1
|
Differential expression of aqueous humor microRNAs in central retinal vein occlusion and its association with matrix metalloproteinases: a pilot study. Sci Rep 2022; 12:16429. [PMID: 36180575 PMCID: PMC9525721 DOI: 10.1038/s41598-022-20834-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study is to investigate the differential expression of microRNAs (miRNAs) in the aqueous humor (AH) of patients with central retinal vein occlusion (CRVO), and their association with AH matrix metalloproteinase (MMP) activity. Eighteen subjects, including 10 treatment naïve patients with CRVO and 8 control subjects, scheduled for intravitreal injection and cataract surgery, respectively, were included. AH samples were collected at the beginning of the procedure. A microarray composed of 84 miRNAs was performed to identify differentially expressed miRNAs in CRVO AH, which were further analyzed using bioinformatic tools to identify directly related cytokines/proteins. Eight miRNAs (hsa-mir-16-5p, hsa-mir-142-3p, hsa-mir-19a-3p, hsa-mir-144-3p, hsa-mir-195-5p, hsa-mir-17-5p, hsa-mir-93-5p, and hsa-mir-20a-5p) were significantly downregulated in the CRVO group. Bioinformatic analysis revealed a direct relationship among downregulated miRNAs, CRVO, and the following proteins: MMP-2, MMP-9, tumor necrosis factor, transforming growth factor beta-1, caspase-3, interleukin-6, interferon gamma, and interleukin-1-beta. Activities of MMP-2 and -9 in AH were detected using gelatin zymography, showing significant increase in the CRVO group compared to the control group (p < 0.01). This pilot study first revealed that MMP-2 and -9 were directly related to downregulated miRNAs and showed significant increase in activity in AH of patients with CRVO. Therefore, the relevant miRNAs and MMPs in AH could serve as potential biomarkers or therapeutic targets for CRVO.
Collapse
|
2
|
Wu H, Luo YX, Hu W, Zhao ML, Bie J, Yang M, Pan R, Huang NX, Feng G, Liu K, Song G. MicroRNA-382-5p inhibits osteosarcoma development and progression by negatively regulating VEZF1 expression. Oncol Lett 2021; 22:752. [PMID: 34539856 PMCID: PMC8436354 DOI: 10.3892/ol.2021.13013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Human osteosarcoma is the most frequent malignant primary bone tumor that mainly occurs in young adults and children. MicroRNAs (miRNAs/miRs) are abnormally expressed in human osteosarcoma and contribute to osteosarcoma initiation and development. The present study aimed to investigate the role of miR-382-5p in the nosogenesis of osteosarcoma and to identify a novel target for osteosarcoma treatment. miR-382-5p expression was detected in human osteosarcoma clinical tissues and cell lines, including 143B, U2OS and MG63, via reverse transcription-quantitative PCR analysis. Multiple bioinformatic prediction toowe used to identify the potential target genes of miR-382-5p and vascular endothelial zinc finger 1 (VEZF1), which were validated via the dual-luciferase reporter assay. MG63 and U2OS cells were transfected with miR-382-5p mimics. The Cell Counting Kit-8 assay was performed to assess cell proliferation, while the Transwell assay was performed to assess migration and invasion. Cell colony formation was measured via crystal violet staining, and apoptosis was assessed via Annexin V/propidium iodide staining. The wound healing assay was performed to assess the migratory ability of U2OS and MG63 cells. Antitumor effects of miR-382-5p were evaluated in nude mice xenografts using U2OS cells. The results demonstrated that miR-382-5p expression was markedly downregulated in human osteosarcoma tissues and cell lines compared with adjacent normal tissues. Transfection of miR-382-5p mimics into MG63 and U2OS cells significantly inhibited the malignant behaviors of cells, including decreased proliferation, migration, diminished colony formation and invasion, and promoted osteosarcoma cell apoptosis. Bioinformatics prediction indicated that VEZF1 is a direct target gene of miR-382-5p. Overexpression of VEZF1 restored osteosarcoma tumor development inhibited by miR-382-5p in vivo. In addition, overexpression of miR-382-5p restrained the growth of xenograft osteosarcoma in nude mice following co-transfection, and overexpression of VEZF1 attenuated the inhibitory effect of miR-382-5p in nude mice. miR-382-5p acted as a tumor suppressor gene and inhibited the malignant biological behaviors of human osteosarcoma cells and functions associated with directly targeting VEZF1. Taken together, these results suggest that the miR-382-5p/VEZF1 interaction has an important role in osteosarcoma development and progression, and thus may be used as a diagnostic and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Hui Wu
- Department of Orthopedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yu-Xi Luo
- The First Clinical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wen Hu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Mao-Lin Zhao
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jun Bie
- Oncology Department, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Mi Yang
- Oncology Department, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Rongqiang Pan
- Oncology Department, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Nan-Xiang Huang
- Department of Pediatric Surgery, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guiqin Song
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
3
|
Wan J, Liu Y, Long F, Tian J, Zhang C. circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miR-423-5p to activate Wnt5a/Ror2 signaling. Cancer Sci 2021; 112:1707-1722. [PMID: 33369809 PMCID: PMC8088910 DOI: 10.1111/cas.14787] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is the most prevalent form of bone cancer. It has a high metastatic potential and progresses rapidly. The molecular mechanisms of OS remain unclear and this study aims to examine the functional role of circPVT1 and miR‐423‐5p in OS. Quantitative RT‐PCR (qRT‐PCR) and western blotting were used to examine levels of miR‐423‐5p, circPVT1, Wnt5a, Ror2, and glycolysis‐related proteins, including HK2, PKM2, GLUT1, and LDHA. Colony formation and transwell assays were used to test the roles of miR‐423‐5p, circPVT1, and Wnt5a/Ror2 in OS cell proliferation, migration, and invasion. Dual luciferase assay and Ago2‐RIP were used to validate the interactions of miR‐423‐5p/Wnt5a, miR‐423‐5p/Ror2, and circPVT1/miR‐423‐5p. Glucose uptake assay and measurement of lactate production were performed to assess the glycolysis process. A nude mouse xenograft model was used to evaluate the effects of sh‐circPVT1 and miR‐423‐5p mimics on tumor growth and metastasis in vivo. miR‐423‐5p was reduced in both OS tissues and OS cell lines, while Wnt5a/Ror2 and circPVT1 were elevated. miR‐423‐5p bound to 3′‐UTR of Wnt5a and Ror2 mRNA, and inhibited glycolysis and OS cell proliferation, migration, and invasion by targeting Wnt5a and Ror2. circPVT1 interacted with miR‐423‐5p and activated Wnt5a/Ror2 signaling by sponging miR‐423‐5p. Knockdown of circPVT1 or overexpression of miR‐423‐5p suppressed OS tumor growth and metastasis in vivo. miR‐423‐5p inhibited OS glycolysis, proliferation, migration, and metastasis by targeting and suppressing Wnt5a/Ror2 signaling pathway, while circPVT1 promoted those processes by acting as a sponge of miR‐423‐5p.
