1
|
Kolegova ES, Kakurina GV, Shashova EE, Yunusova NV, Spirina LV, Sidenko EA, Kostromitskiy DN, Dobrodeev AY, Kondakova IV. Relationship of intracellular proteolysis with CAP1 and cofilin1 in non-small-cell lung cancer. J Biosci 2021. [DOI: 10.1007/s12038-021-00177-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Sun Y, Guo X, Zhang L, Zhang W, Zuo Y. Evaluation of radiotherapy combined with targeted therapy and concurrent radiotherapy, chemotherapy in the treatment of Non-Small Cell Lung Cancer with brain metastasis. Pak J Med Sci 2020; 36:322-326. [PMID: 32292427 PMCID: PMC7150420 DOI: 10.12669/pjms.36.3.1626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: To compare and analyze the clinical efficacy of brain radiotherapy combined with targeted therapy and concurrent radiotherapy and chemotherapy in the treatment of non-small cell lung cancer (NSCLC) with brain metastasis. Methods: Fifty-eight patients with NSCLC with brain metastasis who were admitted to our hospital between October 2016 and October 2017 were randomly divided into a control group and an observation group, 29 cases in each group. The control group was treated with concurrent radiotherapy and chemotherapy, while the observation group was treated with whole brain radiotherapy plus targeted therapy. The disease control rate, adverse reactions and survival condition were compared between the two groups. Results: The disease control rate of the observation group was 68.97%, significantly higher than 41.38% of the control group (P<0.05); the total incidence of adverse reactions in the observation group was 6.90%, significantly lower than 24.14% of the control group (P<0.05); the median survival time of the observation group was (16.81±5.32) months, significantly longer than that of the control group ((9.76±3.25) months). The one-year and two-year survival rates in the observation group were significantly higher than those in the control group (P<0.05). Conclusion: Whole brain radiotherapy combined with targeted therapy is superior to concurrent radiotherapy and chemotherapy in the treatment of NSCLC with brain metastasis and has high safety. It can effectively prolong the life span of patients and is worth clinical promotion and application.
Collapse
Affiliation(s)
- Yanfeng Sun
- Yanfeng Sun, Department of Oncology, Binzhou People's Hospital, Shandong 256610, China
| | - Xiaohui Guo
- Xiaohui Guo, Department of Pediatric, Binzhou People's Hospital, Shandong 256610, China
| | - Lingling Zhang
- Lingling Zhang, Department of Oncology, Binzhou People's Hospital, Shandong 256610, China
| | - Wenqian Zhang
- Wenqian Zhang, Department of Orthopedics, Binzhou People's Hospital, Shandong 256610, China
| | - Yuqin Zuo
- Yuqin Zuo, Department of Endoscopic, Binzhou People's Hospital, Shandong 256610, China
| |
Collapse
|
3
|
Zou J, Wu K, Lin C, Jie ZG. LINC00319 acts as a microRNA-335-5p sponge to accelerate tumor growth and metastasis in gastric cancer by upregulating ADCY3. Am J Physiol Gastrointest Liver Physiol 2020; 318:G10-G22. [PMID: 31433213 DOI: 10.1152/ajpgi.00405.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric cancer (GC) is one of the most common cancers in the world and remains a heavy burden of health worldwide. Adenylate cyclase 3 (ADCY3) is a widely expressed membrane-associated protein in human tissues and has been identified to be a new molecular target of GC. Long noncoding RNAs have a substantial influence on tumorigenesis and progression of tumors by binding to microRNAs. Therefore, this study is to clarify the mechanism by which LINC00319 sponges micro RNA-335-5p (miR-335-5p) to influence the development of GC. Initially, microarray analysis identified GC-related differentially expressed LINC00319 and ADCY3 for this study. The interaction was confirmed that LINC00319 interacted with miR-335-5p to regulate ADCY3. Next, SGC-7901 cells presenting with the lowest LINC00319 expression and the highest miR-335-5p expression were transfected with LINC00319, miR-335-5p inhibitor, or ADCY3 vector to examine their roles in growth and metastasis of GC cells, which was further ascertained by in vivo experiments. LINC00319 was upregulated and miR-335-5p was downregulated in GC cells. LINC00319 overexpression, miR-335-5p inhibitor, or ADCY3 overexpression was shown to significantly elevate the expression of cyclin-dependent kinase 4 and metastasis associated 1, decrease that of growth arrest-specific 1, and promote tumor growth and metastasis by increasing proliferation and migration and reducing cell apoptosis. Importantly, it was found that overexpressed miR-335-5p exerted its tumor suppressive role in GC through downregulating ADCY3. Collectively, LINC00319 expedited growth and metastasis of GC by upregulating miR-335-5p-mediated ADCY3.NEW & NOTEWORTHY This study is carried out based on in vivo and in vitro studies in mice and gastric cancer (GC) cells with the aim of clarifying the role of LINC00319 on GC growth and metastasis, which associated with micro RNA-335-5p-mediated adenylate cyclase 3. Altogether, we identified LINC00319 to be a potential therapy to treat GC.
