1
|
Shao Y, Zhang S, Pan Y, Peng Z, Dong Y. miR-135b: A key role in cancer biology and therapeutic targets. Noncoding RNA Res 2025; 12:67-80. [PMID: 40124960 PMCID: PMC11930451 DOI: 10.1016/j.ncrna.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
miR-135b, a microRNA, is consistently up-regulated in various cancer tissues and cells, promoting cancer progression. By inhibiting one or more target genes, miR-135b regulates phenotypes such as cancer growth, apoptosis, migration, invasion, drug resistance, and angiogenesis, establishing it as a critical driver of cancer progression. Additionally, miR-135b is regulated by various oncogenes and therapeutic drugs, highlighting its complexity and therapeutic potential. Significant progress has been made in understanding miR-135b's impact on cancer cell behavior, establishing it as a promising biomarker for cancer diagnosis and prognosis, as well as a potential target for future cancer therapies. However, despite the extensive research on this topic, there has been no comprehensive review summarizing its role and mechanisms across different cancer types. This review aims to provide a detailed overview of the biological characteristics of miR-135b, its regulatory targets, upstream signaling pathways, and its therapeutic potential, including its influence on cancer chemoresistance. The review also addresses key controversies surrounding miR-135b in cancer research, aiming to deepen the understanding of its role, promote the transformation of its clinical application, and provide a theoretical foundation for developing more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Yingchun Shao
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yuxin Pan
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhan Peng
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Zhu Q, Yuan Z, Huo Q, Lu Q, Wu Q, Guo J, Fu W, Lu Y, Zhong L, Shang W, Cui D, Li S, Liu X, Tu K, Huang D, Xu Q, Hu X. YY1 induced USP13 transcriptional activation drives the malignant progression of hepatocellular carcinoma by deubiquitinating WWP1. Cell Mol Biol Lett 2025; 30:56. [PMID: 40319251 PMCID: PMC12049795 DOI: 10.1186/s11658-025-00733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer globally and the third leading cause of cancer-related mortality. Protein ubiquitination and deubiquitination play vital roles in human cancers. Ubiquitin-specific protease 13 (USP13) is a deubiquitinating enzyme (DUB) that is involved in many cellular processes. However, the mechanism by which USP13 regulates deubiquitination remains largely unknown. METHODS Clinical data were analyzed via online databases. USP13 expression in HCC cell lines and tissues was analyzed via western blotting and immunohistochemistry. A lentivirus was used to established stable USP13-knockdown and USP13-overexpression cells. Cell Counting Kit-8, colony formation, wound healing, Transwell, and sphere formation assays were used to detect the malignant behaviors of HCC cells in vitro. A subcutaneous mouse model was used to investigate the function of USP13 in vivo. Co-immunoprecipitation, chromatin immunoprecipitation and dual-luciferase reporter assays were conducted to explore the molecular regulation. RESULTS USP13 was upregulated in HCC cell lines and tissues, which predicted a poor prognosis in patients with HCC. Functional experiments in which USP13 was overexpressed or depleted revealed the oncogenic role of USP13 in driving HCC progression both in vitro and in vivo. Mechanistically, WW domain-containing ubiquitin E3 ligase 1 (WWP1) was identified as a binding protein of USP13. Furthermore, USP13 can interact with WWP1 and then remove the K29- and K48-linked polyubiquitination chains from WWP1 to stabilize the WWP1 protein via the ubiquitin-proteasome pathway. Moreover, Yin Yang 1 (YY1) was explored as a new transcription factor of USP13, and YY1 could also upregulate WWP1 expression through USP13. Moreover, YY1 and WWP1 were shown to participate in the oncogenic role of USP13. CONCLUSIONS Our findings revealed the functional YY1/USP13/WWP1 signaling axis in HCC, identifying a promising therapeutic target for anti-HCC treatment.
Collapse
Affiliation(s)
- Qingwei Zhu
- The Qingdao Medical College of Qingdao University, Qingdao, 266000, China
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Zibo Yuan
- The Qingdao Medical College of Qingdao University, Qingdao, 266000, China
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiang Huo
- Department of General Surgery, Zhoushan Dinghai Central Hospital (Dinghai District of Zhejiang Provincial People's Hospital), Zhoushan, 316000, China
| | - Qiliang Lu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- The Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Qingsong Wu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Department of Hepatobiliary, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China
| | - Junwei Guo
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310053, China
| | - Wen Fu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Ying Lu
- Department of Haematology, Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Lei Zhong
- Department of Laboratory Medicine, Tongxiang Traditional Chinese Medicine Hospital, Tongxiang, 314500, China
| | - Wenzhong Shang
- Department of Hematology, The first People's Hospital of Fuyang Hangzhou, Hangzhou, 311400, China
| | - Di Cui
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Shuangshuang Li
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xin Liu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| | - Xiaoge Hu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Yi L, Shahatiaili A, Zhang L, He H, Chen L, Zhang Z, Gao F, Shao F, Gao Y, He J. USP13: A therapeutic target for combating tumorigenesis and antitumor therapy resistance. Int J Biol Macromol 2025; 304:140608. [PMID: 39900156 DOI: 10.1016/j.ijbiomac.2025.140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Ubiquitin-specific peptidase 13 (USP13) has emerged as a key regulator of proteins critical to the hallmarks of cancer, playing an essential role in cellular regulation. This deubiquitinating enzyme, often overexpressed in malignancies, wields its molecular scissors precisely, snipping ubiquitin tags to rescue oncoproteins from degradation. Our review highlights the dual role of USP13 in cancer biology: while it predominantly fuels tumor growth and metastasis, USP13 occasionally functions as a tumor suppressor. USP13 is as a formidable factor in cancer therapy, fortifying tumors against an arsenal of treatments. It bolsters DNA repair mechanisms, ignites prosurvival autophagy, and even reprograms cell lineages to evade targeted therapies. However, USP13 is also a promising target in the treatment of cancer. We highlight burgeoning strategies to neutralize USP13, from small molecule inhibitors to innovative protein degraders, which may disarm cancer resistance mechanisms. We also offer suggestions for future USP13 research, emphasizing the need for structural insights and more potent inhibitors. This review highlights the critical role of USP13 in cancer and underscores its potential as a therapeutic target for advancing cancer treatment.
Collapse
Affiliation(s)
- Lina Yi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Akezhouli Shahatiaili
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Haihua He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fushan Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China; Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancers Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Jie He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
4
|
Guo M, Meng H, Sun Y, Zhou L, Hu T, Yu T, Bai H, Zhang Y, Gu C, Yang Y. Bruceine A Inhibits Cell Proliferation by Targeting the USP13/PARP1 Signalling Pathway in Multiple Myeloma. Basic Clin Pharmacol Toxicol 2025; 136:e70027. [PMID: 40151951 PMCID: PMC11955937 DOI: 10.1111/bcpt.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy, driving significant interest in the discovery of novel therapeutic strategies. Bruceine A (BA), a tetracyclic triterpene quassinoid derived from Brucea javanica, has shown anticancer properties by modulating multiple intracellular signalling pathways and exhibiting various biological effects. However, the specific pharmacological mechanisms by which it combats MM remain unclear. In this study, we identified USP13 as a potential target of BA. We observed a significant increase in USP13 expression in patients with MM, which was strongly associated with a poorer prognosis. Furthermore, enhanced USP13 expression can stimulate MM cell proliferation both in vitro and in vivo. Mass spectrometry analysis, combined with co-immunoprecipitation and in vitro ubiquitination experiments, revealed PARP1 as a critical downstream target of USP13. USP13 can stabilize PARP1 protein through deubiquitination, promoting PARP1-mediated DNA damage repair (DDR) and facilitating MM progression. Notably, we utilized MM cell lines, an MM Patient-Derived Tumour Xenograft model, and a 5TMM3VT mouse model to determine the anticancer effects of BA on MM progression, revealing its potential to target USP13/PARP1 signalling and disrupt DDR in MM cells. In conclusion, these findings suggest that BA inhibiting USP13/PARP1-mediated DDR might be a promising therapeutic strategy for MM.
