytic cleavage to release intra-cytoplasmic domain of CD44 (CD44ICD). The goal of this study is to demonstrate clinical significance of the Reg4-CD44/CD44ICD pathway in stage II/III colon cancer and its association with clinical parameters of aggression. We constructed a tissue microarray (TMA) of 93 stage II/III matched colon adenocarcinoma patients, 23 with recurrent disease. The TMA was immunohistochemically stained for Reg4, CD44, and CD44ICD proteins and analyzed to identify associations with tumor characteristics, recurrence and overall survival. The TMA data analysis showed a significant correlation between Reg4 and CD44 (r2 = 0.23, P = 0.028), CD44 and CD44ICD (r2 = 0.36, p = 0.0004), and Reg4 and CD44ICD (r2 = 0.45, p ≤ 0.0001). Reg4 expression was associated with larger tumor size (r2 = 0.23, p = 0.026). Although, no association was observed between Reg4, CD44, or CD44ICD expression and disease recurrence, Reg4-positive patients had a median survival of 4 years vs. 7 years for Reg4-negative patients (p = 0.04) in patients who recurred. Inhibition of the Reg4-CD44/CD44ICD pathway may be a future therapeutic target for colon cancer patients.
Collapse
Affiliation(s)
- Jared A Sninsky
- Division of Gastroenterology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kumar S Bishnupuri
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Iván González
- Division of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nikolaos A Trikalinos
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Brian K Dieckgraefe
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
8
|
Zhang J, Zhu Z, Miao Z, Huang X, Sun Z, Xu H, Wang Z. The Clinical Significance and Mechanisms of REG4 in Human Cancers. Front Oncol 2021; 10:559230. [PMID: 33489872 PMCID: PMC7819868 DOI: 10.3389/fonc.2020.559230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Regenerating islet-derived type 4 (REG4), a member of the calcium-dependent lectin gene superfamily, is abnormally expressed in various cancers, such as colorectal, gastric, gallbladder, pancreatic, ovarian, prostate, and lung cancer. REG4 is associated with a relatively unfavorable prognosis and clinicopathologic features in cancers, including advanced tumor and nodal stage, histological differentiation, and liver and peritoneal metastasis. Moreover, REG4-positive cancer cells show more frequent resistance to chemoradiotherapy, especially 5-FU-based chemotherapy. REG4 participates in many aspects of carcinogenesis, including cell proliferation, apoptosis, cell cycle, invasion, metastasis, and drug resistance. The underlying mechanisms are complex and involve a series of signaling mediators and multiple pathways. Thus, REG4 may be a potential diagnostic and prognostic biomarker as well as a candidate therapeutic target in cancer patients. In this review, we systematically summarize the advances about the clinical significance, biological functions, and mechanisms underlying REG4 in cancer to provide new directions for future cancer research.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Zhu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Lv J, Wang J, Shang X, Liu F, Guo S. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. Biosci Rep 2020; 40:BSR20201482. [PMID: 33258470 PMCID: PMC7753845 DOI: 10.1042/bsr20201482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/20/2023] Open
Abstract
This study proposed a deep learning (DL) algorithm to predict survival in patients with colon adenocarcinoma (COAD) based on multi-omics integration. The survival-sensitive model was constructed using an autoencoder for DL implementation based on The Cancer Genome Atlas (TCGA) data of patients with COAD. The autoencoder framework was compared to PCA, NMF, t-SNE, and univariable Cox-PH model for identifying survival-related features. The prognostic robustness of the inferred survival risk groups was validated using three independent confirmation cohorts. Differential expression analysis, Pearson's correlation analysis, construction of miRNA-target gene network, and function enrichment analysis were performed. Two risk groups with significant survival differences were identified in TCGA set using the autoencoder-based model (log-rank p-value = 5.51e-07). The autoencoder framework showed superior performance compared to PCA, NMF, t-SNE, and the univariable Cox-PH model based on the C-index, log-rank p-value, and Brier score. The robustness of the classification model was successfully verified in three independent validation sets. There were 1271 differentially expressed genes, 10 differentially expressed miRNAs, and 12 hypermethylated genes between the survival risk groups. Among these, miR-133b and its target genes (GNB4, PTPRZ1, RUNX1T1, EPHA7, GPM6A, BICC1, and ADAMTS5) were used to construct a network. These genes were significantly enriched in ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and glucose metabolism-related pathways. The risk subgroups obtained through a multi-omics data integration pipeline using the DL algorithm had good robustness. miR-133b and its target genes could be potential diagnostic markers. The results would assist in elucidating the possible pathogenesis of COAD.