Collapse
Affiliation(s)
- Jun Wan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Can Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Zhang L, Zhao G, Ji S, Yuan Q, Zhou H. Downregulated Long Non-Coding RNA MSC-AS1 Inhibits Osteosarcoma Progression and Increases Sensitivity to Cisplatin by Binding to MicroRNA-142. Med Sci Monit 2020; 26:e921594. [PMID: 32155139 PMCID: PMC7081928 DOI: 10.12659/msm.921594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Osteosarcoma (OS) is the most prevalent malignant primary bone tumor, resulting from severe transformation of primitive mesenchymal cells, which induces osteogenesis. Long non-coding RNA (lncRNA) MSC-AS1 triggers osteogenic differentiation by sponging microRNA (miR)-140-5p. The present study assessed the mechanism of lncRNA MSC-AS1 in OS biological features and sensitivity to cisplatin (DDP) by binding to miR-142. Material/Methods Firstly, lncRNA MSC-AS1 expression in OS tissues and cells was analyzed. OS cells were transfected with silenced MSC-AS1 to determine its role in OS biological behaviors, and we also assessed the effect of MSC-AS1 on OS sensitivity to DDP. Then, website prediction and dual-luciferase reporter gene assay were utilized for verification of the binding site between MSC-AS1 and miR-142. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were performed to determine the effect of MSC-AS1 on expression of miR-142, cyclin-dependent kinase 6 (CDK6), and the PI3K/AKT signaling pathway. Xenograft transplantation was also applied to confirm the in vitro experiments. Results Overexpressed MSC-AS1 was associated with poor prognosis of OS patients. OS cell proliferation, invasion, and migration were reduced after silencing MSC-AS1, while cell apoptosis was enhanced. Moreover, silencing MSC-AS1 made OS cells more sensitive to DDP. Interestingly, MSC-AS1 knockdown induced miR-142 expression and reduced CDK6 levels, thereby decreasing the protein expression of p-PI3K/t-PI3K and p-AKT/t-AKT. Silencing MSC-AS1 repressed OS progression in vivo. Conclusions Our study demonstrated that silencing MSC-AS1 inhibited OS biological behaviors by enhancing miR-142 to decrease CDK6 and inactivating the PI3K/AKT axis. Our results may provide new insights for OS treatment.
Collapse
Affiliation(s)
- Longqiang Zhang
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Guangzong Zhao
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Shaolin Ji
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Qihua Yuan
- Department of Orthopedics, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Haiyan Zhou
- Health Management Center, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
5
|
Liu Q, Wang Z, Zhou X, Tang M, Tan W, Sun T, Deng Y. miR-342-5p inhibits osteosarcoma cell growth, migration, invasion, and sensitivity to Doxorubicin through targeting Wnt7b. Cell Cycle 2019; 18:3325-3336. [PMID: 31601147 DOI: 10.1080/15384101.2019.1676087] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) accounts for 9 percent of cancer-related deaths in young people. The PI3K/Akt signaling, a well-known carcinogenic signaling pathway in human cancer, cooperates with other signaling pathways such as Wnt signaling to promote cancer progression. Wnt7b, as a transforming member of the Wnt family, could activate mTORC1 through PI3K-AKT signaling and is upregulated in OS. In the present study, we found that miR-342-5p inhibits Wnt7b expression via direct binding to Wnt7b 3'-UTR. miR-342-5p overexpression remarkably suppressed the viability and invasion while enhanced the apoptosis of OS cells; meanwhile, Wnt7b, β-catenin, c-myc, and cyclin D1 proteins were reduced while E-cadherin protein showed to be increased. Consistent with its expression pattern, Wnt7b exerted oncogenic effects on OS cells. Wnt7b could significantly attenuate the impacts of miR-342-5p. In conclusion, we demonstrated a miR-342-5p/Wnt7b axis that regulates the capacity of OS cells to proliferate and to invade through Wnt/β-catenin signaling. The miR-342-5p/Wnt7b axis might be novel targets for OS targeted therapy, which needs further in vivo and clinical investigations.