Collapse
Affiliation(s)
- Jun Zou
- Medical College of Nanchang University, Nanchang, People's Republic of China
- Department of Surgery, Jiangxi Tumor Hospital, Nanchang, People's Republic of China
| | - Kun Wu
- Medical College of Nanchang University, Nanchang, People's Republic of China
- Department of Surgery, Jiangxi Tumor Hospital, Nanchang, People's Republic of China
| | - Chao Lin
- Department of Surgery, Jiangxi Tumor Hospital, Nanchang, People's Republic of China
| | - Zhi-Gang Jie
- Department of Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
4
|
Hashimoto-Gotoh A, Kitao K, Miyazawa T. Persistent Infection of Simian Foamy Virus Derived from the Japanese Macaque Leads to the High-Level Expression of microRNA that Resembles the miR-1 microRNA Precursor Family. Microbes Environ 2020; 35:ME19130. [PMID: 31969530 PMCID: PMC7104284 DOI: 10.1264/jsme2.me19130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that suppress the expression of target mRNAs. The seed sequence of miRNA plays a crucial role in recognizing the 3'-untranslated region of the target mRNA. Cells infected with a simian foamy virus (SFV) isolated from an African green monkey (Chlorocebus aethiops) (SFVcae) showed high expression levels of viral miRNAs encoded in the long terminal repeat of SFVcae. In the present study, we investigated the roles and expression of miRNAs derived from an SFV isolated from a Japanese macaque (Macaca fuscata) (SFVmfu) using next-generation sequencing technologies. The results obtained showed that SFVmfu also expressed viral miRNAs; however, the seed sequences of most miRNAs derived from SFVmfu differed from those reported previously from SFVcae. Cells persistently infected with SFVmfu strongly expressed an miRNA with the same seed sequence as the miR-1 microRNA precursor family. Luciferase reporter assays indicated that this miRNA down-regulates the expression of adenylyl cyclase-associated protein 1, which is up-regulated in several solid tumors. The present results suggest that SFVmfu utilizes viral miRNAs to establish long-term co-existence with the Japanese macaque.
