1
|
Morales-Pacheco M, Valenzuela-Mayen M, Gonzalez-Alatriste AM, Mendoza-Almanza G, Cortés-Ramírez SA, Losada-García A, Rodríguez-Martínez G, González-Ramírez I, Maldonado-Lagunas V, Vazquez-Santillan K, González-Covarrubias V, Pérez-Plasencia C, Rodríguez-Dorantes M. The role of platelets in cancer: from their influence on tumor progression to their potential use in liquid biopsy. Biomark Res 2025; 13:27. [PMID: 39934930 DOI: 10.1186/s40364-025-00742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Platelets, anucleate blood cells essential for hemostasis, are increasingly recognized for their role in cancer, challenging the traditional notion of their sole involvement in blood coagulation. It has been demonstrated that platelets establish bidirectional communication with tumor cells, contributing to tumor progression and metastasis through diverse molecular mechanisms such as modulation of proliferation, angiogenesis, epithelial-mesenchymal transition, resistance to anoikis, immune evasion, extravasation, chemoresistance, among other processes. Reciprocally, cancer significantly alters platelets in their count and composition, including mRNA, non-coding RNA, proteins, and lipids, product of both internal synthesis and the uptake of tumor-derived molecules. This phenomenon gives rise to tumor-educated platelets (TEPs), which are emerging as promising tools for the development of liquid biopsies. In this review, we provide a detailed overview of the dynamic roles of platelets in tumor development and progression as well as their use in diagnosis and prognosis. We also provide our view on current limitations, challenges and future research areas, including the need to design more efficient strategies for their isolation and analysis, as well as the validation of their sensitivity and specificity through large-scale and rigorous clinical trials. This research will not only enable the evaluation of their clinical viability but could also open new opportunities to enhance diagnostic accuracy and develop personalized treatments in oncology.
Collapse
Affiliation(s)
- Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | - Miguel Valenzuela-Mayen
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | | | - Gretel Mendoza-Almanza
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Sergio A Cortés-Ramírez
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Alberto Losada-García
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
- Laboratorio de Investigación en Patógenos Respiratorios y Producción de Biológicos, Hospital Infantil de México Federico Gómez, Mexico City, 14610, Mexico
| | - Imelda González-Ramírez
- Departamento de Atención a La Salud, Universidad Autónoma Metropolitana Xochimilco, Mexico City, 14610, Mexico
| | - Vilma Maldonado-Lagunas
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Karla Vazquez-Santillan
- Laboratorio de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Vanessa González-Covarrubias
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla, 54090, Mexico
| | | |
Collapse
|
2
|
Xiang Y, Xiang P, Zhang L, Li Y, Zhang J. A narrative review for platelets and their RNAs in cancers: New concepts and clinical perspectives. Medicine (Baltimore) 2022; 101:e32539. [PMID: 36596034 PMCID: PMC9803462 DOI: 10.1097/md.0000000000032539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent years have witnessed a growing body of evidence suggesting that platelets are involved in several stages of the metastatic process via direct or indirect interactions with cancer cells, contributing to the progression of neoplastic malignancies. Cancer cells can dynamically exchange components with platelets in and out of blood vessels, and directly phagocytose platelets to hijack their proteome, transcriptome, and secretome, or be remotely regulated by metabolites or microparticles released by platelets, resulting in phenotypic, genetic, and functional modifications. Moreover, platelet interactions with stromal and immune cells in the tumor microenvironment lead to alterations in their components, including the ribonucleic acid (RNA) profile, and complicate the impact of platelets on cancers. A deeper understanding of the roles of platelets and their RNAs in cancer will contribute to the development of anticancer strategies and the optimization of clinical management. Encouragingly, advances in high-throughput sequencing, bioinformatics data analysis, and machine learning have allowed scientists to explore the potential of platelet RNAs for cancer diagnosis, prognosis, and guiding treatment. However, the clinical application of this technique remains controversial and requires larger, multicenter studies with standardized protocols. Here, we integrate the latest evidence to provide a broader insight into the role of platelets in cancer progression and management, and propose standardized recommendations for the clinical utility of platelet RNAs to facilitate translation and benefit patients.