Collapse
Affiliation(s)
- Qing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenting Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaohua Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingying Tang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tianshi Sun
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youwen Deng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Xu Y, Wang L, Jiang L, Zhang X. Novel MicroRNA Biomarkers, miR-142-5p, miR-550a, miR-1826, and miR-1201, Were Identified for Primary Melanoma. J Comput Biol 2019; 27:815-824. [PMID: 31526187 DOI: 10.1089/cmb.2019.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study was aimed to identify novel miRNA biomarkers and explore the cooperative function of multi-RNAs in the progress of primary melanoma. The miRNA expression profile GSE62370 generated from 9 congenital nevi and 92 primary melanoma samples was downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs between primary melanoma and congenital nevi were compared and the target genes of them were selected. Pathway enrichment analysis and protein/protein interaction (PPI) network of miRNA target genes were performed. In addition, the differential expression of miRNAs to identify the tumor stage-dependent differences in miRNA expression was analyzed. Differentially expressed miRNAs, including 6 upregulated and 23 downregulated, were found in primary melanoma. Besides, the miRNA-associated gene regulatory network revealed 274 nodes, including miR-142-5p and miR-125b, and 307 miRNA-target pairs. miRNA-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, such as melanoma, was found. Target genes in the PPI module were mainly enriched in cancer-related pathways. Finally, the melanoma stage-related overexpressed miR-142-5p and the downregulated miR-550, miR-1826, miR-1201, miR-205, and miR-125b were identified. Some validated miRNAs, including miR-125a/b, let-7a/b, and miR-205, were found and illustrated the reliability of our study. Four novel miRNAs, including miR-142-5p, miR-550a, miR-1826, and miR-1201, were considered to have potential prognostic values for primary melanoma.
Collapse
Affiliation(s)
- Yangchun Xu
- Department of Dermatology, Second Hospital of Jilin University, Changchun, China
| | - Ling Wang
- Department of Gynecology, Second Hospital of Jilin University, Changchun, China
| | - Lanxiang Jiang
- Department of Dermatology, Second Hospital of Jilin University, Changchun, China
| | - Xuan Zhang
- Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Wan J, Cao Y, Abdelaziz MH, Huang L, Kesavan DK, Su Z, Wang S, Xu H. Downregulated Rac1 promotes apoptosis and inhibits the clearance of apoptotic cells in airway epithelial cells, which may be associated with airway hyper-responsiveness in asthma. Scand J Immunol 2019; 89:e12752. [PMID: 30681176 DOI: 10.1111/sji.12752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
The accumulation of airway apoptotic cells may be an important factor causing airway hyper-responsiveness (AHR). Whether the apoptotic cells can be promptly removed is related to the occurrence and course of asthma. In recent years, studies have shown that Rac1 is involved in many cellular biological activities including the formation and elimination of apoptotic cells. In this study, based on the analysis of airway local cells and related factors in asthmatic mice, we evaluated the expression of Rac1 in airway epithelial cells or phagocytes and analysed its relationship with the incidence of apoptosis or scavenging of apoptotic cells. Our data showed that the expression level of Rac1 in asthmatic mice decreased significantly, while the expression of IL-33 increased obviously. The airway epithelial cell line was stimulated by curcumin at 50 μmol/L for 24-48 hours; more than 50% of the cells were apoptotic, and of which, about 20% were late apoptosis. Rac1 inhibitor (NSC23766) can enhance the apoptosis effect. In addition, the ability of phagocytosis and migration in the epithelial cells or macrophages was increased following the application of Rac1 inhibitors or specific siRNA in a dose-dependent manner, and the expression level of IL-33 was simultaneously increased after blocking Rac1. It is suggested that the down regulation of Rac1 in asthma may contribute to the apoptosis of airway epithelial cells and affect the clearance of apoptotic cells, which will lead to the aggregation of the apoptotic cells in the respiratory tract and participate in AHR.
Collapse
Affiliation(s)
- Jie Wan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuwen Cao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | | | - Lan Huang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Dinesh Kumar Kesavan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Epstein-Barr Virus Infection of Cell Lines Derived from Diffuse Large B-Cell Lymphomas Alters MicroRNA Loading of the Ago2 Complex. J Virol 2019; 93:JVI.01297-18. [PMID: 30429351 DOI: 10.1128/jvi.01297-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoid tumor which is occasionally Epstein-Barr virus (EBV) positive and is further subtyped as activated B-cell DLBCL (ABC-DLBCL) and germinal center B-cell DLBCL (GCB-DLBCL), which has implications for prognosis and treatment. We performed Ago2 RNA immunoprecipitation followed by high-throughput RNA sequencing (Ago2-RIP-seq) to capture functionally active microRNAs (miRNAs) in EBV-negative ABC-DLBCL and GCB-DLBCL cell lines and their EBV-infected counterparts. In parallel, total miRNA profiles of these cells were determined to capture the cellular miRNA profile for comparison with the functionally active profile. Selected miRNAs with differential abundances were validated using real-time quantitative PCR (RT-qPCR) and Northern blotting. We found 6 miRNAs with differential abundances (2 upregulated and 4 downregulated miRNAs) between EBV-negative and -positive ABC-DLBCL cells and 12 miRNAs with differential abundances (3 upregulated and 9 downregulated miRNAs) between EBV-negative and -positive GCB-DLBCL cells. Eight and twelve miRNAs were confirmed using RT-qPCR in ABC-DLBCL and GCB-DLBCL cells, respectively. Selected miRNAs were analyzed in additional type I/II versus type III EBV latency DLBCL cell lines. Furthermore, upregulation of miR-221-3p and downregulation of let7c-5p in ABC-DLBCL cells and upregulation of miR-363-3p and downregulation of miR-423-5p in GCB-DLBCL cells were verified using RIP-Northern blotting. Our comprehensive sequence analysis of the DLBCL miRNA profiles identified sets of deregulated miRNAs by Ago2-RIP-seq. Our Ago2-IP-seq miRNA profile could be considered an important data set for the detection of deregulated functionally active miRNAs in DLBCLs and could possibly lead to the identification of miRNAs as biomarkers for the classification of DLBCLs or even as targets for personalized targeted treatment.IMPORTANCE Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive tumor of lymphoid origin which is occasionally Epstein-Barr virus (EBV) positive. MicroRNAs are found in most multicellular organisms and even in viruses such as EBV. They regulate the synthesis of proteins by binding to their cognate mRNA. MicroRNAs are tethered to their target mRNAs by "Argonaute" proteins. Here we compared the overall miRNA content of the Ago2 complex by differential loading to the overall content of miRNAs in two DLBCL cell lines and their EBV-converted counterparts. In all cell lines, the Ago2 load was different from the overall expression of miRNAs. In addition, the loading of the Ago2 complex was changed upon infection with EBV. This indicates that the virus not only changes the overall content of miRNAs but also influences the expression of proteins by affecting the Ago complexes.