Collapse
Affiliation(s)
- Akira Hashimoto-Gotoh
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
- International Research Unit of Advanced Future Studies, Kyoto University, Kyoto 606–8502, Japan
| |
Collapse
|
5
|
Liu Y, Xie S, Zeng J, Song X, Tan M, He D, Wang J, Wang P, Zhu J, Wang C. Adenylyl cyclase‑associated protein 1‑targeted nanoparticles as a novel strategy for the treatment of metastatic non‑small cell lung cancer. Int J Oncol 2019; 55:462-472. [PMID: 31173184 PMCID: PMC6615927 DOI: 10.3892/ijo.2019.4822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most fatal cancers worldwide. Adenylyl cyclase‑associated protein 1 (CAP1) belongs to a family of cyclase‑associated proteins that are involved in the development of cancerous tumors. A previous study by our group confirmed the association between CAP1, lung cancer and the metastasis of cancer cells. In the present study, poly(lactic‑polyglycolic acid; PLGA)/CAP1‑small interfering (si)RNA nanoparticles were prepared and delivered into A549 cells. The performance of PLGA/siCAP1‑siRNA nanoparticles for siRNA delivery was measured based on the results of migration assay and animal experiments. The multifunctional nanoparticles were determined to be capable of inhibiting CAP1 expression, which reduced NSCLC metastasis in vitro and in vivo. Therefore, the findings of the current study highlighted the potential use of PLGA/siCAP1‑siRNA nanoparticles for the treatment of NSCLC metastasis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072
| | - Jie Zeng
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072
| | - Min Tan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072
| | - Dannong He
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Jie Wang
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Ping Wang
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Jun Zhu
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P.R. China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072
| |
Collapse
|
6
|
Hasan R, Zhou GL. The Cytoskeletal Protein Cyclase-Associated Protein 1 (CAP1) in Breast Cancer: Context-Dependent Roles in Both the Invasiveness and Proliferation of Cancer Cells and Underlying Cell Signals. Int J Mol Sci 2019; 20:E2653. [PMID: 31151140 PMCID: PMC6600220 DOI: 10.3390/ijms20112653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
As a conserved actin-regulating protein, CAP (adenylyl Cyclase-Associated Protein) functions to facilitate the rearrangement of the actin cytoskeleton. The ubiquitously expressed isoform CAP1 drives mammalian cell migration, and accordingly, most studies on the involvement of CAP1 in human cancers have largely been based on the rationale that up-regulated CAP1 will stimulate cancer cell migration and invasiveness. While findings from some studies reported so far support this case, lines of evidence largely from our recent studies point to a more complex and profound role for CAP1 in the invasiveness of cancer cells, where the potential activation of cell adhesion signaling is believed to play a key role. Moreover, CAP1 was also found to control proliferation in breast cancer cells, through the regulation of ERK (External signal-Regulated Kinase). Alterations in the activities of FAK (Focal Adhesion Kinase) and ERK from CAP1 depletion that are consistent to the opposite adhesion and proliferation phenotypes were detected in the metastatic and non-metastatic breast cancer cells. In this review, we begin with the overview of the literature on CAP, by highlighting the molecular functions of mammalian CAP1 in regulating the actin cytoskeleton and cell adhesion. We will next discuss the role of the FAK/ERK axis, and possibly Rap1, in mediating CAP1 signals to control breast cancer cell adhesion, invasiveness, and proliferation, largely based on our latest findings. Finally, we will discuss the relevance of these novel mechanistic insights to ultimately realizing the translational potential of CAP1 in targeted therapeutics for breast cancer.
Collapse
Affiliation(s)
- Rokib Hasan
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA.
| | - Guo-Lei Zhou
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA.
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA.
| |
Collapse
|
7
|
Islam F, Chaousis S, Wahab R, Gopalan V, Lam AK. Protein interactions of FAM134B with EB1 and APC/beta‐catenin in vitro in colon carcinoma. Mol Carcinog 2018; 57:1480-1491. [DOI: 10.1002/mc.22871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
