1
|
Huang LJ, Lan JX, Wang JH, Huang H, Lu K, Zhou ZN, Xin SY, Zhang ZY, Wang JY, Dai P, Chen XM, Hou W. Bioactivity and mechanism of action of sanguinarine and its derivatives in the past 10 years. Biomed Pharmacother 2024; 173:116406. [PMID: 38460366 DOI: 10.1016/j.biopha.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Sanguinarine is a quaternary ammonium benzophenanthine alkaloid found in traditional herbs such as Chelidonium, Corydalis, Sanguinarum, and Borovula. It has been proven to possess broad-spectrum biological activities, such as antitumor, anti-inflammatory, antiosteoporosis, neuroprotective, and antipathogenic microorganism activities. In this paper, recent progress on the biological activity and mechanism of action of sanguinarine and its derivatives over the past ten years is reviewed. The results showed that the biological activities of hematarginine and its derivatives are related mainly to the JAK/STAT, PI3K/Akt/mTOR, NF-κB, TGF-β, MAPK and Wnt/β-catenin signaling pathways. The limitations of using sanguinarine in clinical application are also discussed, and the research prospects of this subject are outlined. In general, sanguinarine, a natural medicine, has many pharmacological effects, but its toxicity and safety in clinical application still need to be further studied. This review provides useful information for the development of sanguinarine-based bioactive agents.
Collapse
Affiliation(s)
- Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Hua Wang
- Ji'an Central People's Hospital (Shanghai East Hospital Ji'an Hospital), Ji'an, Jiangxi 343100, PR China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Kuo Lu
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan 450018, PR China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jing-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Ping Dai
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Xiao-Mei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
2
|
Rao Malla R, Bhamidipati P, Adem M. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer. Biochem Pharmacol 2023; 212:115565. [PMID: 37086811 DOI: 10.1016/j.bcp.2023.115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women worldwide. The tumor microenvironment (TME) plays a crucial role in the progression and metastasis of BC. A significant proportion of BC is characterized by a hypoxic TME, which contributes to the development of drug resistance and cancer recurrence. Sanguinarine (SAN), an isoquinoline alkaloid found in Papaver plants, has shown promise as an anticancer agent. The present review focuses on exploring the molecular mechanisms of hypoxic TME in BC and the potential of SAN as a therapeutic option. The review presents the current understanding of the hypoxic TME, its signaling pathways, and its impact on the progression of BC. Additionally, the review elaborates on the mechanisms of action of SAN in BC, including its effects on vital cellular processes such as proliferation, migration, drug resistance, and tumor-induced immune suppression. The review highlights the importance of addressing hypoxic TME in treating BC and the potential of SAN as a promising therapeutic option.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visva vidhyalayam, Tirupati-517502, Andhra Pradesh, India
| |
Collapse
|
3
|
Golovynska I, Golovynskyi S, Qu J. Comparing the Impact of NIR, Visible and UV Light on ROS Upregulation via Photoacceptors of Mitochondrial Complexes in Normal, Immune and Cancer Cells. Photochem Photobiol 2023; 99:106-119. [PMID: 35689798 DOI: 10.1111/php.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