Collapse
|
9
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed Pharmacother 2019; 111:873-881. [PMID: 30841466 DOI: 10.1016/j.biopha.2018.12.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Today, cancer is one of the most common causes of death. Osteosarcoma (OS) is a tumor in long bones and its prevalence is high in teenagers and young people. Among the methods that used to treat cancer, one can name chemotherapy, surgery, and radiotherapy. Since these methods have some disadvantages and they are not absolutely successful, the use of microRNAs (miRNAs) is very useful in diagnosis and treatment of OS. MiRNAs are small non-coding RNA molecules, containing 18-25 nucleotides, which are involved in the regulation of gene expression via binding to messenger RNA (mRNA). These RNAs are divided into two classes of suppressors and oncogenes. During OS, there is aberrant expression of several miRNAs. Among these miRNAs are downregulation of miR-193 that has been associated with cancer occurrence. The aim of the current manuscript is to have overview on the treatment approaches of OS with special focus on miR-193.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Lawson J, Dickman C, Towle R, Jabalee J, Javer A, Garnis C. Extracellular vesicle secretion of miR-142-3p from lung adenocarcinoma cells induces tumor promoting changes in the stroma through cell-cell communication. Mol Carcinog 2018; 58:376-387. [PMID: 30362621 DOI: 10.1002/mc.22935] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 11/10/2022]
Abstract
Extracellular vesicles (EVs) are mediators of communication between cancer cells and the surrounding tumor microenvironment. EV content is able to influence key tumorigenic changes including invasion, metastasis, and inducing pro-tumor changes in the stroma. MiR-142-3p is a known tumor suppressor in LAC and was recently shown to be enriched within LAC EVs, indicating its potential as a key signaling miRNA. Our research demonstrates the role EV associated miR-142-3p plays when transferred from LAC cells to both endothelial and fibroblast cells. We demonstrate that transfer of miR-142-3p in LAC EVs to endothelial cells promotes angiogenesis through inhibition of TGFβR1. Additionally, we show EV associated miR-142-3p promotes the cancer-associated fibroblast phenotype in lung fibroblast cells which we show is independent of TGFβ signaling. These findings suggest that miR-142-3p within LAC EVs can be transferred from LAC cells to both endothelial and fibroblast cells to promote tumor associated changes.
Collapse
Affiliation(s)
- James Lawson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Christopher Dickman
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Ariana Javer
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Shabani P, Izadpanah S, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J Cell Biochem 2018; 120:4783-4793. [PMID: 30450580 DOI: 10.1002/jcb.27857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the bone with a strong tendency to early metastasis, and occurs in growing bones more commonly in children and adolescents. Considering the limited therapeutic methods and lack of 100% success of these methods, developing innovative therapies with high efficacy and lower side effects is needed. Meanwhile, miRNAs and the studies indicating the involvement of miRNAs in OS development have attracted attentions as a result of the frequent abnormalities in expression of miRNAs in cancer. miRNAs are noncoding short sequences with lengths ranging from 18 to 25 nucleotides that play a very important role in cellular processes, such as proliferation, differentiation, migration, and apoptosis. MiRNAs can have either oncogenic or tumor suppressive role based on cellular function and targets. This review aimed to have overview on miR-142 as a tumor suppressor in OS. Moreover, the genes involved in the disease, such as RAC1, HMAG1, MMP9, MMP2, and E-cadherin, which have irregularities as a result of change in miR-142 expression, and, thereby, result in increasing the proliferation, invasion, and metastasis of the cells in the tissues and OS cells will be discussed.
Collapse
Affiliation(s)
- Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Trissal MC, Wong TN, Yao JC, Ramaswamy R, Kuo I, Baty J, Sun Y, Jih G, Parikh N, Berrien-Elliott MM, Fehniger TA, Ley TJ, Maillard I, Reddy PR, Link DC. MIR142 Loss-of-Function Mutations Derepress ASH1L to Increase HOXA Gene Expression and Promote Leukemogenesis. Cancer Res 2018; 78:3510-3521. [PMID: 29724719 PMCID: PMC6030481 DOI: 10.1158/0008-5472.can-17-3592] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022]
Abstract
Point mutations in the seed sequence of miR-142-3p are present in a subset of acute myelogenous leukemia (AML) and in several subtypes of B-cell lymphoma. Here, we show that mutations associated with AML result both in loss of miR-142-3p function and in decreased miR-142-5p expression. Mir142 loss altered the hematopoietic differentiation of multipotent hematopoietic progenitors, enhancing their myeloid potential while suppressing their lymphoid potential. During hematopoietic maturation, loss of Mir142 increased ASH1L protein expression and consequently resulted in the aberrant maintenance of Hoxa gene expression in myeloid-committed hematopoietic progenitors. Mir142 loss also enhanced the disease-initiating activity of IDH2-mutant hematopoietic cells in mice. Together these data suggest a novel model in which miR-142, through repression of ASH1L activity, plays a key role in suppressing HOXA9/A10 expression during normal myeloid differentiation. AML-associated loss-of-function mutations of MIR142 disrupt this negative signaling pathway, resulting in sustained HOXA9/A10 expression in myeloid progenitors/myeloblasts and ultimately contributing to leukemic transformation.Significance: These findings provide mechanistic insights into the role of miRNAs in leukemogenesis and hematopoietic stem cell function. Cancer Res; 78(13); 3510-21. ©2018 AACR.