Collapse
Affiliation(s)
- Mengjie Guo
- Nanjing Hospital of Chinese Medicine Affiliated With Nanjing University of Chinese MedicineNanjingChina
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Han Meng
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yi Sun
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Lianxin Zhou
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Tingting Hu
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Tianyi Yu
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Haowen Bai
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yuanjiao Zhang
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated With Nanjing University of Chinese MedicineNanjingChina
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Ye Yang
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
5
|
Wang Q, Cao S, Sun Z, Zhu W, Sun L, Li Y, Luo D, Huang S, Zhang Y, Xia W, Zhang A, Jia Z. USP13 inhibition exacerbates mitochondrial dysfunction and acute kidney injury by acting on MCL-1. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167599. [PMID: 39608596 DOI: 10.1016/j.bbadis.2024.167599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Acute kidney injury (AKI) is a globally recognized public health issue that lacks satisfactory therapeutic strategies. Deubiquitinase ubiquitin-specific protease 13 (USP13) regulates various pathophysiological processes via the deubiquitination of multiple substrates. However, its role in AKI remains unclear. To illustrate the role and underlying mechanism of USP13 in AKI, we subjected Usp13 knockdown mice, and mice treated with the USP13 inhibitor spautin-1, and mice with USP13 overexpression plasmids to cisplatin challenge. Renal tubular epithelial cell injury and mitochondrial disturbances were determined in vitro. Immunoprecipitation and deubiquitylation assays were performed to verify the interactions between USP13 and myeloid cell leukemia (MCL-1). We observed a significant decrease of USP13 expression in cisplatin-challenged AKI mice and renal tubular epithelial cells. Overexpression of USP13 alleviated kidney injury, whereas knockdown or inhibition of USP13 further exacerbated AKI. Mechanistically, USP13 downregulation resulted in increased degradation of MCL-1 which is a key regulator of cell survival and mitochondrial function, and the resultant MCL-1 reduction disrupted mitochondrial homeostasis and aggravated renal tubular epithelial cell injury and death, contributing to AKI progression. In conclusion, our findings demonstrated that inhibition of USP13 could exacerbate mitochondrial dysfunction and AKI through its effects on MCL-1, and USP13 may serve as a target for AKI prevention and treatment.
Collapse
Affiliation(s)
- Qian Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shihan Cao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wenping Zhu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Le Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Li
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Luo
- Department of Nephrology, Shunde Hospital of Southern Medical University, Foshan, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Weiwei Xia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China; Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Yan D, He Q, Wang C, Li T, Yi X, Yu H, Wu W, Yang H, Wang W, Ma L. miR-135b: A Potential Biomarker for Pathological Diagnosis and Biological Therapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70002. [PMID: 40034060 DOI: 10.1002/wrna.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs found in eukaryotes with post-transcriptional regulatory functions. A variety of miRNAs is differentially expressed in cancer tissues and thus can be used as biomarkers. microRNA-135b-5p (miR-135b) has been shown to be involved in the pathological processes of a variety of neoplastic and non-neoplastic diseases. Under different conditions, miR-135b has different tumor suppressive and carcinogenic effects. miR-135b regulates the development of cancer, including metabolism, proliferation, apoptosis, invasion, fibrosis, angiogenesis, immunomodulation, and drug resistance. miR-135b can be used as a new biomarker for tumor diagnosis and prognosis, which has the potential for clinical guidance. This article reviews the relevant research on miR-135B in the field of tumors, including the biogenesis background of miR-135b, the expression of miR-135b in tumors, and the related targets and signaling pathways of miR-135b mediating tumor progression in order to sort out and explore the clinical transformation value of miR-135b.
Collapse
Affiliation(s)
- Dezhi Yan
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunjian Wang
- Department of Hematology, Peking University International Hospital, Beijing, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xueping Yi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Haisheng Yu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Wu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hanyun Yang
- Faculty of Health Sciences for Occupational Therapy, Curtin University, West Australia, Australia
| | - Wenzhao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Liang Ma
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Jiang Y, Fan X, Yu Y, Ge H, Liu C, Zhang Y, Yu L, Yin W, Zhou Z. USP13 overexpression in BMSCs enhances anti-apoptotic ability and guards against methylprednisolone-induced osteonecrosis in rats. Stem Cells 2025; 43:sxae069. [PMID: 39460600 DOI: 10.1093/stmcls/sxae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Methylprednisolone (MPS) use is linked to increased cases of osteonecrosis of the femoral head (ONFH). Bone marrow mesenchymal stem cells (BMSCs) have shown potential for treating MPS-induced ONFH, but their effectiveness is limited by high apoptosis rates post-transplantation. We developed a pretreatment strategy for BMSCs to improve their viability. In a rat model of MPS-induced ONFH, we evaluated the effects of USP13 overexpression in BMSCs through micro-CT, HE staining, and TUNEL staining. USP13-overexpressing BMSCs significantly reduced ONFH severity compared to plain BMSCs and direct lentivirus injection. USP13 also protected BMSCs from MPS-induced apoptosis by modulating PTEN and reducing AKT phosphorylation. This led to decreased expression of apoptotic genes and proteins in USP13-overexpressing BMSCs. Our findings highlight USP13 as a promising target for enhancing BMSC survival and efficacy in treating MPS-induced ONFH.
Collapse
Affiliation(s)
- Yixin Jiang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoli Fan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yaling Yu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hongfan Ge
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chengyin Liu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanyan Zhang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lingyun Yu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wen Yin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhenlei Zhou
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
8
|
Peng C, Li X, Yao Y, Nie Y, Fan L, Zhu C. MiR-135b-5p promotes cetuximab resistance in colorectal cancer by regulating FOXN3. Cancer Biol Ther 2024; 25:2373497. [PMID: 38967961 PMCID: PMC11229718 DOI: 10.1080/15384047.2024.2373497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Despite advances in targeted therapies, primary and acquired resistance make the treatment of colorectal cancer (CRC) a pressing issue to be resolved. According to reports, the development of CRC is linked to miRNA dysregulation. Multiple studies have demonstrated that miR-135b-5p has an aberrant expression level between CRC tissues and adjacent tissues. However, it is unclear whether there is a correlation between miR-135b-5p and cetuximab (CTx) resistance in CRC. Use the GEO database to measure miR-135b-5p expression in CRC. Additionally, RT-qPCR was applied to ascertain the production level of miR-135b-5p in three human CRC cells and NCM460 cells. The capacity of cells to migrate and invade was examined utilizing the wound-healing and transwell assays, while the CCK-8 assay served for evaluating cell viability, as well as colony formation assays for proliferation. The expected target protein of miR-135b-5p in CRC cell cetuximab resistance has been investigated using western blot. Suppression of miR-135b-5p could increase the CTx sensitivity of CTx-resistant CRC cells, as manifested by the attenuation of proliferation, migration, and invasion ability. Mechanistic studies revealed miR-135b-5p regulates the epithelial-to-mesenchymal transition (EMT) process and Wnt/β-catenin signaling pathway through downgulating FOXN3. In short, knockdowning miR-135b-5p could increase FOXN3 expression in CRC cells, promote the EMT process, and simultaneously activate the Wnt/β-catenin signaling pathway to elevate CTx resistance in CRC cells.