Collapse
Affiliation(s)
- Jiudi Lv
- Department of General Surgery Three, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| | - Junjie Wang
- Department of Oncology Medicine Three, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| | - Xiujuan Shang
- Department of General Surgery Three, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| | - Fangfang Liu
- Department of General Surgery Three, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| | - Shixun Guo
- Severe Medical Section, Xinxiang Central Hospital, No. 56 Jinsui Avenue, Xinxiang, Henan 453000, China
| |
Collapse
|
10
|
Zhang XQ, Yu LT, Du P, Yin TQ, Zhang ZY, Xu Y, Li X, Li YJ, Wang M, Luo C. Single-chain Antibody Against Reg4 Suppresses Gastric Cancer Cell Growth and Enhances 5-FU-induced Cell Death in vitro. Anticancer Agents Med Chem 2020; 19:610-619. [PMID: 30465515 DOI: 10.2174/1871520619666181122104720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/15/2018] [Accepted: 11/13/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Regenerating islet-derived gene family member 4 (Reg4), a well-investigated growth factor in the regenerative pancreas, has recently been reported to be highly associated with a majority of gastrointestinal cancers. Pathological hyper-expression or artificial over-expression of Reg4 causes acceleration of tumor growth, migration, and resistance to chemotherapeutic 5-Fluorouracil (5-FU). Until now, no method has been successfully established for eliminating the effects of Reg4 protein. METHODS This study reports the production of an engineered immunoglobin, a single-chain variable fragment (scFv-Reg4), to specifically bind Reg4 and block the bioactivity. The complementary-determining regions (CDRs) against Reg4 were assigned using MOE and ZDOCK servers. The binding affinity (KD) was determined by bio-layer interferometry (BLI). MKN45 and AGS cell proliferation was determined by Thiazolyl blue tetrazolium bromide (MTT) method and the cell apoptosis was detected by flow cytometry assay. RESULTS The KD of scFv-Reg4 to Reg4 was determined to be 1.91×10-8. In MKN45 and AGS cell lines, scFv- Reg4 depressed Reg4-stimulated cell proliferation and the inhibitory rates were 27.7±1.5% and 17.3±2.6%, respectively. Furthermore, scFv significantly enhanced 5-FU-induced cell death, from 23.0±1.0% to 28.4±1.2% in MKN45 and 28.2±0.7% to 36.6±0.6% in AGS cells. Treatment with scFv alone could lyse cancer cells to a certain extent, but no significance has been observed. CONCLUSION The single-chain antibody (scFv-Reg4) significantly inhibited gastric cancer cell proliferation and synergistically enhanced the lethal effect of 5-FU. Thus, traditional chemo-/radio- therapeutics supplemented with scFv-Reg4 may provide advances in the strategy for gastrointestinal cancer treatment.
Collapse
Affiliation(s)
- Xue-Qing Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Lu-Ting Yu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.,Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Pei Du
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Tian-Qi Yin
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhi-Yuan Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Ying Xu
- Jiangsu Celtec Biotechnology Co. Ltd, Jiangsu, China
| | - Xiang Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - You-Jie Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Chen Luo
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Hwang JH, Yoon J, Cho YH, Cha PH, Park JC, Choi KY. A mutant KRAS-induced factor REG4 promotes cancer stem cell properties via Wnt/β-catenin signaling. Int J Cancer 2019; 146:2877-2890. [PMID: 31605540 DOI: 10.1002/ijc.32728] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/22/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023]
Abstract
Mutant KRAS provides a driving force for enhancement of cancer stem cells (CSCs) characteristics contributing transformation of colorectal cancer (CRC) cells harboring adenomatous polyposis coli (APC) mutations. Here, we identified the factors mediating the promotion of CSCs properties induced by KRAS mutation through microarray analyses of genes specifically induced in CRC spheroids harboring both KRAS and APC mutations. Among them, REG4 was identified as a key factor since CRISPR/Cas9-mediated knockout of REG4 most significantly affected the stem cell characteristics in which CSCs markers were effectively suppressed. We show that REG4 mediates promotion of CSCs properties via Wnt/β-catenin signaling in various in vitro studies including tumor organoid systems. Furthermore, expression patterns of CSCs markers and REG4 correlated in intestinal tumors from Apcmin/+ /KrasG12D LA2 mice and in CRC patient tissues harboring both KRAS and APC mutations. The role of REG4 in the tumor-initiating capacity accompanied by enhancement of CSCs characteristics was also revealed by NSG mice xenograft system. Collectively, our study highlights the importance of REG4 in promoting CSCs properties induced by KRAS mutation, and provides a new therapeutic strategy for CRC harboring both APC and KRAS mutations.