FAM134B is an autophagy regulator of endoplasmic reticulum and acts as a cancer suppressor in colon cancer. However, the molecular signaling pathways by which FAM134B interacts within colon carcinogenesis is still unknown. Herein, this study aims to determine the interacting partners of FAM134B for the first time in colon cancer and to explore the precise location of FAM134B in cancer signalling pathways. Liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) followed by anti‐FAM134B co‐immune precipitation of FAM134B interacting complex was used to identify the potential interactors of FAM134B in colon cancer cells. Western blot and confocal microscopic analysis were used to validate the physical interactions of FAM134B with the interactors. Lentiviral shRNA mediated silencing of FAM134B was used to examine the modulation of FAM134B interactors in cells. We have identified 29 novel binding partners, including CAP1, RPS28, FTH1, KDELR2, MAP4, EB1, PSMD6, PPIB/CYPB etc. Subsequent immunoassays confirmed the direct physical interactions of FAM134B with CAP1, EB1, CYPB, and KDELR2 in colon cancer cells. Exogenous suppression of FAM134B has led to significant upregulation of EB1 as well as reduction of KDELR2 expression. It was noted that overexpression of EB1 promotes WNT/β‐catenin signaling pathways via inactivating tumor suppressor APC followed by activating β‐catenin in colorectal carcinogenesis. This study has first time reported the gene signaling networks with which FAM134B interacts and noted that FAM134B is involved in the regulation of WNT/β‐catenin pathway by EB1‐mediated modulating of APC in colon cancer cells.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
- Department of Biochemistry and Molecular Biology University of Rajshahi Rajshahi Bangladesh
| | - Stephanie Chaousis
- Australian Rivers Institute and School of Environment Griffith University Gold Coast Queensland Australia
| | - Riajul Wahab
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
- School of Medical Science Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Alfred K.‐Y. Lam
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| |
Collapse
|
8
|
Xie S, Liu Y, Li X, Tan M, Wang C, Field J, Zhou GL. Phosphorylation of the Cytoskeletal Protein CAP1 Regulates Non-Small Cell Lung Cancer Survival and Proliferation by GSK3β. J Cancer 2018; 9:2825-2833. [PMID: 30123351 PMCID: PMC6096378 DOI: 10.7150/jca.25993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Adenylate cyclase-associated protein 1 (CAP1) is an evolutionarily conserved protein that regulates actin dynamics. Our previous study indicates that CAP1 is overexpressed in NSCLC tissues and correlated with poor clinical outcomes. Further establishing the role and dissecting underlying mechanisms are imperative before targeting CAP1 can become a possibility for cancer treatment. Here we report our findings that knockdown of CAP1 inhibited cell proliferation and induced apoptosis in vitro and in vivo. Moreover, phosphor mutants of CAP1 at the S307/S309 regulatory site had compromised rescue effects for both the invasiveness and the proliferation in CAP1-knockdown cells and GSK3β kinase inhibitor LiCl inhibited cell phosphorylation site S307/S309 by up-regulating the expression of p53, BAK, BAD and cleaved PARP induced ROS production, decreased lung cancer cell viability, adhesion, proliferation, migration and invasion, and induction of apoptosis. These novel mechanistic insights may ultimately open up avenues for strategies targeting CAP1 in the treatment of lung cancer, tailored for specific types of the highly diverse disease.
Collapse
Affiliation(s)
- Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yang Liu
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xuan Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Min Tan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Lei Zhou
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA
| |
Collapse
|
9
|
Zhang X, Cao S, Barila G, Edreira MM, Hong K, Wankhede M, Naim N, Buck M, Altschuler DL. Cyclase-associated protein 1 (CAP1) is a prenyl-binding partner of Rap1 GTPase. J Biol Chem 2018; 293:7659-7673. [PMID: 29618512 PMCID: PMC5961064 DOI: 10.1074/jbc.ra118.001779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
Rap1 proteins are members of the Ras subfamily of small GTPases involved in many biological responses, including adhesion, cell proliferation, and differentiation. Like all small GTPases, they work as molecular allosteric units that are active in signaling only when associated with the proper membrane compartment. Prenylation, occurring in the cytosol, is an enzymatic posttranslational event that anchors small GTPases at the membrane, and prenyl-binding proteins are needed to mask the cytoplasm-exposed lipid during transit to the target membrane. However, several of these proteins still await discovery. In this study, we report that cyclase-associated protein 1 (CAP1) binds Rap1. We found that this binding is GTP-independent, does not involve Rap1's effector domain, and is fully contained in its C-terminal hypervariable region (HVR). Furthermore, Rap1 prenylation was required for high-affinity interactions with CAP1 in a geranylgeranyl-specific manner. The prenyl binding specifically involved CAP1's C-terminal hydrophobic β-sheet domain. We present a combination of experimental and computational approaches, yielding a model whereby the high-affinity binding between Rap1 and CAP1 involves electrostatic and nonpolar side-chain interactions between Rap1's HVR residues, lipid, and CAP1 β-sheet domain. The binding was stabilized by the lipid insertion into the β-solenoid whose interior was occupied by nonpolar side chains. This model was reminiscent of the recently solved structure of the PDEδ-K-Ras complex; accordingly, disruptors of this complex, e.g. deltarasin, blocked the Rap1-CAP1 interaction. These findings indicate that CAP1 is a geranylgeranyl-binding partner of Rap1.