Collapse
Affiliation(s)
- Chun Peng
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqing Li
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuhui Yao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Nie
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lingyao Fan
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuandong Zhu
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Tolue Ghasaban F, Taghehchian N, Zangouei AS, Keivany MR, Moghbeli M. MicroRNA-135b mainly functions as an oncogene during tumor progression. Pathol Res Pract 2024; 262:155547. [PMID: 39151250 DOI: 10.1016/j.prp.2024.155547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Late diagnosis is considered one of the main reasons of high mortality rate among cancer patients that results in therapeutic failure and tumor relapse. Therefore, it is needed to evaluate the molecular mechanisms associated with tumor progression to introduce efficient markers for the early tumor detection among cancer patients. The remarkable stability of microRNAs (miRNAs) in body fluids makes them potential candidates to use as the non-invasive tumor biomarkers in cancer screening programs. MiR-135b has key roles in prognosis and survival of cancer patients by either stimulating or inhibiting cell proliferation, invasion, and angiogenesis. Therefore, in the present review we assessed the molecular biology of miR-135b during tumor progression to introduce that as a novel tumor marker in cancer patients. It has been reported that miR-135b mainly acts as an oncogene by regulation of transcription factors, signaling pathways, drug response, cellular metabolism, and autophagy. This review paves the way to suggest miR-135b as a tumor marker and therapeutic target in cancer patients following the further clinical trials and animal studies.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keivany
- Department of Radiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Yin H, Wu D, Qu Q, Li Z, Zhao L. Ubiquitin-specific peptidase 15 regulates the TFAP4/PCGF1 axis facilitating liver metastasis of colorectal cancer and cell stemness. Biochem Pharmacol 2024; 226:116319. [PMID: 38801926 DOI: 10.1016/j.bcp.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The tumor recurrence and metastasis of colorectal cancer (CRC) are responsible for most of CRC-linked mortalities. It is an urgent need to deeply investigate the pathogenesis of CRC metastasis and look for novel targets for its treatment. The current study aimed to investigate the effects of ubiquitin-specific peptidase 15 (USP-15) on the CRC progression. In vivo, a mouse model of liver metastasis of CRC tumor was established to investigate the role of USP-15. In vitro, the migrated and invasive abilities of CRC cells were assessed by transwell assay. Cell stemness was evaluated by using sphere formation assay. The underlying mechanism was further explored by employing the co-immunoprecipitation, dual luciferase reporter assay, oligonucleotide pull-down assay, and chromatin immunoprecipitation assay. The results showed that USP-15 was upregulated in CRC patients with liver metastasis and high metastatic potential cell lines of CRC. Loss of USP-15 repressed the epithelial-to-mesenchymal transition (EMT), migration, invasion, and stemness properties of CRC cells in vitro. Downregulation of USP-15 reduced the liver metastasis of mice in vivo. USP-15 upregulation obtained the contrary effects. Subsequently, USP-15 deubiquitinated transcription factor AP-4 (TFAP4) and enhanced its protein stability. TFAP4 could transcriptionally activated polycomb group ring finger 1 (PCGF1). The pro-cancer effects of USP-15 were rescue by the knockdown of TFAP4 or PCGF1. In conclusions: USP-15 facilitated the liver metastasis by the enhancement of cell stemness and EMT in CRC, which was at least partly mediated by the deubiquitination of TFAP4 upon the upregulation of PCGF1.
Collapse
Affiliation(s)
- Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Qiao Qu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Lianrong Zhao
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China.
| |
Collapse
|
11
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
12
|
Tao Y, Xu X, Shen R, Miao X, He S. Roles of ubiquitin‑specific protease 13 in normal physiology and tumors (Review). Oncol Lett 2024; 27:58. [PMID: 38192665 PMCID: PMC10773187 DOI: 10.3892/ol.2023.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Ubiquitin-specific protease 13 (USP13) is one of the most important deubiquitinases involved in various diseases. As deubiquitinases are components of the deubiquitination process, a significant post-translational modification, they are potential treatment targets for different diseases. With recent technological developments, the structure of USP13 and its pathological and physiological functions have been investigated. However, USP13 expression and function differ in various diseases, especially in tumors, and the associated mechanisms are complex and remain to be fully investigated. The present review summarized the recent discoveries and the current understanding of the USP13 function in tumors.
Collapse
Affiliation(s)
- Yun Tao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xiaohong Xu
- Department of Hematological Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Rong Shen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
13
|
Al-Balushi E, Al Marzouqi A, Tavoosi S, Baghsheikhi AH, Sadri A, Aliabadi LS, Salarabedi MM, Rahman SA, Al-Yateem N, Jarrahi AM, Halimi A, Ahmadvand M, Abdel-Rahman WM. Comprehensive analysis of the role of ubiquitin-specific peptidases in colorectal cancer: A systematic review. World J Gastrointest Oncol 2024; 16:197-213. [PMID: 38292842 PMCID: PMC10824112 DOI: 10.4251/wjgo.v16.i1.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most frequent and the second most fatal cancer. The search for more effective drugs to treat this disease is ongoing. A better understanding of the mechanisms of CRC development and progression may reveal new therapeutic strategies. Ubiquitin-specific peptidases (USPs), the largest group of the deubiquitinase protein family, have long been implicated in various cancers. There have been numerous studies on the role of USPs in CRC; however, a comprehensive view of this role is lacking. AIM To provide a systematic review of the studies investigating the roles and functions of USPs in CRC. METHODS We systematically queried the MEDLINE (via PubMed), Scopus, and Web of Science databases. RESULTS Our study highlights the pivotal role of various USPs in several processes implicated in CRC: Regulation of the cell cycle, apoptosis, cancer stemness, epithelial-mesenchymal transition, metastasis, DNA repair, and drug resistance. The findings of this study suggest that USPs have great potential as drug targets and noninvasive biomarkers in CRC. The dysregulation of USPs in CRC contributes to drug resistance through multiple mechanisms. CONCLUSION Targeting specific USPs involved in drug resistance pathways could provide a novel therapeutic strategy for overcoming resistance to current treatment regimens in CRC.
Collapse
Affiliation(s)
- Eman Al-Balushi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amina Al Marzouqi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shima Tavoosi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amir Hossein Baghsheikhi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 11365/4435, Iran
| | - Arash Sadri
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohammad-Mahdi Salarabedi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Syed Azizur Rahman
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nabeel Al-Yateem
- Department of Nursing, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alireza Mosavi Jarrahi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Aram Halimi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences , Tehran 1416634793, Iran
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
14
|
Jin J, He J, Li X, Ni X, Jin X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene 2023; 889:147807. [PMID: 37722609 DOI: 10.1016/j.gene.2023.147807] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The PI3K/AKT/mTOR pathway controls key cellular processes, including proliferation and tumor progression, and abnormally high activation of this pathway is a hallmark in human cancers. The post-translational modification, such as Ubiquitination and deubiquitination, fine-tuning the protein level and the activity of members in this pathway play a pivotal role in maintaining normal physiological process. Emerging evidence show that the unbalanced ubiquitination/deubiquitination modification leads to human diseases via PI3K/AKT/mTOR pathway. Therefore, a comprehensive understanding of the ubiquitination/deubiquitination regulation of PI3K/AKT/mTOR pathway may be helpful to uncover the underlying mechanism and improve the potential treatment of cancer via targeting this pathway. Herein, we summarize the latest research progress of ubiquitination and deubiquitination of PI3K/AKT/mTOR pathway, systematically discuss the associated crosstalk between them, as well as focus the clinical transformation via targeting ubiquitination process.
Collapse
Affiliation(s)
- Jiabei Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqi Ni
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
15
|
Kwon J, Zhang J, Mok B, Allsup S, Kim C, Toretsky J, Han C. USP13 drives lung squamous cell carcinoma by switching lung club cell lineage plasticity. Mol Cancer 2023; 22:204. [PMID: 38093367 PMCID: PMC10717271 DOI: 10.1186/s12943-023-01892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is associated with high mortality and limited targeted therapies. USP13 is one of the most amplified genes in LUSC, yet its role in lung cancer is largely unknown. Here, we established a novel mouse model of LUSC by overexpressing USP13 on KrasG12D/+; Trp53flox/flox background (KPU). KPU-driven lung squamous tumors faithfully recapitulate key pathohistological, molecular features, and cellular pathways of human LUSC. We found that USP13 altered lineage-determining factors such as NKX2-1 and SOX2 in club cells of the airway and reinforced the fate of club cells to squamous carcinoma development. We showed a strong molecular association between USP13 and c-MYC, leading to the upregulation of squamous programs in murine and human lung cancer cells. Collectively, our data demonstrate that USP13 is a molecular driver of lineage plasticity in club cells and provide mechanistic insight that may have potential implications for the treatment of LUSC.
Collapse
Affiliation(s)
- Juntae Kwon
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Jinmin Zhang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Boram Mok
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Samuel Allsup
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Chul Kim
- Division of Hematology and Oncology, Georgetown University School of Medicine, Washington D.C, USA
- MedStar Georgetown University Hospital, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
| | - Jeffrey Toretsky
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
- Departments of Pediatrics, Washington D.C, USA
| | - Cecil Han
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA.
- Lombardi Comprehensive Cancer Center, Washington D.C, USA.
| |
Collapse
|
16
|
Yu Y, Fan Z, Han Y, Sun X, Dong C, Liu G, Yin X, Liu L, Bai Y, Yang B. miR-135 protects against atrial fibrillation by suppressing intracellular calcium-mediated NLRP3 inflammasome activation. J Cell Commun Signal 2023; 17:813-825. [PMID: 36692633 PMCID: PMC10409699 DOI: 10.1007/s12079-023-00721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Atrial fibrillation (AF), one of the most common types of arrhythmias, is associated with high morbidity and mortality, seriously endangering human health. Inflammation is closely associated with AF development. Activation of the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome in cardiomyocytes has been shown to promote AF progression. Here, we demonstrate the effect of miR-135 on NLRP3 inflammasome and study the cardioprotective role of miR-135 in AF. We observed that overexpression of miR-135 in mice reduced the AF incidence and duration, and inhibited both excessive activation of NLRP3 inflammasome and the increased intracellular calcium release during AF. However, the inhibitory effect of miR-135 on AF was partly abolished in the presence of a specific agonist of the calcium-sensing receptor (CaSR). We showed in the present study that miR-135 has a protective effect against AF by suppressing intracellular calcium-mediated NLRP3 inflammasome activation, suggesting the potential of miR-135 as a therapeutic agent in the treatment of AF.