Collapse
Affiliation(s)
- Jeong-Ha Hwang
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biomaterials Science and Engineering, Yonsei University, Seoul, South Korea
| | - Junyong Yoon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yong-Hee Cho
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jong-Chan Park
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,CK Biotechnology Inc., Seoul, South Korea
| |
Collapse
|
12
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
13
|
Inflammatory biomarker profiling in classical orthostatic hypotension: Insights from the SYSTEMA cohort. Int J Cardiol 2018; 259:192-197. [PMID: 29579600 DOI: 10.1016/j.ijcard.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 02/02/2023]
|
14
|
Ünlü B, Versteeg HH. Cancer-associated thrombosis: The search for the holy grail continues. Res Pract Thromb Haemost 2018; 2:622-629. [PMID: 30349879 PMCID: PMC6178660 DOI: 10.1002/rth2.12143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/24/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer patients have an increased risk of developing venous thromboembolism (VTE), a condition that is associated with increased morbidity and mortality. Although risk assessment tools have been developed, it is still very challenging to predict which cancer patients will suffer from VTE. The scope of this review is to summarize and discuss studies focusing on the link between genetic alterations and risk of cancer-associated thrombosis (CAT). Thus far, classical risk factors that contribute to VTE have been tried as risk factors of CAT, with low success. In support, hypercoagulant plasma profiles in patients with CAT differ from those with only VTE, indicating other risk factors that contribute to VTE in cancer. As germline mutations do not significantly contribute to elevated risk of VTE, somatic mutations in tumors may significantly associate with and contribute to CAT. As it is very time-consuming to investigate each and every mutation, an unbiased approach is warranted. In this light we discuss our own recent unbiased proof-of-principle study using RNA sequencing in isolated colorectal cancer cells. Our work has uncovered candidate genes that associate with VTE in colorectal cancer, and these gene profiles associated with VTE more significantly than classical parameters such as platelet counts, D-dimer, and P-selectin levels. Genes associated with VTE could be linked to pathways being involved in coagulation, inflammation and methionine degradation. We conclude that tumor cell-specific gene expression profiles and/or mutational status has superior potential as predictors of VTE in cancer patients.
Collapse
Affiliation(s)
- Betül Ünlü
- Department of Internal MedicineEinthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Henri H. Versteeg
- Department of Internal MedicineEinthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
15
|
Saukkonen K, Hagström J, Mustonen H, Lehtinen L, Carpen O, Andersson LC, Seppänen H, Haglund C. Prognostic and diagnostic value of REG4 serum and tissue expression in pancreatic ductal adenocarcinoma. Tumour Biol 2018. [PMID: 29542402 DOI: 10.1177/1010428318761494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Expression of regenerating islet-derived protein 4 (REG4), a secretory protein involved in cell differentiation and proliferation, is upregulated in inflammatory bowel diseases and in many gastrointestinal malignancies. The prognostic significance of its expression in pancreatic ductal adenocarcinoma is unknown. Our aim was to investigate tumor tissue and serum REG4 expression in pancreatic ductal adenocarcinoma patients. We also evaluated as a control the diagnostic value of serum REG4 level in patients with chronic pancreatitis. Immunohistochemical expression of REG4 was evaluated in 154 surgical specimens and serum REG4 level in 130 samples from pancreatic ductal adenocarcinoma patients treated at Helsinki University Hospital, Finland, in 2000-2011. REG4 tissue and serum expression was assessed in relation to clinicopathological parameters and patient survival. A chronic pancreatitis control group comprised 34 patients who underwent pancreatic resection because of suspicion of malignancy. Significant survival differences were detectable in subgroups: in tumor stages IA-IIA, high serum REG4 level predicted worse survival (p=0.046). In patients with grade I tumor, positive tissue REG4 expression predicted better survival (p=0.006). In multivariate analysis, neither tissue nor serum REG4 expression was independent prognostic factors. Serum REG4 levels were higher in pancreatic ductal adenocarcinoma than in chronic pancreatitis (p=0.002), with diagnostic sensitivity of 45% and specificity of 91%. In logistic regression analysis, a multivariate model with REG4, CA19-9, and age provided sensitivity of 82% and specificity of 79%. REG4 tissue expression is a prognostic marker in subgroups of pancreatic ductal adenocarcinoma patients. Serum REG4 level might be useful in differential diagnosis between pancreatic ductal adenocarcinoma and chronic pancreatitis.