Collapse
Affiliation(s)
- Yunhui Xiang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Pinpin Xiang
- Department of Laboratory Medicine, Xiping Community Health Service Center of Longquanyi District Chengdu City, Chengdu, China
| | - Liuyun Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanying Li
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- * Correspondence: Juan Zhang, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, 32# West Second Section, First Ring Road, Qingyang District, Chengdu City, Sichuan Province 610072, China (e-mail: )
| |
Collapse
|
3
|
Li F, Xu T, Chen P, Sun R, Li C, Zhao X, Ou J, Li J, Liu T, Zeng M, Zheng W, Lin Y, Yang L, Li Z, Chen H, Zhang Q. Platelet-derived extracellular vesicles inhibit ferroptosis and promote distant metastasis of nasopharyngeal carcinoma by upregulating ITGB3. Int J Biol Sci 2022; 18:5858-5872. [PMID: 36263165 PMCID: PMC9576525 DOI: 10.7150/ijbs.76162] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy with high metastatic and invasive nature. Distant metastasis contributes substantially to treatment failure and mortality in NPC. Platelets are versatile blood cells and the number of platelets is positively associated with the distant metastasis of tumor cells. However, the role and underlying mechanism of platelets responsible for the metastasis of NPC cells remain unclear. Here we found that the distant metastasis of NPC patients was positively correlated with the expression levels of integrin β3 (ITGB3) in platelet-derived extracellular vesicles (EVs) from NPC patients (P-EVs). We further revealed that EVs transfer occurred from platelets to NPC cells, mediating cell-cell communication and inducing the metastasis of NPC cells by upregulating ITGB3 expression. Mechanistically, P-EVs-upregulated ITGB3 increased SLC7A11 expression by enhancing protein stability and activating the MAPK/ERK/ATF4/Nrf2 axis, which suppressed ferroptosis, thereby facilitating the metastasis of NPC cells. NPC xenografts in mouse models further confirmed that P-EVs inhibited the ferroptosis of circulating NPC cells and promoted the distant metastasis of NPC cells. Thus, these findings elucidate a novel role of platelet-derived EVs in NPC metastasis, which not only improves our understanding of platelet-mediated tumor distant metastasis, but also has important implications in diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ting Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiling Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Chaoyi Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinxin Ou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingyao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Taoshu Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Maozhen Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weizhong Zheng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yunchen Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Le Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zecang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haisheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China.,✉ Corresponding author: Qing Zhang, Ph.D, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China. Tel: 86-20-84113988, 13903018911; E-mail:
| |
Collapse
|
4
|
Elwood P, Protty M, Morgan G, Pickering J, Delon C, Watkins J. Aspirin and cancer: biological mechanisms and clinical outcomes. Open Biol 2022; 12:220124. [PMID: 36099932 PMCID: PMC9470249 DOI: 10.1098/rsob.220124] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Evidence on aspirin and cancer comes from two main sources: (1) the effect of aspirin upon biological mechanisms in cancer, and (2) clinical studies of patients with cancer, some of whom take aspirin. A series of systematic literature searches identified published reports relevant to these two sources. The effects of aspirin upon biological mechanisms involved in cancer initiation and growth appear to generate reasonable expectations of effects upon the progress and mortality of cancer. Clinical evidence on aspirin appears overall to be favourable to the use of aspirin, but evidence from randomized trials is limited, and inconsistent. The main body of evidence comes from meta-analyses of observational studies of patients with a wide range of cancers, about 25% of whom were taking aspirin. Heterogeneity is large but, overall, aspirin is associated with increases in survival and reductions in metastatic spread and vascular complications of different cancers. It is important that evaluations of aspirin used as an adjunct cancer treatment are based upon all the available relevant evidence, and there appears to be a marked harmony between the effects of aspirin upon biological mechanisms and upon the clinical progress of cancer.