Collapse
Affiliation(s)
- Xuefeng Zhang
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Shufen Cao
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44116
| | - Guillermo Barila
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Martin M Edreira
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Kyoungja Hong
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Mamta Wankhede
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Nyla Naim
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44116
| | - Daniel L Altschuler
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| |
Collapse
|
10
|
Kakurina GV, Kolegova ES, Kondakova IV. Adenylyl Cyclase-Associated Protein 1: Structure, Regulation, and Participation in Cellular Processes. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29534668 DOI: 10.1134/s0006297918010066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review summarizes information available to date about the structural organization, regulation of functional activity of adenylyl cyclase-associated protein 1 (CAP1), and its participation in cellular processes. Numerous data are generalized on the role of CAP1 in the regulation of actin cytoskeleton and its interactions with many actin-binding proteins. Attention is drawn to the similarity of the structure of CAP1 and its contribution to the remodeling of actin filaments in prokaryotes and eukaryotes, as well as to the difference in the interaction of CAP1 with adenylyl cyclase in these cells. In addition, we discuss the participation of CAP1 in various pathological processes.
Collapse
Affiliation(s)
- G V Kakurina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| | | | | |
Collapse
|
11
|
Xie S, Shen C, Tan M, Li M, Song X, Wang C. Systematic analysis of gene expression alterations and clinical outcomes of adenylate cyclase-associated protein in cancer. Oncotarget 2018; 8:27216-27239. [PMID: 28423713 PMCID: PMC5432330 DOI: 10.18632/oncotarget.16111] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Adenylate Cyclase-associated protein (CAP) is an evolutionarily conserved protein that regulates actin dynamics. Our previous study indicates that CAP1 is overexpressed in NSCLC tissues and correlated with poor clinical outcomes, but CAP1 in HeLa cells actually inhibited migration and invasion, the role of CAP was discrepancy in different cancer types. The present study aims to determine whether CAP can serve as a prognostic marker in human cancers. The CAP expression was assessed using Oncomine database to determine the gene alteration during carcinogenesis, the copy number alteration, or mutations of CAP using cBioPortal, International Cancer Genome Consortium, and Tumorscape database investigated, and the association between CAP expression and the survival of cancer patient using Kaplan-Meier plotter and PrognoScan database evaluated. Therefore, the functional correlation between CAP expression and cancer phenotypes can be established; wherein CAP might serve as a diagnostic marker or therapeutic target for certain types of cancers.
Collapse
Affiliation(s)
- Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Changxing Shen
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Min Tan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ming Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
12
|
Clawson GA, Matters GL, Xin P, McGovern C, Wafula E, dePamphilis C, Meckley M, Wong J, Stewart L, D’Jamoos C, Altman N, Imamura Kawasawa Y, Du Z, Honaas L, Abraham T. "Stealth dissemination" of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma. PLoS One 2017; 12:e0184451. [PMID: 28957348 PMCID: PMC5619717 DOI: 10.1371/journal.pone.0184451] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Here we describe isolation and characterization of macrophage-tumor cell fusions (MTFs) from the blood of pancreatic ductal adenocarcinoma (PDAC) patients. The MTFs were generally aneuploidy, and immunophenotypic characterizations showed that the MTFs express markers characteristic of PDAC and stem cells, as well as M2-polarized macrophages. Single cell RNASeq analyses showed that the MTFs express many transcripts implicated in cancer progression, LINE1 retrotransposons, and very high levels of several long non-coding transcripts involved in metastasis (such as MALAT1). When cultured MTFs were transplanted orthotopically into mouse pancreas, they grew as obvious well-differentiated islands of cells, but they also disseminated widely throughout multiple tissues in "stealth" fashion. They were found distributed throughout multiple organs at 4, 8, or 12 weeks after transplantation (including liver, spleen, lung), occurring as single cells or small groups of cells, without formation of obvious tumors or any apparent progression over the 4 to 12 week period. We suggest that MTFs form continually during PDAC development, and that they disseminate early in cancer progression, forming "niches" at distant sites for subsequent colonization by metastasis-initiating cells.