The effect of UV/visible/NIR light (380/450/530/650/808/1064 nm) on ROS generation, mitochondrial activity and viability is experimentally compared in human neuroblastoma cancer cells. The absorption of photons by mitochondrial photoacceptors in Complexes I, III and IV is in detail investigated by sequential blocking with selective pharmaceutical blockers. Complex I absorbs UV/blue light by heme P450, resulting in a very high rate (14 times) of ROS generation leading to cell death. Complex III absorbs green light, by cytochromes b, c1 and c, and possesses less ability for ROS production (seven times), so that only irradiation lower than 10 mW cm-2 causes an increase in cell viability. Complex IV is well-known as the primary photoacceptor for red/NIR light. Light of 650/808 nm at 10-100 mW cm-2 generates a physiological ROS level about 20% of a basal concentration, which enhance mitochondrial activity and cell survival, while 1064 nm light does not show any distinguished effects. Further, ROS generation induced by low-intensity red/NIR light is compared in neurons, immune and cancer cells. Red light seems to more rapidly stimulate ROS production, mitochondrial activity and cell survival than 808 nm. At the same time, different cell lines demonstrate slightly various rates of ROS generation, peculiar to their cellular physiology.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular Mechanisms of Sanguinarine in Cancer Prevention and Treatment. Anticancer Agents Med Chem 2023; 23:765-778. [PMID: 36045531 DOI: 10.2174/1871520622666220831124321] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Historically, natural plant-derived drugs received a great impact of consideration in the treatment of several human-associated disorders. Cancer is a devastating disease and the second most cause of mortality. Sanguinarine (SANG), a naturally isolated plant alkaloidal agent, possesses chemo-preventive effects. Several studies have revealed that SANG impedes tumor metastasis and development by disrupting a wide range of cell signaling pathways and its molecular targets, such as BCL-2, MAPKs, Akt, NF-κB, ROS, and microRNAs (miRNAs). However, its low chemical stability and poor oral bioavailability remain key issues in its use as a medicinal molecule. A novel method (e.g., liposomes, nanoparticles, and micelles) and alternative analogs provide an exciting approach to alleviate these problems and broaden its pharmacokinetic profile. Cancer-specific miRNA expression is synchronized by SANG, which has also been uncertain. In this critical study, we review the utilization of SANG mimics and nano-technologies to improve its support in cancer. We focus on recently disclosed studies on SANG anti-cancer properties.
Collapse
Affiliation(s)
- Asmat Ullah
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Najeeb Ullah
- School of Biochemistry and Molecular Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Tariq Aziz
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
5
|
Sanguinarine Induces H 2O 2-Dependent Apoptosis and Ferroptosis in Human Cervical Cancer. Biomedicines 2022; 10:biomedicines10081795. [PMID: 35892694 PMCID: PMC9331761 DOI: 10.3390/biomedicines10081795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 01/31/2023] Open
Abstract
Sanguinarine (SNG) is a benzophenanthridine alkaloid isolated mainly from Sanguinaria canadensis, Chelidonium majus, and Macleaya cordata. SNG is considered an antineoplastic agent based on its cytotoxic activity against various tumors. However, the exact molecular mechanism through which SNG mediates this activity has not been elucidated. Here, we report that SNG induces death in human cervical cancer (HeLa) cells through activation of two interdependent cell death pathways—apoptosis and ferroptosis. SNG-induced apoptosis was characterized by caspase activation and PARP cleavage, while ferroptosis involved solute carrier family 7 member 11 (SLC7A11) down-regulation, glutathione (GSH) depletion, iron accumulation, and lipid peroxidation (LPO). Interestingly, incubation with caspase inhibitor z-VAD-fmk not only inhibited the features of apoptosis, but also negated markers of SNG-induced ferroptosis. Similarly, pretreatment with ferroptosis inhibitor ferrostatin-1 (Fer-1), apart from rescuing cells from SNG-induced ferroptosis, also curbed the features of SNG-induced apoptosis. Our study implies that, together, apoptosis and ferroptosis act as partners in the context of SNG mediated tumor suppression in HeLa cells. Importantly, SNG increased the generation of reactive oxygen species (ROS), and ROS inhibition blocks the induction of both apoptosis and ferroptosis. These findings highlight the value of continued investigation into the potential use of SNG as an antineoplastic agent.