Collapse
Affiliation(s)
- Peter Elwood
- Division of Population Medicine, University of Cardiff, Cardiff, Wales CF10 3AT, UK
| | - Majd Protty
- Department of Cardiology, Cardiff Lipidomic Group, University of Cardiff, Cardiff, Wales, UK
| | | | - Janet Pickering
- Division of Population Medicine, University of Cardiff, Cardiff, Wales CF10 3AT, UK
| | | | - John Watkins
- Division of Population Medicine, University of Cardiff, Cardiff, Wales CF10 3AT, UK
| |
Collapse
|
5
|
Wang X, Zhao S, Wang Z, Gao T. Platelets involved tumor cell EMT during circulation: communications and interventions. Cell Commun Signal 2022; 20:82. [PMID: 35659308 PMCID: PMC9166407 DOI: 10.1186/s12964-022-00887-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/24/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractDistant spreading of metastatic tumor cells is still the leading cause of tumor death. Metastatic spreading is a complex process, in which epithelial-mesenchymal transition (EMT) is the primary and key event to promote it. Presently, extensive reviews have given insights on the occurrence of EMT at the primary tumor site that depends on invasive properties of tumor cells and the tumor-associated microenvironment. However, essential roles of circulation environment involved in tumor cell EMT is not well summarized. As a main constituent of the blood, platelet is increasingly found to work as an important activator to induce EMT. Therefore, this review aims to emphasize the novel role of platelet in EMT through signal communications between platelets and circulation tumor cells, and illustrate potent interventions aiming at their communications. It may give a complementary view of EMT in addition to the tissue microenvironment, help for better understand the hematogenous metastasis, and also illustrate theoretical and practical basis for the targeted inhibition.
Collapse
|
6
|
Mai S, Inkielewicz-Stepniak I. Pancreatic Cancer and Platelets Crosstalk: A Potential Biomarker and Target. Front Cell Dev Biol 2021; 9:749689. [PMID: 34858977 PMCID: PMC8631477 DOI: 10.3389/fcell.2021.749689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Platelets have been recognized as key players in hemostasis, thrombosis, and cancer. Preclinical and clinical researches evidenced that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between cancer cells and platelets. Pancreatic cancer is a devastating disease with high morbidity and mortality worldwide. Although the relationship between pancreatic cancer and platelets in clinical diagnosis is described, the interplay between pancreatic cancer and platelets, the underlying pathological mechanism and pathways remain a matter of intensive study. This review summaries recent researches in connections between platelets and pancreatic cancer. The existing data showed different underlying mechanisms were involved in their complex crosstalk. Typically, pancreatic tumor accelerates platelet aggregation which forms thrombosis. Furthermore, extracellular vesicles released by platelets promote communication in a neoplastic microenvironment and illustrate how these interactions drive disease progression. We also discuss the advantages of novel model organoids in pancreatic cancer research. A more in-depth understanding of tumor and platelets crosstalk which is based on organoids and translational therapies may provide potential diagnostic and therapeutic strategies for pancreatic cancer progression.
Collapse
Affiliation(s)
- Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
7
|
Zhao J, Jin G, Liu X, Wu K, Yang Y, He Z, Liu D, Zhang C, Zhu D, Jiao J, Li X, Zhao S. PAR1 and PAR4 exert opposite effects on tumor growth and metastasis of esophageal squamous cell carcinoma via STAT3 and NF-κB signaling pathways. Cancer Cell Int 2021; 21:637. [PMID: 34844621 PMCID: PMC8628382 DOI: 10.1186/s12935-021-02354-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Esophageal carcinogenesis is a multifactorial process in which genetic and environmental factors interact to activate intracellular signals, leading to the uncontrolled survival and growth of esophageal squamous cell carcinoma (ESCC) cells. The intracellular pathways of ESCC cells could be regulated by proteinase activated-receptors (PARs), which are comprised of four receptors (i.e., PAR-1, PAR-2, PAR-3, and PAR-4). Therefore, the function and possible mechanism of PAR1 and PAR4 in the progression of ECSS were explored in our study. METHODS First, we detected the expression levels of PAR1 and PAR4 in 27 cases of ESCC specimens and cell lines by RT-qPCR, IHC and western blot. Meanwhile, the correlation between PAR1/PAR4 expression levels, clinicopathological characteristics, and disease free survival was analyzed. Then, we constructed PAR1/PAR4 knockdown cell models and investigated the role of PAR1/PAR4 knockdown on the