Collapse
Affiliation(s)
- Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, People's Republic of China
| | - Zheyu Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yanna Han
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Guanqun Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xinda Yin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Linhe Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- Joint International Research Laboratory of Cardiovascular Medicine, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150086, People's Republic of China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- Joint International Research Laboratory of Cardiovascular Medicine, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150086, People's Republic of China.
| |
Collapse
|
17
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Zhao B, Huo W, Yu X, Shi X, Lv L, Yang Y, Kang J, Li S, Wu H. USP13 promotes breast cancer metastasis through FBXL14-induced Twist1 ubiquitination. Cell Oncol (Dordr) 2023; 46:717-733. [PMID: 36732432 DOI: 10.1007/s13402-023-00779-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Epithelial-to-mesenchymal transition (EMT) is an important cause of high mortality in breast cancer. Twist1 is one of the EMT transcription factors (EMT-TFs) with a noticeably short half-life, which is regulated by proteasome degradation pathways. Recent studies have found that USP13 stabilizes several specific oncogenic proteins. As yet, however, the relationship between Twist1 and USP13 has not been investigated. METHODS Co-Immunoprecipitation, GST-pulldown, Western blot, qRT-PCR and immunofluorescence assays were used to investigate the role of USP13 in de-ubiquitination of Twist1. Chromatin immunoprecipitation and Luciferase reporter assays were used to investigate the role of Twist1 in inhibiting USP13 reporter transcription. Scratch wound healing, cell migration and invasion assays, and a mouse lung metastases assay were used to investigate the roles of USP13 and Twist1 in promoting breast cancer metastasis. RESULTS We found that Twist1 can be de-ubiquitinated by USP13. In addition, we found that the protein levels of Twist1 dose-dependently increased with USP13 overexpression, while USP13 knockdown resulted in a decreased expression of endogenous Twist1. We also found that USP13 can directly interact with Twist1 and specifically cleave the K48-linked polyubiquitin chains of Twist1 induced by FBXL14. We found that the effect of USP13 in promoting the migration and invasion capacities of breast cancer cells can at least partly be achieved through its regulation of Twist1, while Twist1 can inhibit the transcriptional activity of USP13. CONCLUSIONS Our data indicate that an interplay between Twist1 and USP13 can form a negative physiological feedback loop. Our findings show that USP13 may play an essential role in breast cancer metastasis by regulating Twist1 and, as such, provide a potential target for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Wei Huo
- Central Hospital affiliated to Dalian University of Technology, Dalian, China
| | - Xiaomin Yu
- Central Hospital affiliated to Dalian University of Technology, Dalian, China
| | - Xiaoxia Shi
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| |
Collapse
|
19
|
Kwon J, Zhang J, Mok B, Han C. CK2-Mediated Phosphorylation Upregulates the Stability of USP13 and Promotes Ovarian Cancer Cell Proliferation. Cancers (Basel) 2022; 15:cancers15010200. [PMID: 36612196 PMCID: PMC9818633 DOI: 10.3390/cancers15010200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Ubiquitin-specific Peptidase 13 (USP13) is a deubiquitinating enzyme that regulates the stability or function of its substrate. USP13 is highly amplified in human ovarian cancer, and elevated expression of USP13 promotes tumorigenesis and metastasis of ovarian cancer. However, there is little known about USP13 post-translational modifications and their role in ovarian cancer. Here, we found that USP13 is phosphorylated at Thr122 in ovarian cancer cells. Phosphorylated Thr122 (pT122) on endogenous USP13 was observed in most human ovarian cancer cells, and the abundance of this phosphorylation was correlated to the total level of USP13. We further demonstrated that Casein kinase 2 (CK2) directly interacts with and phosphorylates USP13 at Thr122, which promotes the stability of USP13 protein. Finally, we showed that Threonine 122 is important for cell proliferation of ovarian cancer cells. Our findings may reveal a novel regulatory mechanism for USP13, which may lead to novel therapeutic targeting of USP13 in ovarian cancer.
Collapse
Affiliation(s)
- Juntae Kwon
- Department of Oncology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Jinmin Zhang
- Department of Oncology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Boram Mok
- Department of Oncology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | - Cecil Han
- Department of Oncology, Georgetown University School of Medicine, Washington, DC 20007, USA
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20007, USA
- Correspondence:
| |
Collapse
|
20
|
Wang Q, Sun Z, Xia W, Sun L, Du Y, Zhang Y, Jia Z. Role of USP13 in physiology and diseases. Front Mol Biosci 2022; 9:977122. [PMID: 36188217 PMCID: PMC9515447 DOI: 10.3389/fmolb.2022.977122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin specific protease (USP)-13 is a deubiquitinase that removes ubiquitin from substrates to prevent protein degradation by the proteasome. Currently, the roles of USP13 in physiology and pathology have been reported. In physiology, USP13 is highly associated with cell cycle regulation, DNA damage repair, myoblast differentiation, quality control of the endoplasmic reticulum, and autophagy. In pathology, it has been reported that USP13 is important in the pathogenesis of infection, inflammation, idiopathic pulmonary fibrosis (IPF), neurodegenerative diseases, and cancers. This mini-review summarizes the most recent advances in USP13 studies involving its pathophysiological roles in different conditions and provides new insights into the prevention and treatment of relevant diseases, as well as further research on USP13.
Collapse
Affiliation(s)
- Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Le Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Du
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| |
Collapse
|
21
|
Maria AG, Azevedo B, Settas N, Hannah-Shmouni F, Stratakis CA, Faucz FR. USP13 genetics and expression in a family with thyroid cancer. Endocrine 2022; 77:281-290. [PMID: 35583846 PMCID: PMC9462409 DOI: 10.1007/s12020-022-03068-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Papillary thyroid carcinoma (PTC) is the most common type of thyroid carcinoma and its incidence has greatly increased in the last 30 years. Ubiquitin-specific protease 13 (USP13) is a class of deubiquitinating enzymes (DUBs) and plays an important role in cellular functions such as cell cycle regulation, DNA damage repair, and different cell signaling pathways. Studies regarding the role of USP13 in cancer development and progression are divergent and there are no previous data regarding the role of USP13 gene in PTCs. In this study, we investigated the genetic cause of PTC diagnosed in multiple members of a Brazilian family. METHODS Whole exome sequencing (WES) was performed to identify the genetic cause of PTC. Cycloheximide chase assay and clonogenic assay were performed to study USP13 stability and function in vitro. RESULTS WES analysis identified a heterozygous missense variant c.1483G > A (p.V495M) in the USP13 gene that fully segregates with the disease. In silico modeling suggests that this variant may cause protein structural perturbations. USP13 overexpression increased the potential of a single cell to form colonies. The USP13 c.1483G > A variant enhanced the effects seen in USP13 overexpression and preserved protein stability for longer hours compared to the non-mutated USP13 protein. CONCLUSION Our study suggests that USP13 overexpression may play a role in tumorigenesis of PTCs; and that the USP13 p.V495M (c.1483G > A) variant enhances USP13 estability.