Collapse
Affiliation(s)
- Maria C Trissal
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Terrence N Wong
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Juo-Chin Yao
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Rahul Ramaswamy
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Iris Kuo
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jack Baty
- Division of Biostatistics, Washington University, St. Louis, Missouri
| | - Yaping Sun
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Gloria Jih
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Nishi Parikh
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | | | - Todd A Fehniger
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy J Ley
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ivan Maillard
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Pavan R Reddy
- Division of Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Daniel C Link
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
13
|
Guan B, Mu L, Zhang L, Wang K, Tian J, Xu S, Wang X, He D, Du Y. MicroRNA-218 inhibits the migration, epithelial-mesenchymal transition and cancer stem cell properties of prostate cancer cells. Oncol Lett 2018; 16:1821-1826. [PMID: 30008871 DOI: 10.3892/ol.2018.8877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/27/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miRNA) is a class of non-coding single-stranded RNA, able to regulate tumor-associated genes via binding the 3'-UTR of the target gene mRNA. Previous publications have demonstrated that miRNA-218 (miR-218) acts as a tumor-suppressive miRNA in various types of human cancer, including prostate cancer (PCa). However, the role of miR-218 in regulating PCa cell stemness and epithelial-mesenchymal transition remains unknown and requires further research. In the present study, it is demonstrated that miR-218 was downregulated in 2 PCa cell lines and could suppress cell migration, EMT and the exhibition of cancer stem cell-like properties. The expression of GLI family zinc finger 1 (Gli1) was inhibited by miR-218 overexpression, suggesting miR-218-suppression of Gli1 as a potential mechanism for the tumor-suppressive effect of miR-218. Overall, the results indicate that miR-218 served a critical role in the inhibition of PCa development. This may provide new insight for elucidating the mechanisms of PCa oncogenesis and suggests that miR-218 may be a novel therapeutic target for PCa.
Collapse
Affiliation(s)
- Bing Guan
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lijun Mu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Linlin Zhang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juanhua Tian
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shan Xu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinyang Wang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuefeng Du
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
14
|
Gao YF, Zhang QJ, Yu Z, Liu SH, Liang J. miR-142 suppresses proliferation and induces apoptosis of osteosarcoma cells by upregulating Rb. Oncol Lett 2018; 16:733-740. [PMID: 29963139 PMCID: PMC6019919 DOI: 10.3892/ol.2018.8761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
Abstract
It has been reported that microRNA-142 (miR-142) is a tumor suppressor gene. The present study primarily investigated whether the overexpression of miR-142 was able to inhibit the proliferation, apoptosis and expression of apoptosis-associated proteins in osteosarcoma (OS) cells. Different concentrations of miR-142 were transfected into the OS MG-63 cell line using Lipofectamine 2000. The cell lines were divided into three groups: Normal group (non-transfected group), miR-142 transfected group, and negative group, which were transfected with random miR-142 fragment. The proliferation of cells was detected by MTT assay. The expression of miR-142 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). DAPI staining was performed to investigate the influence of miR-142 on the morphology of MG-63c ells. The apoptotic cell percentages were determined by flow cytometry with Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Expression of tumor suppressors, phosphatase and tensin homolog (PTEN) and Retinoblastoma-associated protein (Rb), and apoptosis-associated proteins were evaluated by western blotting. RT-qPCR indicated a higher expression of miR-142 in the transfected group (miR-142 was transfected into the MG-63 cell line) compared with that in the normal (non-transfected group) and negative control groups. The proliferation of miR-142 transfected cells was significantly lower compared with that in the normal and negative groups. Furthermore, an increased apoptosis rate accompanied by a statistically significant upregulation of PTEN, Rb phosphorylation, cleaved caspase-3 and cytochrome c protein levels were detected in the transfected group, indicating an internal apoptosis pathway was involved in this process. Furthermore, no significant changes were identified between the normal and negative groups (P>0.05). The present study demonstrated that miR-142 overexpression by liposomal transfection resulted in an inhibitory effect on MG-63 cell proliferation. The underlying mechanisms may relate to the upregulation of tumor suppressor and activation of caspase signaling pathway, which may provide a novel horizon in short nucleotide drugs on the management of OS.