proliferation, apoptosis, changes of calcium flow, and metastasis of ESCC cells via MTT, flow cytometry, transwell and wound healing assays in vitro. Further, an experimental metastasis model in vivo was established to explore the role of stable PAR1/PAR4 knockdown on the growth and metastasis of ESCC cells. Finally, the role of nSMase2 in the activation of NF-κB induced by PAR4 and the role of NF-κB and STAT3 signaling pathways in the PAR1/PAR4-mediated tumor promoting or suppressive functions were measured by immunoprecipitation, western blot and immunofluorescence assays. RESULTS First, the integrated results demonstrated the expression levels of PAR1 and PAR4 are inversely proportional in ESCC. PAR1 potently enhanced tumor growth and metastasis, while PAR4 had an inhibitory effect. Further, the co-activation of STAT3 and NF-κB was involved in the PAR1 activation-induced tumor promoting effect, while only NF-κB participated in the PAR4 activation-induced tumor inhibitory effect in ESCC. To be specific, FAK/PI3K/AKT/STAT3/NF-κB signaling mediated PAR1 activation-induced tumor promoting effect and nSMase2/MAPK/NF-κB signaling mediated PAR4 activation-induced tumor inhibitory effect. CONCLUSIONS Overall, the study has provided new insights into the potential implication of PAR1 and PAR4 in the pathogenesis of ESCC. Besides, FAK/PI3K/AKT/STAT3/NF-κB and nSMase2/MAPK/NF-κB pathways may be novel targets for regulating tumor growth and metastasis in ESCC patients.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyu Jin
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xudong Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhanfeng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Jiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Elevated expression of protease-activated receptor 1 via ΔNp63 down-regulation contributes to nodal metastasis in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2020; 50:163-170. [PMID: 32536459 DOI: 10.1016/j.ijom.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/28/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023]
Abstract
Protease-activated receptor 1 (PAR1) is known as a thrombin receptor. Recent studies have reported PAR1 expression in various malignancies; however, its role in oral squamous cell carcinoma (OSCC) requires clarification. A previous study showed that down-regulation of ΔNp63, a homolog of p53, augments PAR1 expression in OSCC. In the present study, the association of PAR1 expression with clinicopathological findings in OSCC was examined retrospectively. Expression of PAR1, thrombin, and ΔNp63 was examined immunohistochemically in OSCC specimens. Patients were divided into three groups based on the expression pattern of PAR1 at the invasive front: group A, PAR1-negative in both cancer and stromal cells; group B, positive in stromal cells but negative in cancer cells; group C, positive in both cancer and stromal cells. Histologically high-grade tumours were significantly more common in group C. Patients in group C had the highest incidence rate of nodal metastasis (P<0.001) and a lower survival rate (P=0.085) than those in the other groups. At the invasive front, in group C, thrombin was expressed but ΔNp63 expression was weak. These results indicate that increased PAR1 expression in both cancer and stromal cells could be a useful predictive marker of nodal metastasis and that ΔNp63 is involved in regulating PAR1 expression.
Collapse
|
9
|
Wang H, Wang P, Liang X, Li W, Yang M, Ma J, Yue W, Fan S. Down-regulation of endothelial protein C receptor promotes preeclampsia by affecting actin polymerization. J Cell Mol Med 2020; 24:3370-3383. [PMID: 32003123 PMCID: PMC7131931 DOI: 10.1111/jcmm.15011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia is a severe pregnancy-related disease that is found in 3%-5% of pregnancies worldwide and is primarily related to the decreased proliferation and invasion of trophoblast cells and abnormal uterine spiral artery remodelling. However, studies on the pathogenesis of placental trophoblasts are insufficient, and the aetiology of PE remains unclear. Here, we report that endothelial protein C receptor (EPCR), a transmembrane glycoprotein, was down-regulated in placentas from preeclamptic patients. Moreover, lack of EPCR significantly reduced the trophoblast cell proliferation, invasion and tube formation capabilities. Microscale thermophoresis analysis showed that EPCR directly bound to protease-activated receptor 1 (PAR-1), a G protein-coupled receptor. This change resulted in a substantial reduction in active Rac1 and caused excessive actin rearrangement. Our findings reveal a previously unidentified role of EPCR in the regulation of trophoblast proliferation, invasion and tube formation through promotion of actin polymerization, which is required for normal placental development.