Collapse
Affiliation(s)
- Andrea G Maria
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Bruna Azevedo
- Group for Advanced Molecular Investigation (NIMA), Graduate Program in Health Sciences (PPGCS), School of Medicine (EM), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Nikolaos Settas
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fady Hannah-Shmouni
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Constantine A Stratakis
- Section on Endocrinology & Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Fabio R Faucz
- Group for Advanced Molecular Investigation (NIMA), Graduate Program in Health Sciences (PPGCS), School of Medicine (EM), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| |
Collapse
|
22
|
Quintanilla I, Jung G, Jimeno M, Lozano JJ, Sidorova J, Camps J, Carballal S, Bujanda L, Vera MI, Quintero E, Carrillo-Palau M, Cuatrecasas M, Castells A, Panés J, Ricart E, Moreira L, Balaguer F, Pellisé M. Differentially Deregulated MicroRNAs as Novel Biomarkers for Neoplastic Progression in Ulcerative Colitis. Clin Transl Gastroenterol 2022; 13:e00489. [PMID: 35404333 PMCID: PMC10476842 DOI: 10.14309/ctg.0000000000000489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) is a potentially life-threatening complication of long-standing ulcerative colitis (UC). MicroRNAs (miRNA) are epigenetic regulators that have been involved in the development of UC-associated CRC. However, their role as potential mucosal biomarkers of neoplastic progression has not been adequately studied. METHODS In this study, we analyzed the expression of 96 preselected miRNAs in human formalin-fixed and paraffin-embedded tissue of 52 case biopsies (20 normal mucosa, 20 dysplasia, and 12 UC-associated CRCs) and 50 control biopsies (10 normal mucosa, 21 sporadic adenomas, and 19 sporadic CRCs) by using Custom TaqMan Array Cards. For validation of deregulated miRNAs, we performed individual quantitative real-time polymerase chain reaction in an independent cohort of 50 cases (13 normal mucosa, 25 dysplasia, and 12 UC-associated CRCs) and 46 controls (7 normal mucosa, 19 sporadic adenomas, and 20 sporadic CRCs). RESULTS Sixty-four miRNAs were found to be differentially deregulated in the UC-associated CRC sequence. Eight of these miRNAs were chosen for further validation. We confirmed miR-31, -106a, and -135b to be significantly deregulated between normal mucosa and dysplasia, as well as across the UC-associated CRC sequence (all P < 0.01). Notably, these miRNAs also confirmed to have a significant differential expression compared with sporadic CRC (all P < 0.05). DISCUSSION UC-associated and sporadic CRCs have distinct miRNA expression patterns, and some miRNAs indicate early neoplastic progression.
Collapse
Affiliation(s)
- Isabel Quintanilla
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Gerhard Jung
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Mireya Jimeno
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament of Pathology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Bioinformatics Platform, CIBEREHD, Barcelona, Spain
| | - Julia Sidorova
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Bioinformatics Platform, CIBEREHD, Barcelona, Spain
| | - Jordi Camps
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Sabela Carballal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Gastroenterology, Biodonostia Health Research Institute, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Maria Isabel Vera
- Department of Gastroenterology, University Hospital Puerta de Hierro Majadahonda, Madrid, Spain
| | - Enrique Quintero
- Department of Gastroenterology, University Hospital of the Canary Islands, Santa Cruz de Tenerife, Spain
| | - Marta Carrillo-Palau
- Department of Gastroenterology, University Hospital of the Canary Islands, Santa Cruz de Tenerife, Spain
| | - Miriam Cuatrecasas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Antoni Castells
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Julià Panés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Elena Ricart
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Francesc Balaguer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Maria Pellisé
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Gastroenterology, Hospital Clinic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Wang K, Liu J, Li YL, Li JP, Zhang R. Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188723. [DOI: 10.1016/j.bbcan.2022.188723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
|
24
|
Li X, Yang G, Zhang W, Qin B, Ye Z, Shi H, Zhao X, Chen Y, Song B, Mei Z, Zhao Q, Wang F. USP13: Multiple Functions and Target Inhibition. Front Cell Dev Biol 2022; 10:875124. [PMID: 35445009 PMCID: PMC9014248 DOI: 10.3389/fcell.2022.875124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
As a deubiquitination (DUB) enzyme, ubiquitin-specific protease 13 (USP13) is involved in a myriad of cellular processes, such as mitochondrial energy metabolism, autophagy, DNA damage response, and endoplasmic reticulum-associated degradation (ERAD), by regulating the deubiquitination of diverse key substrate proteins. Thus, dysregulation of USP13 can give rise to the occurrence and development of plenty of diseases, in particular malignant tumors. Given its implications in the stabilization of disease-related proteins and oncology targets, considerable efforts have been committed to the discovery of inhibitors targeting USP13. Here, we summarize an overview of the recent advances of the structure, function of USP13, and its relations to diseases, as well as discovery and development of inhibitors, aiming to provide the theoretical basis for investigation of the molecular mechanism of USP13 action and further development of more potent druggable inhibitors.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ge Yang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wenyao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Biying Qin
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zifan Ye
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huijing Shi
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinmeng Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yihang Chen
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Bowei Song
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | | | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Feng Wang,
| |
Collapse
|
25
|
Dashti F, Mirazimi SMA, Rabiei N, Fathazam R, Rabiei N, Piroozmand H, Vosough M, Rahimian N, Hamblin MR, Mirzaei H. The role of non-coding RNAs in chemotherapy for gastrointestinal cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:892-926. [PMID: 34760336 PMCID: PMC8551789 DOI: 10.1016/j.omtn.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, hepatic, esophageal, and pancreatic tumors, are responsible for large numbers of deaths around the world. Chemotherapy is the most common approach used to treat advanced GI cancer. However, chemoresistance has emerged as a critical challenge that prevents successful tumor elimination, leading to metastasis and recurrence. Chemoresistance mechanisms are complex, and many factors and pathways are involved. Among these factors, non-coding RNAs (ncRNAs) are critical regulators of GI tumor development and subsequently can induce resistance to chemotherapy. This occurs because ncRNAs can target multiple signaling pathways, affect downstream genes, and modulate proliferation, apoptosis, tumor cell migration, and autophagy. ncRNAs can also induce cancer stem cell features and affect the epithelial-mesenchymal transition. Thus, ncRNAs could possibly act as new targets in chemotherapy combinations to treat GI cancer and to predict treatment response.
Collapse
Affiliation(s)
- Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Novel Ubiquitin Specific Protease-13 Inhibitors Alleviate Neurodegenerative Pathology. Metabolites 2021; 11:metabo11090622. [PMID: 34564439 PMCID: PMC8467576 DOI: 10.3390/metabo11090622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin Specific Protease-13 (USP13) promotes protein de-ubiquitination and is poorly understood in neurodegeneration. USP13 is upregulated in Alzheimer’s disease (AD) and Parkinson’s disease (PD), and USP13 knockdown via shRNA reduces neurotoxic proteins and increases proteasome activity in models of neurodegeneration. We synthesized novel analogues of spautin-1 which is a non-specific USP13 inhibitor but unable to penetrate the brain. Our synthesized small molecule compounds are able to enter the brain, more potently inhibit USP13, and significantly reduce alpha-synuclein levels in vivo and in vitro. USP13 inhibition in transgenic mutant alpha-synuclein (A53T) mice increased the ubiquitination of alpha-synuclein and reduced its protein levels. The data suggest that novel USP13 inhibitors improve neurodegenerative pathology via antagonism of de-ubiquitination, thus alleviating neurotoxic protein burden in neurodegenerative diseases.
Collapse
|
27
|
Abi Zamer B, Abumustafa W, Hamad M, Maghazachi AA, Muhammad JS. Genetic Mutations and Non-Coding RNA-Based Epigenetic Alterations Mediating the Warburg Effect in Colorectal Carcinogenesis. BIOLOGY 2021; 10:847. [PMID: 34571724 PMCID: PMC8472255 DOI: 10.3390/biology10090847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) development is a gradual process defined by the accumulation of numerous genetic mutations and epigenetic alterations leading to the adenoma-carcinoma sequence. Despite significant advances in the diagnosis and treatment of CRC, it continues to be a leading cause of cancer-related deaths worldwide. Even in the presence of oxygen, CRC cells bypass oxidative phosphorylation to produce metabolites that enable them to proliferate and survive-a phenomenon known as the "Warburg effect". Understanding the complex glucose metabolism in CRC cells may support the development of new diagnostic and therapeutic approaches. Here we discuss the most recent findings on genetic mutations and epigenetic modulations that may positively or negatively regulate the Warburg effect in CRC cells. We focus on the non-coding RNA (ncRNA)-based epigenetics, and we present a perspective on the therapeutic relevance of critical molecules and ncRNAs mediating the Warburg effect in CRC cells. All the relevant studies were identified and assessed according to the genes and enzymes mediating the Warburg effect. The findings summarized in this review should provide a better understanding of the relevance of genetic mutations and the ncRNA-based epigenetic alterations to CRC pathogenesis to help overcome chemoresistance.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
| | - Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Azzam A. Maghazachi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (B.A.Z.); (W.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (M.H.); (A.A.M.)