Collapse
Affiliation(s)
- Gary A. Clawson
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Gail L. Matters
- Department of Biochemistry & Molecular Biology, HMC, PSU, Hershey, PA, United States of America
| | - Ping Xin
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Christopher McGovern
- Department of Biochemistry & Molecular Biology, HMC, PSU, Hershey, PA, United States of America
| | - Eric Wafula
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Claude dePamphilis
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Morgan Meckley
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Joyce Wong
- Department of Surgery, HMC, PSU, Hershey, PA, United States of America
| | - Luke Stewart
- Applications Support, Fluidigm Corporation, South San Francisco, CA, United States of America
| | - Christopher D’Jamoos
- Applications Support, Fluidigm Corporation, South San Francisco, CA, United States of America
| | - Naomi Altman
- Department of Statistics, Eberly College, UP, PSU, University Park, PA, United States of America
| | - Yuka Imamura Kawasawa
- Department of Pharmacology and Biochemistry & Molecular Biology, Institute for Personalized Medicine, HMC, PSU, Hershey, PA, United States of America
| | - Zhen Du
- Gittlen Cancer Research Laboratories and the Department of Pathology, Hershey Medical Center (HMC), Pennsylvania State University (PSU), Hershey, PA, United States of America
| | - Loren Honaas
- Department of Biology, Eberly College, University Park (UP), Pennsylvania State University, University Park, PA, United States of America
| | - Thomas Abraham
- Department of Neural & Behavioral Sciences and Microscopy Imaging Facility, HMC, PSU, Hershey, PA, United States of America
| |
Collapse
|
13
|
Said HM, Safari R, Al-Kafaji G, Ernestus RI, Löhr M, Katzer A, Flentje M, Hagemann C. Time- and oxygen-dependent expression and regulation of NDRG1 in human brain cancer cells. Oncol Rep 2017; 37:3625-3634. [PMID: 28498432 DOI: 10.3892/or.2017.5620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) is a tumor suppressor with the potential to suppress metastasis, invasion and migration of cancer cells. It is regulated under stress conditions such as starvation or hypoxia. NDRG1 regulation is both induced and controlled by HIF-1α-dependent and -independent pathways under hypoxic conditions. However, there are profound differences in the way NDRG1 expression is regulated by HIF-1α and other transcription factors. Therefore, we aimed to define the time-dependent pattern of NDRG1 mRNA and protein expression in human glioblastoma cell lines in extreme hypoxia and after re-oxygenation as well as under normoxic conditions. Furthermore, we ascribe the regulation of NDRG1 to the transcription factors HIF-1α, SP1, CEBPα, YB-1 and Smad7 in a time-dependent manner. The human malignant glioma cell lines U87-MG, U373 and GaMG were cultured for 1, 6 and 24 h under hypoxic (0.1% O2) conditions and then they were re-oxygenated. The mRNA expression of NDRG1, HIF-1α SP1, CEBPα, YB-1 and Smad7 was measured using semi-quantitative RT-PCR analysis. Their protein expression was analyzed using western blotting. Our experiments revealed that long-term (24 h), but not short-term hypoxia led to the induction of NDRG1 expression in human glioma cell lines. NDRG1 expression was found to correlate with the protein expression of HIF-1α, SP1, CEBPα, YB-1 and Smad7. The present study suggests for the first time that SP1 regulates NDRG1 expression in glioma cells under hypoxia in a time-dependent manner along with HIF-1α, CEBPα, YB-1 and Smad7. These molecules, each separately or in combination, may possess the potential to become target molecules for antitumor therapeutic approaches particularly in human brain tumors.