Collapse
Affiliation(s)
- Kapo Saukkonen
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,2 Translational Cancer Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- 2 Translational Cancer Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.,3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura Lehtinen
- 4 Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Carpen
- 3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,4 Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.,5 Genome Scale Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Leif C Andersson
- 3 Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- 1 Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,2 Translational Cancer Biology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Ünlü B, van Es N, Arindrarto W, Kiełbasa SM, Mei H, Westerga J, Middeldorp S, Kuppen PJK, Otten JMMB, Cannegieter S, Versteeg HH. Genes associated with venous thromboembolism in colorectal cancer patients. J Thromb Haemost 2018; 16:293-302. [PMID: 29247594 DOI: 10.1111/jth.13926] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Essentials The underlying pathophysiological mechanisms behind cancer-associated thrombosis are unknown. We compared expression profiles in tumor cells from patients with and without thrombosis. Tumors from patients with thrombosis showed significant differential gene expression profiles. Patients with thrombosis had a proinflammatory status and increased fibrin levels in the tumor. SUMMARY Background Venous thromboembolism (VTE) is a frequent complication in patients with cancer, and is associated with significant morbidity and mortality. However, the mechanisms behind cancer-associated thrombosis are still incompletely understood. Objectives To identify novel genes that are associated with VTE in patients with colorectal cancer (CRC). Methods Twelve CRC patients with VTE were age-matched and sex-matched to 12 CRC patients without VTE. Tumor cells were isolated from surgical samples with laser capture microdissection approaches, and mRNA profiles were measured with next-generation RNA sequencing. Results This approach led to the identification of new genes and pathways that might contribute to VTE in CRC patients. Application of ingenuity pathway analysis indicated significant links with inflammation, the methionine degradation pathway, and increased platelet function, which are all key processes in thrombus formation. Tumor samples of patients with VTE had a proinflammatory status and contained higher levels of fibrin and fibrin degradation products than samples of those without VTE. Conclusion This case-control study provides a proof-of-principle that tumor gene expression can discriminate between cancer patients with low and high risks of VTE. These findings may help to further unravel the pathogenesis of cancer-related VTE. The identified genes could potentially be used as candidate biomarkers to select high-risk CRC patients for thromboprophylaxis.
Collapse
Affiliation(s)
- B Ünlü
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - N van Es
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - W Arindrarto
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - S M Kiełbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - H Mei
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - J Westerga
- Department of Pathology, Slotervaart Hospital, Amsterdam, the Netherlands
| | - S Middeldorp
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - J M M B Otten
- Department of Internal Medicine, Slotervaart Hospital, Amsterdam, the Netherlands
| | - S Cannegieter
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - H H Versteeg
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Solute carrier family 12 member 5 promotes tumor invasion/metastasis of bladder urothelial carcinoma by enhancing NF-κB/MMP-7 signaling pathway. Cell Death Dis 2017; 8:e2691. [PMID: 28333147 PMCID: PMC5386524 DOI: 10.1038/cddis.2017.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
Abstract
Solute carrier family 12 member 5 (SLC12A5), an integral membrane KCl cotransporter, which maintains chloride homeostasis in neurons, is aberrantly expressed and involved in the tumorigenesis of certain cancers. However, the clinical significance and biological role of SLC12A5 in human bladder urothelial carcinoma (BUC) remains unclear. In this study, the expression of SLC12A5 was examined in clinical specimens of primary BUC and in BUC cell lines using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry (IHC). The prognostic value of SLC12A5 expression and its correlation with the clinicopathological features of patients with BUC were analyzed statistically. A series of in vitro and in vivo assays were performed to elucidate the effect of SLC12A5 in BUC and its underlying mechanisms. The present results showed that SLC12A5 expression was significantly increased in BUC tissues. SLC12A5 expression significantly correlated with the tumor node metastasis (TNM) stage. Kaplan–Meier survival curves showed that high SLC12A5 expression was associated with poor survival in patients with BUC. Multivariate analysis indicated that SLC12A5 expression was an independent prognostic marker for the survival of patients. Downregulation of SLC12A5 inhibited the migratory and invasive abilities of BUC cells in vitro, and knocking down SLC12A5 diminished BUC metastasis in vivo. Moreover, we identified that SLC12A5 promoted the migration and invasion of BUC by enhancing MMP-7 expression via NF-κB-dependent transcription. Taken together, our findings indicated that SLC12A5 might function as a tumor metastasis promoting factor in the development and progression of BUC by regulating the NF-κB/MMP-7 signaling pathway. Thus, SLC12A5 might be a prognostic marker as well as a therapeutic target for BUC.