| |
Collapse
|
28
|
Bertoli G, Cava C, Corsi F, Piccotti F, Martelli C, Ottobrini L, Vaira V, Castiglioni I. Triple negative aggressive phenotype controlled by miR-135b and miR-365: new theranostics candidates. Sci Rep 2021; 11:6553. [PMID: 33753785 PMCID: PMC7985188 DOI: 10.1038/s41598-021-85746-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) accounts for about a fifth of all breast cancers and includes a diverse group of cancers. The heterogeneity of TNBC and the lack of target receptors on the cell surface make it difficult to develop specific therapeutic treatments. These aspects cause the high negative prognosis of patients with this type of tumor. The analysis of the molecular profiles of TNBC samples has allowed a better characterization of this tumor, supporting the search for new reliable diagnostic markers. To this end, we have developed a bioinformatic approach to integrate networks of genes differentially expressed in basal breast cancer compared to healthy tissues, with miRNAs able to regulate their expression. We studied the role of these miRNAs in TNBC subtype cell lines. We therefore identified two miRNAs, namely miR-135b and miR-365, with a central role in regulating the altered functional pathways in basal breast cancer. These two miRNAs are differentially expressed in human TNBC immunohistochemistry-selected tissues, and their modulation has been shown to play a role in the proliferation of tumor control and its migratory and invasive capacity in TNBC subtype cell lines. From the perspective of personalized medicine, we managed to modulate the expression of the two miRNAs in organotypic cultures, suggesting their possible use as diagnostic and therapeutic molecules. miR-135b and miR-365 have a key role in TNBC, controlling proliferation and invasion. Their detection could be helpful in TNBC diagnosis, while their modulation could become a new therapeutic tool for TNBC.
Collapse
Affiliation(s)
- Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, 20090, Segrate-Milan, Milan, Italy.
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, 20090, Segrate-Milan, Milan, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy.,Breast Unit, Department of Surgery, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Piccotti
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Cristina Martelli
- Deparment of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Luisa Ottobrini
- Deparment of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Vaira
- Deparment of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, 20090, Segrate-Milan, Milan, Italy.,University of Milan-Bicocca, Piazza della Scienza 3, 20126, Milan, Italy
| |
Collapse
|
29
|
Wen J, Wang G, Xie X, Lin G, Yang H, Luo K, Liu Q, Ling Y, Xie X, Lin P, Chen Y, Zhang H, Rong T, Fu J. Prognostic Value of a Four-miRNA Signature in Patients With Lymph Node Positive Locoregional Esophageal Squamous Cell Carcinoma Undergoing Complete Surgical Resection. Ann Surg 2021; 273:523-531. [PMID: 31058700 DOI: 10.1097/sla.0000000000003369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study was intended to identify prognostic biomarkers for lymph node (LN)-positive locoregional esophageal squamous cell carcinoma (ESCC) patients. SUMMARY OF BACKGROUND DATA Surgery is a major treatment for LN-positive locoregional ESCC patients in China. However, patient outcomes are poor and heterogeneous. METHODS ESCC-associated miRNAs were identified by microarray and validated by quantitative real-time polymerase chain reaction analyses in ESCC and normal esophageal epithelial samples. A multi-miRNA based classifier was established using a least absolute shrinkage and selection operator model in a training set of 145 LN-positive locoregional ESCCs, and further assessed in internal testing and independent validation sets of 145 and 243 patients, respectively. RESULTS Twenty ESCC-associated miRNAs were identified and validated. A 4-miRNA based classifier (miR-135b-5p, miR-139-5p, miR-29c-5p, and miR-338-3p) was generated to classify LN-positive locoregional ESCC patients into high and low-risk groups. Patients with high-risk scores in the training set had a lower 5-year overall survival rate [8.7%, 95% confidence interval (CI): 0-20.3] than those with low-risk scores (50.3%, 95% CI: 40.0-60.7; P < 0.0001). The prognostic accuracy of the classifier was validated in the internal testing (P < 0.0001) and independent validation sets (P = 0.00073). Multivariate survival analyses showed that the 4-miRNA based classifier was an independent prognostic factor, and the combination of the 4-miRNA based classifier and clinicopathological prognostic factors significantly improved the prognostic accuracy of clinicopathological prognostic factors alone. CONCLUSION Our 4-miRNA based classifier is a reliable prognostic prediction tool for overall survival in LN-positive locoregional ESCC patients and might offer a novel probability of ESCC treatment individualization.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
| | - Geng Wang
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuan Xie
- Department of Thoracic Surgery, Sun Yat-sen University Memorial Hospital, Guangzhou, China
| | - Guangrong Lin
- Guangzhou Haige Communications Group Incorporated Company, Guangzhou, China
| | - Hong Yang
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kongjia Luo
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qianwen Liu
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yihong Ling
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiuying Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
| | - Peng Lin
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuping Chen
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Huizhong Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Memorial Hospital, Guangzhou, China
| | - Tiehua Rong
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
30
|
Liu X, Moussa C. Regulatory Role of Ubiquitin Specific Protease-13 (USP13) in Misfolded Protein Clearance in Neurodegenerative Diseases. Neuroscience 2021; 460:161-166. [PMID: 33577955 DOI: 10.1016/j.neuroscience.2021.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
Ubiquitin Specific Protease (USP)-13 is a de-ubiquitinase member of the cysteine-dependent protease superfamily that cleaves ubiquitin off protein substrates to reverse ubiquitin-mediated protein degradation. Several findings implicate USPs in neurodegeneration. Ubiquitin targets proteins to major degradation pathways, including the proteasome and the lysosome. In melanoma cells, USP13 regulates the degradation of several proteins primarily via ubiquitination and de-ubiquitination. However, the significance of USP13 in regulating protein clearance in neurodegeneration is largely unknown. This mini-review summarizes the most recent evidence pertaining to the role of USP13 in protein clearance via autophagy and the proteasome in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Road, NW, Washington DC 20057, USA.
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Road, NW, Washington DC 20057, USA.
| |
Collapse
|
31
|
Kim W, Zhao F, Gao H, Qin S, Hou J, Deng M, Kloeber JA, Huang J, Zhou Q, Guo G, Gao M, Zeng X, Zhu S, Tu X, Wu Z, Zhang Y, Yin P, Kaufmann SH, Luo K, Lou Z. USP13 regulates the replication stress response by deubiquitinating TopBP1. DNA Repair (Amst) 2021; 100:103063. [PMID: 33592542 DOI: 10.1016/j.dnarep.2021.103063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The DNA replication stress-induced checkpoint activated through the TopBP1-ATR axis is important for maintaining genomic stability. However, the regulation of TopBP1 in DNA-damage responses remains unclear. In this study, we identify the deubiquitinating enzyme (DUB) USP13 as an important regulator of TopBP1. Mechanistically, USP13 binds to TopBP1 and stabilizes TopBP1 by deubiquitination. Depletion of USP13 impedes ATR activation and hypersensitizes cells to replication stress-inducing agents. Furthermore, high USP13 expression enhances the replication stress response, promotes cancer cell chemoresistance, and is correlated with poor prognosis of cancer patients. Overall, these findings suggest that USP13 is a novel deubiquitinating enzyme for TopBP1 and coordinates the replication stress response.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Jing Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiangyu Zeng
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yong Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
32
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
33
|
Huang J, Ye Z, Wang J, Chen Q, Huang D, Liu H. USP13 mediates PTEN to ameliorate osteoarthritis by restraining oxidative stress, apoptosis and inflammation via AKT-dependent manner. Biomed Pharmacother 2021; 133:111089. [PMID: 33378983 DOI: 10.1016/j.biopha.2020.111089] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a chronic, systemic and inflammatory disease. However, the pathogenesis and understanding of RA are still limited. Ubiquitin-specific protease 13 (USP13) belongs to the deubiquitinating enzyme (DUB) superfamily, and has been implicated in various cellular events. Nevertheless, its potential on RA progression has little to be investigated. In the present study, we found that USP13 expression was markedly up-regulated in synovial tissue samples from patients with RA, and was down-regulated in human fibroblast-like synoviocytes (H-FLSs) stimulated by interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α) or lipopolysaccharide (LPS). We then showed that over-expressing USP13 markedly suppressed inflammatory response, oxidative stress and apoptosis in H-FLSs upon IL-1β or TNF-α challenge, whereas USP13 knockdown exhibited detrimental effects. In addition, USP13-induced protective effects were associated with the improvement of nuclear factor erythroid 2-related factor 2 (Nrf-2) and the repression of Casapse-3. Furthermore, phosphatase and tensin homolog (PTEN) expression was greatly improved by USP13 in H-FLSs upon IL-1β or TNF-α treatment, whereas phosphorylated AKT expression was diminished. In response to IL-1β or TNF-α exposure, nuclear transcription factor κB (NF-κB) signaling pathway was activated, whereas being significantly restrained in H-FLSs over-expressing USP13. Mechanistically, USP13 directly interacted with PTEN. Of note, we found that USP13-regulated cellular processes including inflammation, oxidative stress and apoptotic cell death were partly dependent on AKT activation. Furthermore, USP13 over-expression effectively inhibited osteoclastogenesis and osteoclast-associated gene expression. The in vivo experiments finally confirmed that USP13 dramatically repressed synovial hyperplasia, inflammatory cell infiltration, cartilage damage and bone loss in collagen-induced arthritis (CIA) mice via the same molecular mechanisms detected in vitro. Taken together, these findings suggested that targeting USP13 may provide feasible therapies for RA.