Collapse
Affiliation(s)
- Harun Muayad Said
- Department of Molecular Medicine, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Roghaiyeh Safari
- Izmir Biomedicine and Genome (IBG) Center, Dokuz Eylul University, Izmir, Turkey
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | | | - Mario Löhr
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Xu L, Peng S, Huang Q, Liu Y, Jiang H, Li X, Wang J. Expression status of cyclase‑associated protein 2 as a prognostic marker for human breast cancer. Oncol Rep 2016; 36:1981-8. [PMID: 27573674 DOI: 10.3892/or.2016.5051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/22/2016] [Indexed: 11/05/2022] Open
Abstract
Cyclase-associated protein 2 (CAP2) protein is reported to be upregulated in hepatocellular carcinoma (HCC). However, data regarding its expression pattern and clinical relevance in breast cancer are unknown. The aim of this study was to investigate CAP2 expression and its prognostic significance in breast cancer. CAP2 expression at the mRNA and protein levels was examined by real‑time quantitative-polymerase chain reaction and western blotting in 10 paired breast cancer tissues and adjacent normal tissues. The expression level of CAP2 protein in normal breast epithelial cells and breast cancer cell lines was quantified by western blotting. CAP2 protein expression was analyzed in paraffin‑embedded breast cancer samples, paired adjacent non‑tumor and normal breast tissues by immunohistochemical analysis. Statistical analyses were also performed to evaluate the clinicopathological significance of CAP2 expression. The results showed that the expression of CAP2 mRNA and protein was higher in breast cancer than that noted in the adjacent normal tissues in 10 paired samples. The expression level of CAP2 protein in breast cancer cell lines was higher than that in normal breast epithelial cells. In paraffin‑embedded tissue samples, the expression of CAP2 was higher in breast cancer than that found in the adjacent non‑cancerous tissues and normal breast tissues. Compared with the adjacent non‑cancerous tissues, overexpression of CAP2 was detected in 29.4% (37/126) of the patients. Overexpression of CAP2 was significantly associated with progesterone receptor (PR) expression (p<0.05), and decreased overall survival (OS) (p<0.05). In multivariate analysis, expression of CAP2 was an independent prognostic factor for OS [hazard ratio (HR), 4.821; 95% confidence interval (CI), 2.442‑9.518; p<0.001]. CAP2 is upregulated in breast cancer and is associated with the expression of PR and patient survival. CAP2 may serve as a prognostic indicator for patients with breast cancer.
Collapse
Affiliation(s)
- Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Sida Peng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510230, P.R. China
| | - Qunai Huang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yu Liu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hua Jiang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xi Li
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
15
|
Fu J, Li M, Wu DC, Liu LL, Chen SL, Yun JP. Increased Expression of CAP2 Indicates Poor Prognosis in Hepatocellular Carcinoma. Transl Oncol 2015; 8:400-406. [PMID: 26500030 PMCID: PMC4631095 DOI: 10.1016/j.tranon.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 12/03/2022] Open
Abstract
CAP2 has been suggested as a potential diagnostic biomarker for early hepatocellular carcinoma (HCC). However, its prognostic significance in HCC remains unclear. Here, we show that CAP2 expression is much higher in HCC tissues than that in paracarcinoma tissues, at both mRNA and protein levels. Data of immunohistochemistry (IHC) revealed that CAP2 was markedly up-regulated in 77.3% of HCC cases. High CAP2 expression, defined by the median score of IHC, was present in 53.3% of the patients. Kaplan-Meier analysis indicated that high CAP2 expression was associated with poor overall survival (P < .0001), disease-free survival (P = .013) and recurrence probability (P = .004) in a training cohort of 312 HCC patients. The prognostic implication of CAP2 in HCC was further confirmed in a validation cohort of 208 HCC patients and by stratified survival analysis. Multiple Cox regression analysis indicated CAP2 as an independent predictor for overall survival (hazard ratio (HR) = 1.615, 95% confidence interval: 1.345-1.938, P < .001). Collectively, we conclude that CAP2 is increased in HCC and is a novel unfavorable biomarker for prognostic prediction for patients with this deadly disease.
Collapse
Affiliation(s)
- Jia Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Centerfor Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Min Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Centerfor Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dan-Chun Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Li Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Centerfor Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shi-Lu Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Centerfor Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Centerfor Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|