Collapse
Affiliation(s)
- Hao Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China.,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Pan Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xiaoling Liang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Mo Yang
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jihong Ma
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei Yue
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China.,Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| |
Collapse
|
10
|
Moradi-Marjaneh R, Khazaei M, Ferns GA, Aghaee-Bakhtiari SH. The Role of TGF-β Signaling Regulatory MicroRNAs in the Pathogenesis of Colorectal Cancer. Curr Pharm Des 2019; 24:4611-4618. [PMID: 30636580 DOI: 10.2174/1381612825666190110150705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with a high mortality rate. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in normal intestinal tissue function, but has also been implicated in the development of CRC. MicroRNAs (miRNAs) have also recently emerged as important regulators of cancer development and progression. They act by targeting multiple signaling pathways including the TGF-β signaling pathway. There is growing evidence demonstrating that miRNAs target various components of the TGF-β signaling pathway, including TGF-β1, TGF-β2, regulatory SMADs (SMAD1, 2, 3, 5 and 9), co-mediator SMAD4, inhibitory SMADs (SMAD6 and 7) and the TGF-β receptors, and thereby alter the proliferation and migration of CRC cells. In this review, we summarize the data concerning the interaction between TGF-β signaling pathway and miRNAs with the aim to better understanding the CRC molecular mechanisms and hence better management of this disease.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Seyed H Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Single and combined use of neutrophil–lymphocyte ratio, platelet–lymphocyte ratio and carcinoembryonic antigen in diagnosing gastric cancer. Clin Chim Acta 2018; 481:20-24. [DOI: 10.1016/j.cca.2018.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/04/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
|
12
|
Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19061568. [PMID: 29795022 PMCID: PMC6032192 DOI: 10.3390/ijms19061568] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Both signaling by transforming growth factor-β (TGF-β) and agonists of the G Protein-coupled receptors proteinase-activated receptor-1 (PAR1) and -2 (PAR2) have been linked to tissue fibrosis and cancer. Intriguingly, TGF-β and PAR signaling either converge on the regulation of certain matrix genes overexpressed in these pathologies or display mutual regulation of their signaling components, which is mediated in part through sphingosine kinases and sphingosine-1-phosphate and indicative of an intimate signaling crosstalk between the two pathways. In the first part of this review, we summarize the various regulatory interactions that have been discovered so far according to the organ/tissue in which they were described. In the second part, we highlight the types of signaling crosstalk between TGF-β on the one hand and PAR2/PAR1 on the other hand. Both ligand–receptor systems interact at various levels and by several mechanisms including mutual regulation of ligand–ligand, ligand–receptor, and receptor–receptor at the transcriptional, post-transcriptional, and receptor transactivation levels. These mutual interactions between PAR2/PAR1 and TGF-β signaling components eventually result in feed-forward loops/vicious cycles of matrix deposition and malignant traits that exacerbate fibrosis and oncogenesis, respectively. Given the crucial role of PAR2 and PAR1 in controlling TGF-β receptor activation, signaling, TGF-β synthesis and bioactivation, combining PAR inhibitors with TGF-β blocking agents may turn out to be more efficient than targeting TGF-β alone in alleviating unwanted TGF-β-dependent responses but retaining the beneficial ones.
Collapse
|
13
|
Elaskalani O, Falasca M, Moran N, Berndt MC, Metharom P. The Role of Platelet-Derived ADP and ATP in Promoting Pancreatic Cancer Cell Survival and Gemcitabine Resistance. Cancers (Basel) 2017; 9:cancers9100142. [PMID: 29064388 PMCID: PMC5664081 DOI: 10.3390/cancers9100142] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022] Open
Abstract
Platelets have been demonstrated to be vital in cancer epithelial-mesenchymal transition (EMT), an important step in metastasis. Markers of EMT are associated with chemotherapy resistance. However, the association between the development of chemoresistance, EMT, and the contribution of platelets to the process, is still unclear. Here we report that platelets regulate the expression of (1) human equilibrative nucleoside transporter 1 (hENT1) and (2) cytidine deaminase (CDD), markers of gemcitabine resistance in pancreatic cancer. Human ENT1 (hENT1) is known to enable cellular uptake of gemcitabine while CDD deactivates gemcitabine. Knockdown experiments demonstrate that Slug, a mesenchymal transcriptional factor known to be upregulated during EMT, regulates the expression of hENT1 and CDD. Furthermore, we demonstrate that platelet-derived ADP and ATP regulate Slug and CDD expression in pancreatic cancer cells. Finally, we demonstrate that pancreatic cancer cells express the purinergic receptor P2Y12, an ADP receptor found mainly on platelets. Thus ticagrelor, a P2Y12 inhibitor, was used to examine the potential therapeutic effect of an ADP receptor antagonist on cancer cells. Our data indicate that ticagrelor negated the survival signals initiated in cancer cells by platelet-derived ADP and ATP. In conclusion, our results demonstrate a novel role of platelets in modulating chemoresistance in pancreatic cancer. Moreover, we propose ADP/ATP receptors as additional potential drug targets for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Omar Elaskalani
- Platelet Research Laboratory, School of Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia.