Collapse
Affiliation(s)
- Jianming Huang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army), Xiamen 361003, China.
| | - Zhiyang Ye
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army), Xiamen 361003, China
| | - Jun Wang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army), Xiamen 361003, China
| | - Qichuan Chen
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army), Xiamen 361003, China
| | - Danlei Huang
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army), Xiamen 361003, China
| | - Haoyuan Liu
- Department of Orthopedics, Chenggong Hospital of Xiamen University (the 73th Group Military Hospital of People's Liberation Army), Xiamen 361003, China.
| |
Collapse
|
34
|
Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2020; 501:66-82. [PMID: 33385486 DOI: 10.1016/j.canlet.2020.12.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer related deaths worldwide. Despite recent advancements in surgical and molecular targeted therapies that improved the therapeutic efficacy in CRC, the 5 years survival rate of CRC patients still remains frustratingly poor. Accumulated evidences indicate that microRNAs (miRNAs) play a crucial role in the progression and metastasis of CRC. Dysregulated miRNAs are closely associated with cancerous phenotypes (e.g. enhanced proliferative and invasive ability, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis) by regulating their target genes. In this review, we provide an updated overview of tumor suppressive and oncogenic miRNAs, circulatory miRNAs, and the possible causes of dysregulated miRNAs in CRC. In addition, we discuss the important functions of miRNAs in drug resistance of CRC.
Collapse
Affiliation(s)
- Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wangyu Zhu
- Affiliated Zhoushan Hospital, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Xiaodong Zhang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaotang Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Congying Xie
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
35
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
36
|
Qu Z, Zhang R, Su M, Liu W. USP13 serves as a tumor suppressor via the PTEN/AKT pathway in oral squamous cell carcinoma. Cancer Manag Res 2019; 11:9175-9183. [PMID: 31802942 PMCID: PMC6829296 DOI: 10.2147/cmar.s186829] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND : Recent studies have shown that USP13 a deubiquitinase, serves as an important regulator of tumorigenesis. However, the biological role of USP13 in oral squamous cell carcinoma (OSCC) remains enigmatic. MATERIALS AND METHODS : We examined USP13 expression in OSCC and adjacent normal tissues by immunohistochemical staining. The biological functions of USP13 in OSCC cells and the possible underlying mechanisms were investigated. RESULTS : In this study, we showed that USP13 expression was frequently reduced in human OSCC specimens and that the reduction was correlated with the clinical stage. Functional studies demonstrated that overexpression of USP13 suppressed OSCC cell proliferation, glucose uptake and lactate production in vitro and inhibited tumor growth in vivo. Furthermore, USP13 overexpression induced phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression and repressed the activation of AKT as well as the expression of the downstream effectors glucose transporter-1 (GLUT1) and hexokinase-2 (HK2). Overexpression of PTEN reversed the USP13-knockdown-induced glucose uptake, lactate production, AKT activation, and expression of GLUT1 and HK2. CONCLUSION : Our findings suggest that USP13 serves as a tumor suppressor by regulating the PTEN/AKT signaling pathway in OSCC cells, improving our understanding of OSCC progression and providing a clue for the development of a novel cancer therapy.
Collapse
Affiliation(s)
- Zhi Qu
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ran Zhang
- Department of Prosthodontics, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meng Su
- Department of Prosthodontics, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Weixian Liu
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
37
|
Chu Q, Li A, Chen X, Qin Y, Sun X, Li Y, Yue E, Wang C, Ding X, Yan Y, Zahra SM, Wang S, Jiang Y, Bai Y, Yang B. Overexpression of miR-135b attenuates pathological cardiac hypertrophy by targeting CACNA1C. Int J Cardiol 2018; 269:235-241. [PMID: 30037628 DOI: 10.1016/j.ijcard.2018.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cardiac hypertrophy is a serious factor underlying heart failure. Although a large number of pathogenic genes have been identified, the underlying molecular mechanisms of cardiac hypertrophy are still poorly understood. MicroRNAs are a class of small non-coding RNAs which regulate their target genes at the post-transcriptional level. L-type calcium channels play important role in hypertrophic signaling pathways, and CACNA1C is encoded by L-type calcium channels. Here, we hypothesize that the overexpression of miR-135b can attenuate hypertrophy by targeting CACNA1C. METHODS We test the functional involvement of miR-135b in cardiac hypertrophy model. In order to evaluate the effect of miR-135b in cardiac hypertrophy, miR-135b mimic, miR-135b agomir and α-MHC-miR-135b transgenic mice were used for the overexpression of miR-135b. Luciferase reporter assays were used to testify the binding of miR-135b to the CACNA1C 3'UTR. RESULTS Our results revealed that in a pathological cardiac hypertrophy model, the expression of miR-135b was clearly downregulated. Hypertrophic marker genes were upregulated after the knockdown of miR-135b in vitro, while the overexpression of miR-135b attenuated hypertrophy. These results suggested that miR-135b may weaken hypertrophic signals. We then explored the mechanism of miR-135b in hypertrophy and identified that CACNA1C was a target gene for miR-135b. The overexpression of miR-135b attenuated cardiac hypertrophy by targeting CACNA1C. CONCLUSIONS Our studies revealed that miR-135b is a critical regulator of cardiomyocyte hypertrophy. Our findings may provide a novel strategy for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Qun Chu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Anqi Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Xi Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Ying Qin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Yanyao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Er Yue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Cao Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Xueying Ding
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Yan Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Syeda Madiha Zahra
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150001, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
38
|
Pudova EA, Kudryavtseva AV, Fedorova MS, Zaretsky AR, Shcherbo DS, Lukyanova EN, Popov AY, Sadritdinova AF, Abramov IS, Kharitonov SL, Krasnov GS, Klimina KM, Koroban NV, Volchenko NN, Nyushko KM, Melnikova NV, Chernichenko MA, Sidorov DV, Alekseev BY, Kiseleva MV, Kaprin AD, Dmitriev AA, Snezhkina AV. HK3 overexpression associated with epithelial-mesenchymal transition in colorectal cancer. BMC Genomics 2018; 19:113. [PMID: 29504907 PMCID: PMC5836836 DOI: 10.1186/s12864-018-4477-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common cancer worldwide. The main cause of death in CRC includes tumor progression and metastasis. At molecular level, these processes may be triggered by epithelial-mesenchymal transition (EMT) and necessitates specific alterations in cell metabolism. Although several EMT-related metabolic changes have been described in CRC, the mechanism is still poorly understood. RESULTS Using CrossHub software, we analyzed RNA-Seq expression profile data of CRC derived from The Cancer Genome Atlas (TCGA) project. Correlation analysis between the change in the expression of genes involved in glycolysis and EMT was performed. We obtained the set of genes with significant correlation coefficients, which included 21 EMT-related genes and a single glycolytic gene, HK3. The mRNA level of these genes was measured in 78 paired colorectal cancer samples by quantitative polymerase chain reaction (qPCR). Upregulation of HK3 and deregulation of 11 genes (COL1A1, TWIST1, NFATC1, GLIPR2, SFPR1, FLNA, GREM1, SFRP2, ZEB2, SPP1, and RARRES1) involved in EMT were found. The results of correlation study showed that the expression of HK3 demonstrated a strong correlation with 7 of the 21 examined genes (ZEB2, GREM1, TGFB3, TGFB1, SNAI2, TWIST1, and COL1A1) in CRC. CONCLUSIONS Upregulation of HK3 is associated with EMT in CRC and may be a crucial metabolic adaptation for rapid proliferation, survival, and metastases of CRC cells.