Collapse
Affiliation(s)
- Yan-Fang Gao
- Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China.,Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qiu-Jie Zhang
- Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China.,Department of Oncology, Jining First People's Hospital, Jining, Shandong 272111, P.R. China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Shi-Hai Liu
- Center Laboratory, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China.,Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| |
Collapse
|
15
|
Cheng H, Wang W, Wang G, Wang A, Du L, Lou W. Silencing Ras-Related C3 Botulinum Toxin Substrate 1 Inhibits Growth and Migration of Hypopharyngeal Squamous Cell Carcinoma via the P38 Mitogen-Activated Protein Kinase Signaling Pathway. Med Sci Monit 2018; 24:768-781. [PMID: 29410394 PMCID: PMC5812251 DOI: 10.12659/msm.907468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ras-related C3 botulinum toxin substrate 1 (Rac1) is implicated in a variety of cellular functions and is related to tumor growth and metastasis. This study aimed to explore the role of Rac1 in hypopharyngeal squamous cell carcinoma (HSCC). MATERIAL AND METHODS The Rac1 expression in HSCC tissues was determined by quantitative real-time polymerase chain reaction and Western blot analysis. The level of Rac1 in HSCC cells was downregulated by a Rac1-specific shRNA. Then, the growth and metastasis of HSCC cells were assessed in vitro by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, flow cytometry, Hoechst staining, and Transwell assay. Moreover, cells transfected with Rac1 shRNA or negative control were injected subcutaneously into the right axilla of mice, and then the effects of Rac1 silencing on the growth of HSCC were also explored in vivo. Additionally, activation of the P38 mitogen-activated protein kinase (MAPK) signaling pathway was assessed by Western blot. RESULTS Rac1 was highly expressed in HSCC tissues. Silencing Rac1 inhibited the proliferation and cell cycle progress of HSCC cells, and induced their apoptosis. Rac1 silencing also suppressed the migration and invasion of HSCC cells. In vivo study showed that silencing Rac1 suppressed the growth of tumor bodies. Moreover, the P38 MAPK signaling pathway was implicated in the tumor-suppressing effect of Rac1 silencing in vitro and in vivo. CONCLUSIONS Silencing Rac1 suppressed the growth and migration of HSCC through the P38 MAPK signaling pathway. Due to its contribution in HSCC, Rac1 has the potential to become a promising antitumor therapeutic target for HSCC.
Collapse
Affiliation(s)
- Huijuan Cheng
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Weiwei Wang
- Department of Otolaryngology, Henan Provincial People's Hospital, Zhengzhou, Henan, China (mainland)
| | - Guangke Wang
- Department of Otolaryngology, Henan Provincial People's Hospital, Zhengzhou, Henan, China (mainland)
| | - Anran Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Linfang Du
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Weihua Lou
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
16
|
Qin W, Rong X, Dong J, Yu C, Yang J. miR-142 inhibits the migration and invasion of glioma by targeting Rac1. Oncol Rep 2017; 38:1543-1550. [PMID: 28714015 DOI: 10.3892/or.2017.5816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/16/2017] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence has shown that aberrant microRNAs (miRNAs) are implicated in tumorigenesis and tumor progression by regulating oncogenes or tumor suppressors. Dysregulation of miR-142 has been reported in multiple tumors. However, its clinical roles and underlying mechanism in glioma remain to be elucidated. In the present study, we found that the expression of miR-142 was significantly downregulated in both glioma tissues and cell lines by qRT-PCR. Clinical analysis revealed that decreased miR-142 was markedly associated with advanced World Health Organization (WHO) grade. Moreover, we disclosed that miR-142 was a novel independent prognostic marker in the prediction of the 5-year survival of glioma patients. The ectopic overexpression of miR-142 inhibited cell migration, invasion and invasion‑related gene expression. Notably, miR-142 modulated Rac1 by directly binding to its 3'-untranslated (3'-UTR) region, leading to the suppression of the expression of matrix metalloproteinases (MMPs). In glioma clinical samples, miR-142 was inversely correlated with Rac1 expression, and played positive roles in glioma migration and invasion. Alteration of Rac1 expression at least partially abolished the migration, invasion and MMP expression of miR-142 in glioma cells. In the present study, we identified Rac1 as a functional target of miR-142 in glioma. In conclusion, our data indicated that miR-142 inhibited the migration, invasion and MMP expression of glioma by targeting Rac1, and may represent a novel potential therapeutic target and prognostic marker for glioma.
Collapse
Affiliation(s)
- Wenyi Qin
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaofeng Rong
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiangchuan Dong
- Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chao Yu
- Department of Emergency, Chongqing JiangBei Hospital of Traditional Chinese Medicine, Chongqing 400020, P.R. China
| | - Juan Yang
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
17
|
Jayaraman M, Radhakrishnan R, Mathews CA, Yan M, Husain S, Moxley KM, Song YS, Dhanasekaran DN. Identification of novel diagnostic and prognostic miRNA signatures in endometrial cancer. Genes Cancer 2017; 8:566-576. [PMID: 28740575 PMCID: PMC5511890 DOI: 10.18632/genesandcancer.144] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
With the goal of identifying diagnostic and prognostic biomarkers in endometrial cancer, miRNA-profiling was carried out with formalin-fixed paraffin embedded (FFPE) tissue samples from 49 endometrial cancer patients. Results using an 84-cancer specific miRNA panel identified the upregulation of miR-141-3p and miR-96-5p along with a downregulation of miR-26, miR-126-3p, miR-23b, miR-195-5p, miR-374a and let-7 family of miRNAs in endometrial cancer. We validated the dysregulated expression of the identified miRNAs in a panel of endometrial cancer cell-lines. Immunohistochemical analysis of the tissue micro array derived from these patients established the functional correlation between the decreased expression of tumor suppressive miRNAs and their target oncogenes: ERBB2, EGFR, EPHA2, BAX, GNA12, GNA13, and JUN. Comparative analysis of the samples from the patients with extended progression-free survival (PFS) ( > 21 months) versus the patients with the PFS of < 21 months indicated increased expression of tumor suppressive miR-142-3p, miR-142-5p, and miR-15a-5p in samples from extended PFS patients. In addition to defining a specific set of miRNAs and their target genes as potential diagnostic biomarkers, our studies have identified tumor suppressive miR-142 cluster and miR-15a as predictors of favorable prognosis for therapy response in endometrial cancer.