| | - Niamh Moran
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Michael C Berndt
- Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| | - Pat Metharom
- Platelet Research Laboratory, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
14
|
Liu X, Yu J, Song S, Yue X, Li Q. Protease-activated receptor-1 (PAR-1): a promising molecular target for cancer. Oncotarget 2017; 8:107334-107345. [PMID: 29291033 PMCID: PMC5739818 DOI: 10.18632/oncotarget.21015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022] Open
Abstract
PAR-1 is expressed not only in epithelium, neurons, astrocytes, immune cells, but also in cancer-associated fibroblasts, ECs (epithelial cells), myocytes of blood vessels, mast cells, and macrophages in tumor microenvironment, whereas PAR-1 stimulates macrophages to synthesize and secrete thrombin as well as other growth factors, resulting in enhanced cell proliferation, tumor growth and metastasis. Therefore, considerable effort has been devoted to the development of inhibitors targeting PAR-1. Here, we provide a comprehensive review of PAR-1’s role in cancer invasiveness and dissemination, as well as potential therapeutic strategies targeting PAR-1 signaling.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiahui Yu
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shangjin Song
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
15
|
Zhang Q, Liu H, Zhu Q, Zhan P, Zhu S, Zhang J, Lv T, Song Y. Patterns and functional implications of platelets upon tumor "education". Int J Biochem Cell Biol 2017; 90:68-80. [PMID: 28754316 DOI: 10.1016/j.biocel.2017.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Abstract
While platelets are traditionally recognized to play a predominant role in hemostasis and thrombosis, increasing evidence verifies its involvement in malignancies. As a component of the tumor microenvironment, platelets influence carcinogenesis, tumor metastasis and chemotherapy efficiency. Platelets status is thus predictable as a hematological biomarker of cancer prognosis and a hot target for therapeutic intervention. On the other hand, the role of circulating tumor cells (CTCs) as an inducer of platelet activation and aggregation has been well acknowledged. The cross-talk between platelets and CTCs is reciprocal on that the CTCs activate platelets while platelets contribute to CTCs' survival and dissemination. This review covers some of the current issues related to the loop between platelets and tumor aggression, including the manners of tumor cells in "educating" platelets and biofunctional alterations of platelets upon tumor "education". We also highlight the potential clinical applications on the interplay between tumors and platelets. Further studies with well-designed prospective multicenter trials may contribute to clinical "liquid biopsy" diagnosis by evaluating the global changes of platelets.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Hongda Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jianya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| |
Collapse
|
16
|
Elaskalani O, Berndt MC, Falasca M, Metharom P. Targeting Platelets for the Treatment of Cancer. Cancers (Basel) 2017; 9:E94. [PMID: 28737696 PMCID: PMC5532630 DOI: 10.3390/cancers9070094] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022] Open
Abstract
The majority of cancer-associated mortality results from the ability of tumour cells to metastasise leading to multifunctional organ failure and death. Disseminated tumour cells in the blood circulation are faced with major challenges such as rheological shear stresses and cell-mediated cytotoxicity mediated by natural killer cells. Nevertheless, circulating tumour cells with metastatic ability appear equipped to exploit host cells to aid their survival. Despite the long interest in targeting tumour-associated host cells such as platelets for cancer treatment, the clinical benefit of this strategy is still under question. In this review, we provide a summary of the latest mechanistic and clinical evidence to evaluate the validity of targeting platelets in cancer.