Collapse
Affiliation(s)
- Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Elena N. Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Moscow, Russia
| | | | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S. Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L. Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kseniya M. Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Moscow, Russia
| | - Nadezhda V. Koroban
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nadezhda N. Volchenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kirill M. Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Chernichenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V. Sidorov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y. Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
39
|
Non-coding RNAs in the reprogramming of glucose metabolism in cancer. Cancer Lett 2018; 419:167-174. [PMID: 29366802 DOI: 10.1016/j.canlet.2018.01.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Proliferating cancer cells reprogram their metabolic circuitry to thrive in an environment deficient in nutrients and oxygen. Cancer cells exhibit a higher rate of glucose metabolism than normal somatic cells, which is achieved by switching from oxidative phosphorylation to aerobic glycolysis to meet the energy and metabolites demands of tumour progression. This phenomenon, which is known as the Warburg effect, has generated renewed interest in the process of glucose metabolism reprogramming in cancer cells. Several regulatory pathways along with glycolytic enzymes are responsible for the emergence of glycolytic dependence. Non-coding (nc)RNAs are a class of functional RNA molecules that are not translated into proteins but regulate target gene expression. NcRNAs have been shown to be involved in various biological processes, including glucose metabolism. In this review, we describe the regulatory role of ncRNAs-specifically, microRNAs and long ncRNAs-in the glycolytic switch and propose that ncRNA-based therapeutics can be used to inhibit the process of glucose metabolism reprogramming in cancer cells.
Collapse
|
40
|
Targeting PTEN in Colorectal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:55-73. [DOI: 10.1007/978-3-030-02771-1_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Abstract
Although growing numbers of oncoproteins and pro-metastatic proteins have been extensively characterized, many of these tumor-promoting proteins are not good drug targets, which represent a major barrier to curing breast cancer and other cancers. There is a need, therefore, for alternative therapeutic approaches to destroying cancer-promoting proteins. The human genome encodes approximately 100 deubiquitinating enzymes (DUBs, also called deubiquitinases), which are amenable to pharmacologic inhibition by small molecules. By removing monoubiquitin or polyubiquitin chains from the target protein, DUBs can modulate the degradation, localization, activity, trafficking, and recycling of the substrate, thereby contributing substantially to the regulation of cancer proteins and pathways. Targeting certain DUBs may lead to destabilization or functional inactivation of some key oncoproteins or pro-metastatic proteins, including non-druggable ones, which will provide therapeutic benefits to cancer patients. In breast cancer, growing numbers of DUBs are found to be aberrantly expressed. Depending on their substrates, specific DUBs can either promote or suppress mammary tumors. In this article, we review the role and mechanisms of action of DUBs in breast cancer and discuss the potential of targeting DUBs for cancer treatment.
Collapse
|
42
|
Yao D, Cui H, Zhou S, Guo L. Morin inhibited lung cancer cells viability, growth, and migration by suppressing miR-135b and inducing its target CCNG2. Tumour Biol 2017; 39:1010428317712443. [PMID: 28975847 DOI: 10.1177/1010428317712443] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is one of the most severe threats with the highest mortality rate to humans in the world. Recently, morin has been reported to have anti-tumor properties observed in several types of cancers. However, its mechanism is still unclear. We assessed the influences of morin on cell viability, colony formation, and migration ability of A549 and employed microRNA array to identify the microRNAs affected by morin. We found that morin-treated A549 cells showed statistically decreased cell viability, colony formation, and migration rate when comparing with the dimethyl sulfoxide-treated cells. Microarray results showed that with the treatment of morin, the expression level of miR-135b significantly reduced compared the control group, suggesting that morin may exert its anti-cancer property by suppressing the expression of miR-135b. In addition, we found a potential binding site of miR-135b within 3' untranslated region of CCNG2-encoding cyclin homolog cyclin-G2. We evidenced that miR-135b directly targets CCNG2, which could be a potential biomarker of lung cancer prognosis. Morin exerts its anti-tumor function via downregulating the expression of miR-135b that directly targets and represses CCNG2.
Collapse
Affiliation(s)
- Dongjie Yao
- 1 Department of Quality Control, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Hujun Cui
- 2 Department of Oncology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Shufen Zhou
- 3 Department of Gerontology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Ling Guo
- 4 Department of Pathology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
43
|
Liu B, Liu Y, Zhao L, Pan Y, Shan Y, Li Y, Jia L. Upregulation of microRNA-135b and microRNA-182 promotes chemoresistance of colorectal cancer by targeting ST6GALNAC2 via PI3K/AKT pathway. Mol Carcinog 2017; 56:2669-2680. [PMID: 28767179 DOI: 10.1002/mc.22710] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/23/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are increasingly involved in the development of drug resistance, including 5-fluorouracil (5-FU) resistance in colorectal cancer (CRC). Aberrant sialylation is correlated with human CRC. The study was to explore whether miR-135b and miR-182 modulated 5-FU chemoresistance of CRC by targeting ST6GALNAC2 via PI3K/AKT pathway. MiR-135b and miR-182 were found to be up-regulated in CRC tissues and 5-FU resistant CRC cell lines. Forced miR-135b and miR-182 expression also affected ST6GALNAC2 levels. Using reporter-gene assay, ST6GALNAC2 was identified as direct target of miR-135b and miR-182, while ST6GALNAC2 expression exhibited patterns opposite to that of miR-135b and miR-182 in CRC samples and cell lines. Interestingly, up-regulation of miR-135b or miR-182 increased drug resistance and proliferation, but decreased apoptosis in 5-FU resistant CRC cell lines. Suppression of these miRNAs implicated an inverse function, while altered expression of ST6GALNAC2 mediated CRC progression upon transfection with miR-135b/-182 mimic or inhibitor. Furthermore, miR-135b and miR-182 were clarified to regulate the activity of phosphoinositide-3 kinase (PI3K)/AKT pathway. Inhibition of the PI3K/AKT pathway enhanced the chemosensitivity to 5-FU in HCT-8/5-FU and LoVo/5-FU. Taken together, miR-135b and miR-182 may reverse the resistance to 5-FU in CRC cells by targeting ST6GALNAC2 via PI3K/AKT pathway, which render potential chemotherapy targets for the treatment of CRC.
Collapse
Affiliation(s)
- Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yanfeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue Pan
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
44
|
Wang X, Huang H, Young KH. The PTEN tumor suppressor gene and its role in lymphoma pathogenesis. Aging (Albany NY) 2015; 7:1032-1049. [PMID: 26655726 PMCID: PMC4712330 DOI: 10.18632/aging.100855] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023]
Abstract
The phosphatase and tensin homolog gene PTEN is one of the most frequently mutated tumor suppressor genes in human cancer. Loss of PTEN function occurs in a variety of human cancers via its mutation, deletion, transcriptional silencing, or protein instability. PTEN deficiency in cancer has been associated with advanced disease, chemotherapy resistance, and poor survival. Impaired PTEN function, which antagonizes phosphoinositide 3-kinase (PI3K) signaling, causes the accumulation of phosphatidylinositol (3,4,5)-triphosphate and thereby the suppression of downstream components of the PI3K pathway, including the protein kinase B and mammalian target of rapamycin kinases. In addition to having lipid phosphorylation activity, PTEN has critical roles in the regulation of genomic instability, DNA repair, stem cell self-renewal, cellular senescence, and cell migration. Although PTEN deficiency in solid tumors has been studied extensively, rare studies have investigated PTEN alteration in lymphoid malignancies. However, genomic or epigenomic aberrations of PTEN and dysregulated signaling are likely critical in lymphoma pathogenesis and progression. This review provides updated summary on the role of PTEN deficiency in human cancers, specifically in lymphoid malignancies; the molecular mechanisms of PTEN regulation; and the distinct functions of nuclear PTEN. Therapeutic strategies for rescuing PTEN deficiency in human cancers are proposed.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA
- The University of Texas Graduate School of Biomedical Science, Houston, TX 77230, USA
| |
Collapse
|
45
|
Xi Y, Chen Y. Oncogenic and Therapeutic Targeting of PTEN Loss in Bone Malignancies. J Cell Biochem 2015; 116:1837-47. [DOI: 10.1002/jcb.25159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Yongming Xi
- Department of Orthopaedics; Affiliated Hospital of Qingdao University; China
| | - Yan Chen
- Division in Signaling Biology; Princess Margaret Cancer Center; University Health Network; Toronto Canada
| |
Collapse
|