Collapse
Affiliation(s)
- Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Cara A Mathews
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mingda Yan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sanam Husain
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Katherine M Moxley
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, S. Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
18
|
Lu Y, Ji N, Wei W, Sun W, Gong X, Wang X. MiR-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1α) in the tumor microenvironments. Biol Open 2017; 6:252-259. [PMID: 28069592 PMCID: PMC5312097 DOI: 10.1242/bio.021774] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs regulate most protein-coding genes, including genes important in cancer and other diseases. In this study, we demonstrated that the expression of miR-142 could be significantly suppressed in pancreatic cancer specimens and cell lines compared to their adjacent tissues and normal pancreatic cells. Growth and invasion of PANC-1 and SW1990 cells were attenuated by overexpression of miR-142 in vitro. With the help of bioinformatics analysis, hypoxia-inducible factor 1 (HIF-1α) was identified to be a direct target of miR-142, and a luciferase reporter experiment confirmed this discovery. Overexpression of miR-142 decreases protein expression of HIF-1α. In the hypoxic microenvironment, HIF-1α was up-regulated while miR-142 was down-regulated. The invaded cells significantly increased in the hypoxic microenvironment compared to the normoxic microenvironment. The hypoxia treatment induced cells’ proliferation, and invasion could be inhibited by miR-142 overexpression or HIF-1α inhibition. Moreover, expression of epithelial-mesenchymal transition (EMT) markers, Vimentin, VEGF-C and E-cad, was altered under hypoxia conditions and regulated by miR-142/HIF-1α. Above all, these findings provided insights on the functional mechanism of miR-142, suggesting that the miR-142/HIF-1α axis may interfere with the proliferative and invasive properties of pancreatic cancer cells, and indicated that miR-142 could be a potential therapeutic target for pancreatic cancer. Summary: Our findings provide insights to the functional mechanism of miR-142, suggesting that the miR-142/HIF-1α axis may interfere with the proliferative and invasive property of pancreatic cancer cells.
Collapse
Affiliation(s)
- Yebin Lu
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Niandong Ji
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Wei Wei
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Weijia Sun
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xuejun Gong
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xitao Wang
- Department of Gerneral Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
19
|
Liu K, Huang J, Ni J, Song D, Ding M, Wang J, Huang X, Li W. MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle 2017; 16:578-587. [PMID: 28346809 DOI: 10.1080/15384101.2017.1288324] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recently, emerging evidence has demonstrated that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNAs (lncRNAs), contributes to the initiation and development of tumors, including osteosarcoma (OS). Multiple studies have suggested an oncogenic role of MALAT1 and high-mobility group protein B1 (HMGB1) in OS tumorigenesis and metastasis, but the effects and mechanisms are not unanimous. Here, we showed that MALAT1 and HMGB1 were significantly increased in human OS cell lines and knockdown of MALAT1 reduced HMGB1 expression. By using online tools, we screen out 2 candidate miRNAs, miR-142-3p and miR-129-5p which may be associated with both MALAT1 and HMGB1. Luciferase reporter assay revealed a direct interaction between the 2 miRNAs and MALAT1, respectively, via a putative binding site within MALAT1. Meanwhile, both the 2 miRNAs could bind to HMGB1 3'-untranslated region (3'-UTR) and regulate HMGB1 expression. Moreover, knockdown of MALAT1 decreased HMGB1 expression, inhibited OS cell growth and promoted apoptosis, while miR-142-3p and miR-129-5p inhibitor partly restored the inhibitory effect of MALAT1 knockdown on HMGB1 expression, OS cell growth and the promotion of apoptosis. In OS tissues, the expression of MALAT1 and HMGB1 was upregulated while the expression of miR-142-3p and miR-129-5p was downregulated. Together, our results support a MALAT1/miR-142-3p/miR-129-5p/HMGB1 axis in OS cell proliferation and tumor progression. MALAT1 promoted OS cell growth through inhibition of miR-142-3p or miR-129-5p and by targeting HMGB1.
Collapse
Affiliation(s)
- Ke Liu
- a Department of Ophthalmology , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Jun Huang
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Jiangdong Ni
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Deye Song
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Muliang Ding
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Junjie Wang
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Xianzhe Huang
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| | - Wenzhao Li
- b Department of Orthopaedics , The Second Xiangya Hospital, Central South University , Changsha , Hunan , P.R. China
| |
Collapse
|
20
|
Marko TA, Shamsan GA, Edwards EN, Hazelton PE, Rathe SK, Cornax I, Overn PR, Varshney J, Diessner BJ, Moriarity BS, O'Sullivan MG, Odde DJ, Largaespada DA. Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma. Sci Rep 2016; 6:39059. [PMID: 27966608 PMCID: PMC5155223 DOI: 10.1038/srep39059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/16/2016] [Indexed: 11/15/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, with metastatic disease responsible for most treatment failure and patient death. A forward genetic screen utilizing Sleeping Beauty mutagenesis in mice previously identified potential genetic drivers of osteosarcoma metastasis, including Slit-Robo GTPase-Activating Protein 2 (Srgap2). This study evaluates the potential role of SRGAP2 in metastases-associated properties of osteosarcoma cell lines through Srgap2 knockout via the CRISPR/Cas9 nuclease system and conditional overexpression in the murine osteosarcoma cell lines K12 and K7M2. Proliferation, migration, and anchorage independent growth were evaluated. RNA sequencing and immunohistochemistry of human osteosarcoma tissue samples were used to further evaluate the potential role of the Slit-Robo pathway in osteosarcoma. The effects of Srgap2 expression modulation in the murine OS cell lines support the hypothesis that SRGAP2 may have a role as a suppressor of metastases in osteosarcoma. Additionally, SRGAP2 and other genes in the Slit-Robo pathway have altered transcript levels in a subset of mouse and human osteosarcoma, and SRGAP2 protein expression is reduced or absent in a subset of primary tumor samples. SRGAP2 and other axon guidance proteins likely play a role in osteosarcoma metastasis, with loss of SRGAP2 potentially contributing to a more aggressive phenotype.