Collapse
Affiliation(s)
- Omar Elaskalani
- Faculty of Health Sciences, Curtin University, Perth 6100, Australia.
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth 6100, Australia.
| | - Michael C Berndt
- Faculty of Health Sciences, Curtin University, Perth 6100, Australia.
| | - Marco Falasca
- Faculty of Health Sciences, Curtin University, Perth 6100, Australia.
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth 6100, Australia.
- School of Biomedical Sciences, Curtin University, Perth 6100, Australia.
| | - Pat Metharom
- Faculty of Health Sciences, Curtin University, Perth 6100, Australia.
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth 6100, Australia.
| |
Collapse
|
17
|
Abstract
Platelets are small, anucleate circulating cells that possess a dynamic repertoire of functions spanning the hemostatic, inflammatory, and immune continuum. Once thought to be merely cell fragments with responses limited primarily to acute hemostasis and vascular wall repair, platelets are now increasingly recognized as key sentinels and effector cells regulating host responses to many inflammatory and infectious cues. Platelet granules, including α-granules and dense-granules, store hundreds of factors and secrete these mediators in response to activating signals. The cargo packaged and stored within platelet granules orchestrates communication between platelets and other circulating cells, augments host defense mechanisms to invading pathogens and tumor cells, and - in some settings - drives dysregulated and injurious responses. This focused review will highlight several of the established and emerging mechanisms and roles of platelet secretion in inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Bhanu K Manne
- a The University of Utah Molecular Medicine Program , Salt Lake City , Utah , USA
| | | | - Matthew T Rondina
- a The University of Utah Molecular Medicine Program , Salt Lake City , Utah , USA.,c Department of Internal Medicine , Salt Lake City , Utah , USA.,d The GRECC, George E. Wahlen Salt Lake City VAMC , Salt Lake City , Utah , USA
| |
Collapse
|
18
|
Santilli F, Boccatonda A, Davì G. Aspirin, platelets, and cancer: The point of view of the internist. Eur J Intern Med 2016; 34:11-20. [PMID: 27344083 DOI: 10.1016/j.ejim.2016.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/18/2023]
Abstract
Growing evidence suggests the beneficial effect of aspirin against some types of cancer, particularly of the gastrointestinal tract, and it has been provided for an effect both in cancer prevention as well as in survival improvement of cancer patients. Aspirin benefits increase with duration of treatment, especially after 10years of treatment. The inhibition of platelet activation at sites of gastrointestinal mucosal lesions could be the primary mechanism of action of low-dose aspirin. Indeed, the formation of tumor cell-induced platelet aggregates may favor immune evasion, by releasing angiogenic and growth factors, and also by promoting cancer cell dissemination. Moreover, platelets may contribute to aberrant COX-2 expression in colon carcinoma cells, thereby contributing to downregulation of oncosuppressor genes and upregulation of oncogenes, such as cyclin B1. Platelet adhesion to cancer cells leads also to an increased expression of genes involved in the EMT, such as the EMT-inducing transcription factors ZEB1 and TWIST1 and the mesenchymal marker vimentin. The aspirin-mediated inactivation of platelets may restore antitumor reactivity by blocking the release of paracrine lipid and protein mediators that induce COX-2 expression in adjacent nucleated cells at sites of mucosal injury. Thus, recent findings suggest interesting perspectives on "old" aspirin and NSAID treatment and/or "new" specific drugs to target the "evil" interactions between platelets and cancer for chemoprevention.
Collapse
Affiliation(s)
- F Santilli
- Center for Aging Science (Ce.S.I.), Università G. d'Annunzio" Foundation, Italy; Department of Internal Medicine, "G. d'Annunzio" University of Chieti, Italy
| | - A Boccatonda
- Center for Aging Science (Ce.S.I.), Università G. d'Annunzio" Foundation, Italy; Department of Internal Medicine, "G. d'Annunzio" University of Chieti, Italy
| | - G Davì
- Center for Aging Science (Ce.S.I.), Università G. d'Annunzio" Foundation, Italy; Department of Internal Medicine, "G. d'Annunzio" University of Chieti, Italy.
| |
Collapse
|