Collapse
|
18
|
Vira H, Pradhan V, Umare V, Chaudhary A, Rajadhyksha A, Nadkar M, Ghosh K, Nadkarni A. Role of MMP-7 in the pathogenesis of systemic lupus erythematosus (SLE). Lupus 2016; 26:937-943. [PMID: 28420044 DOI: 10.1177/0961203316682855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Systemic lupus erythematosus (SLE) is a clinically heterogeneous chronic, inflammatory autoimmune disorder. The association of MMP-7 and disease severity is still unclear. A total of 150 SLE patients and matched healthy controls were recruited for this study. Disease activity was scored according to SLEDAI (98 active and 52 inactive disease). Mean serum MMP-7 levels were significantly higher in SLE patients than controls ( p < 0.001). Patients with active disease showed higher levels (16.24 ± 6.2 ng/ml) as against inactive disease (10.50 ± 3.97 ng/ml) ( p ≤ 0.0001). Mean MMP-7 mRNA expression was significantly higher in patients (RQ = 3.16 ± 0.93) as compared to controls (RQ = 2.21 ± 0.89, p = 0.006). A positive correlation between MMP-7 levels, mRNA expression and SLEDAI score was observed ( r = 0.563, r = 0.427). The MMP-7 -181 G allele was found to be significantly higher among SLE patients ( p < 0.0001). A significant association was noted between MMP-7 -181 A/G +G/G genotypes with renal ( p = 0.0027) and CNS ( p = 0.0031) manifestations and anti-dsDNA autoantibodies ( p = 0.0312). Serum MMP-7 levels and mRNA expression were elevated in advanced stages of SLE, indicating that MMP-7 is associated with disease activity in SLE.
Collapse
Affiliation(s)
- H Vira
- 1 Department of Clinical and Experimental Immunology, National Institute of Immunohaematology, Mumbai, India
| | - V Pradhan
- 1 Department of Clinical and Experimental Immunology, National Institute of Immunohaematology, Mumbai, India
| | - V Umare
- 1 Department of Clinical and Experimental Immunology, National Institute of Immunohaematology, Mumbai, India
| | - A Chaudhary
- 1 Department of Clinical and Experimental Immunology, National Institute of Immunohaematology, Mumbai, India
| | - A Rajadhyksha
- 2 Department of Medicine, King Edward Memorial Hospital, Mumbai, India
| | - M Nadkar
- 2 Department of Medicine, King Edward Memorial Hospital, Mumbai, India
| | - K Ghosh
- 1 Department of Clinical and Experimental Immunology, National Institute of Immunohaematology, Mumbai, India
| | - A Nadkarni
- 1 Department of Clinical and Experimental Immunology, National Institute of Immunohaematology, Mumbai, India
| |
Collapse
|
19
|
Wang H, Hu L, Zang M, Zhang B, Duan Y, Fan Z, Li J, Su L, Yan M, Zhu Z, Liu B, Yang Q. REG4 promotes peritoneal metastasis of gastric cancer through GPR37. Oncotarget 2016; 7:27874-88. [PMID: 27036049 PMCID: PMC5053694 DOI: 10.18632/oncotarget.8442] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Being the major reason of recurrence and death after surgery, peritoneal metastasis of gastric cancer dooms the prognosis of advanced gastric cancer patients. Regenerating islet-derived family, member 4 (REG4) is believed to promote peritoneal metastasis, however, its mechanism is still a moot point at present. In the present study, we show that high expression of REG4 correlates with advanced stage and poor survival prognosis for gastric cancer patients. REG4 overexpression significantly enhances peritoneal metastasis by increasing adhesion ability. Moreover, SP1 is proved to be a transcription factor of REG4 and induce REG4 expression upon TGF-alpha stimulation. Also, G protein-coupled receptor 37 (GPR37) is identified to be in the same complex of REG4, which mediates REG4's signal transduction and promotes peritoneal metastasis of gastric cancer cell. Interestingly, we also discover a positive feedback loop triggered by REG4, amplifying itself through EGFR transactivation, consisting of GPR37, ADAM17, TGF-alpha, EGFR, SP1 and REG4. In conclusion, REG4 promotes peritoneal metastasis of gastric cancer through GPR37 and triggers a positive feedback loop.
Collapse
Affiliation(s)
- Hexiao Wang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Lei Hu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Mingde Zang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Baogui Zhang
- Affiliated Hospital of Jining Medical University, Department of Surgery, Jining 272000, People's Republic of China
| | - Yantao Duan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhiyuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Qiumeng Yang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
20
|
Erstad DJ, Tumusiime G, Cusack JC. Prognostic and Predictive Biomarkers in Colorectal Cancer: Implications for the Clinical Surgeon. Ann Surg Oncol 2015. [DOI: 10.1245/s10434-015-4706-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|