Collapse
Affiliation(s)
- Tracy A Marko
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | - Ghaidan A Shamsan
- Department of Biomedical Engineering University of Minnesota, Minneapolis, MN, USA
| | | | - Paige E Hazelton
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | - Susan K Rathe
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | - Ingrid Cornax
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA
| | - Paula R Overn
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA
| | - Jyotika Varshney
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA
| | | | - Branden S Moriarity
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - M Gerard O'Sullivan
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA.,College of Veterinary Medicine, Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David J Odde
- Department of Biomedical Engineering University of Minnesota, Minneapolis, MN, USA
| | - David A Largaespada
- University of Minnesota, Masonic Cancer Center Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Wang XX, Liu J, Tang YM, Hong L, Zeng Z, Tan GH. MicroRNA-638 inhibits cell proliferation by targeting suppress PIM1 expression in human osteosarcoma. Tumour Biol 2016; 37:16367–16375. [PMID: 28050866 DOI: 10.1007/s13277-016-5379-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small noncoding RNAs that often play important roles in carcinogenesis, but the carcinogenic mechanism of miRNAs is still unclear. This study will investigate the functions and the mechanism of miR-638 in osteosarcoma (OS). The expression of miR-638 in OS and the DNA copy number of miR-638 were detected by real-time PCR. The effect of miR-638 on cell proliferation was measured by CCK8 assay. Different assays, including bioinformatics algorithms, luciferase report assay, and Western blotting, were used to identify the target gene proviral integration site for Moloney murine leukemia virus 1 (PIM1) of miR-638 in OS. The expression of PIM1 in clinical OS tissues was also validated by immunohistochemical assay. From this research, we found that miR-638 was downregulated in OS tissues compared with corresponding noncancerous tissues (NCTs), and the DNA copy number of miR-638 was lower in OS than in NCTs, which may induce the corresponding downregulation of miR-638 in OS. Ectopic expression of miR-638 inhibited OS cell growth in vitro. Subsequently, we identified that PIM1 is the downstream target gene of miR-638 in OS cells, and silencing PIM1 expression phenocopied the inhibitory effect of miR-638 on OS cell proliferation. Furthermore, we observed that PIM1 was overexpressed in OS tissues, and high expression of PIM1 in OS predicted poor overall survival. In summary, we revealed that miR-638 functions as a tumor suppressor through inhibiting PIM1 expression in OS.
Collapse
Affiliation(s)
- Xiao-Xu Wang
- Department of Joint Surgery, the Second Affiliated Hospital, University of South China, 35 Jiefang Road, Hengyang, Hunan, People's Republic of China
| | - Jue Liu
- Department of Dobstertics and Gynecology, the Second Affiliated Hospital, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yi-Min Tang
- Department of Nursing, the First Affiliated Hospital, University of South China, Hengyang, Hunan, People's Republic of China
| | - Liang Hong
- Department of Joint Surgery, the Second Affiliated Hospital, University of South China, 35 Jiefang Road, Hengyang, Hunan, People's Republic of China
| | - Zhi Zeng
- Department of Joint Surgery, the Second Affiliated Hospital, University of South China, 35 Jiefang Road, Hengyang, Hunan, People's Republic of China
| | - Guang-Hua Tan
- Department of Joint Surgery, the Second Affiliated Hospital, University of South China, 35 Jiefang Road, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
22
|
Yuan H, Gao Y. MicroRNA-1908 is upregulated in human osteosarcoma and regulates cell proliferation and migration by repressing PTEN expression. Oncol Rep 2015; 34:2706-14. [PMID: 26328886 DOI: 10.3892/or.2015.4242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/27/2015] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma is a high-grade malignant bone neoplasm. Although the introduction of chemotherapy has reduced its mortality, >50% of patients develop chemoresistance and have an extremely poor prognosis due to pulmonary metastasis. Several molecular pathways contributing to osteosarcoma development and progression have recently been identified. Various studies have addressed the genes involved in the metastasis of osteosarcoma. However, the highly complex molecular mechanisms of metastasis remain to be elucidated. Recent studies have emphasized causative links between aberrant microRNA expression patterns and osteosarcoma progression. miR-1908 is dysregulated in certain human types of cancer. The expression pattern, clinical significance and biological role of miR-1908 in osteosarcoma, however, remain largely undefined. In the present study, we showed that miR-1908 was markedly upregulated in osteosarcoma cells and tissues compared with normal bone tissues using RT-qPCR. miR-1908 upregulation in osteosarcoma tissues was significantly associated with cell proliferation, invasion, advanced TNM stage and tumor growth. Both gain- and loss-of-function studies showed that miR-1908 markedly increased the ability of osteosarcoma cells to proliferate and to invade through Matrigel in vitro. Analyses using mouse xenograft model revealed that xenografts of miR-1908 stable-expressing osteosarcoma cells exhibited a significant increase in tumor volume and weight, compared with the control group. Subsequent investigations revealed that miR-1908 directly inhibited the expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Using a luciferase reporter carrying the 3'-untranslated region (3'-UTR) of PTEN, we identified PTEN as a direct target of miR-1908. Collectively, the results showed that, miR-1908 promotes proliferation and invasion of osteosarcoma cells by repressing PTEN expression.
Collapse
Affiliation(s)
- Hongmou Yuan
- Department of Orthopaedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Yanjun Gao
- Department of Orthopaedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|