Collapse
|
6
|
Mello ALDN, Zancan P. Isoquinolines alkaloids and cancer metabolism: Pathways and targets to novel chemotherapy. Chem Biol Drug Des 2022; 99:944-956. [PMID: 35322534 DOI: 10.1111/cbdd.14043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 12/24/2022]
Abstract
Cancer is one of the main causes of death in the world. This is a complex disease where the development of resistance to chemotherapy is frequent driving the search for new anticancer compounds. In this sense, isoquinolines have gained attention in the past few years. This review aims to highlight the new advances related to the use of isoquinolines compounds against cancer cells, and we point out targets for their anti-tumor action. Isoquinolines are compounds found in plants that are important for their protection. In cancer, many representatives of this class of compounds have demonstrated their efficacy against cancer by acting on cancer metabolism, such as triggering cell death, reducing pro-survival protein expression, inducing ROS production, inhibiting pro-survival cell signaling pathways, among other effects. The mechanisms triggered by isoquinolines in cancer cells represent robust anticancer strategies, which support that this class of compounds are strong candidates for cancer treatment.
Collapse
Affiliation(s)
- Angélica Lauria do Nascimento Mello
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Xu R, Wu J, Luo Y, Wang Y, Tian J, Teng W, Zhang B, Fang Z, Li Y. Sanguinarine represses the growth and metastasis of non-small cell lung cancer by facilitating ferroptosis. Curr Pharm Des 2022; 28:760-768. [PMID: 35176976 DOI: 10.2174/1381612828666220217124542] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanguinarine (SAG), a natural benzophenanthridine alkaloid derived from the root of Sanguinaria canadensis Linn. (Bloodroot), possesses a potential anticancer activity. Lung carcinoma is the chief cause of malignancy-related mortality in China. Non-small cell lung carcinoma (NSCLC) is the main subtype of lung carcinoma and accounts for about eighty-five percent of this disease. Current treatment in controlling and curing NSCLC remains deficient. AIM OF THE STUDY The role and underlying mechanism of SAG in repressing the growth and metastasis of NSCLC was explored. MATERIALS AND METHODS The role of SAG in regulating the proliferation and invasion of NSCLC cells was evaluated in vitro and in a xenograft model. After treatment with SAG, Fe2+ concentration, reactive oxygen species (ROS) levels, malondialdehyde (MDA), and glutathione (GSH) content in NSCLC cells were assessed to evaluate the effect of SAG on facilitating ferroptosis. RESULTS SAG exhibited a dose- and time- dependent cytotoxicity in A549 and H3122 cells. SAG treatment effectively repressed the growth and metastasis of NSCLC in a xenograft model. We for the first time verified that SAG triggered ferroptosis of NSCLC cells, as evidenced by increased Fe2+ concentration, ROS level, and MDA content, and decreased GSH content. Mechanistically, SAG decreased the protein stability of glutathione peroxide 4 (GPX4) through E3 ligase STUB1-mediated ubiquitination and degradation of endogenous GPX4. GPX4 overexpression restored the proliferation and invasion of NSCLC cells treated with SAG through inhibiting ferroptosis. CONCLUSIONS SAG inhibits the growth and metastasis of NSCLC by regulating STUB1/GPX4-dependent ferroptosis.
Collapse
Affiliation(s)
- Rongzhong Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yuli Wang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jianhui Tian
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bo Zhang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
8
|
Khan AQ, Rashid K, AlAmodi AA, Agha MV, Akhtar S, Hakeem I, Raza SS, Uddin S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacother 2021; 143:112142. [PMID: 34536761 DOI: 10.1016/j.biopha.2021.112142] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species play crucial role in biological homeostasis and pathogenesis of human diseases including cancer. In this line, now it has become evident that ROS level/concentration is a major factor in the growth, progression and stemness of cancer cells. Moreover, cancer cells maintain a delicate balance between ROS and antioxidants to promote pathogenesis and clinical challenges via targeting a battery of signaling pathways converging to cancer hallmarks. Recent findings also entail the therapeutic importance of ROS for the better clinical outcomes in cancer patients as they induce apoptosis and autophagy. Moreover, poor clinical outcomes associated with cancer therapies are the major challenge and use of natural products have been vital in attenuation of these challenges due to their multitargeting potential with less adverse effects. In fact, most available drugs are derived from natural resources, either directly or indirectly and available evidence show the clinical importance of natural products in the management of various diseases, including cancer. ROS play a critical role in the anticancer actions of natural products, particularly phytochemicals. Benzophenanthridine alkaloids of the benzyl isoquinoline family of alkaloids, such as sanguinarine, possess several pharmacological properties and are thus being studied for the treatment of different human diseases, including cancer. In this article, we review recent findings, on how benzophenanthridine alkaloid-induced ROS play a critical role in the attenuation of pathological changes and stemness features associated with human cancers. In addition, we highlight the role of ROS in benzophenanthridine alkaloid-mediated activation of the signaling pathway associated with cancer cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid Rashid
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ishrat Hakeem
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
9
|
Anjago WM, Zeng W, Chen Y, Wang Y, Biregeya J, Li Y, Zhang T, Peng M, Cai Y, Shi M, Wang B, Zhang D, Wang Z, Chen M. The molecular mechanism underlying pathogenicity inhibition by sanguinarine in Magnaporthe oryzae. PEST MANAGEMENT SCIENCE 2021; 77:4669-4679. [PMID: 34116584 DOI: 10.1002/ps.6508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Sanguinarine (SAN) is a benzophenanthridine alkaloid that broadly targets a range of pathways in mammalian and fungal cells. In this study we set out to explore the molecular mechanism of sanguinarine inhibition of the fungal development and pathogenicity of Magnaporthe oryzae with the hope that sanguinarine will bolster the development of antiblast agents. RESULTS We found that the fungus exhibited a significant reduction in vegetative growth and hyphal melanization while the spores produced long germ tubes on the artificial hydrophobic surface characteristic of a defect in thigmotropic sensing when exposed to 4, 8 and 0.5 μm sanguinarine, respectively. Consistent with these findings, we observed that the genes involved in melanin biosynthesis and the fungal hydrophobin MoMPG1 were remarkably suppressed in mycelia treated with 8 μm sanguinarine. Additionally, sanguinarine inhibited appressorium formation at a dose of 1.0 μm and this defect was restored by supplementing 5 mM of exogenous cAMP. By qRT-PCR assay we found cAMP pathway signalling genes such as MoCAP1 and MoCpkA were significantly repressed whereas MoCDTF1 and MoSOM1 were upregulated in sanguinarine-treated strains. Furthermore, we showed that sanguinarine does not selectively inhibit vegetative growth and appressorium formation of Guy11 but also other strains of M. oryzae. Finally, treatment of sanguinarine impaired the appressorium-mediated penetration and pathogenicity of M. oryzae in a dose-dependent manner. CONCLUSION Based on our results we concluded that sanguinarine is an attractive antimicrobial candidate for fungicide development in the control of rice blast disease. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wilfred Mabeche Anjago
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Yixiao Chen
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yupeng Wang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jules Biregeya
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunxi Li
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian Zhang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minghui Peng
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cai
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Shi
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baohua Wang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Zhang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Ministry of Education Key Laboratory of Biopesticides and Chemical Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Meilian Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
10
|
Wu MJ, Chen CJ, Lin TY, Liu YY, Tseng LL, Cheng ML, Chuu CP, Tsai HK, Kuo WL, Kung HJ, Wang WC. Targeting KDM4B that coactivates c-Myc-regulated metabolism to suppress tumor growth in castration-resistant prostate cancer. Theranostics 2021; 11:7779-7796. [PMID: 34335964 PMCID: PMC8315051 DOI: 10.7150/thno.58729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: The progression of prostate cancer (PCa) to castration-resistant PCa (CRPC) despite continuous androgen deprivation therapy is a major clinical challenge. Over 90% of patients with CRPC exhibit sustained androgen receptor (AR) signaling. KDM4B that removes the repressive mark H3K9me3/2 is a transcriptional activator of AR and has been implicated in the development of CRPC. However, the mechanisms of KDM4B involvement in CRPC remain largely unknown. Here, we sought to demonstrate the molecular pathway mediated by KDM4B in CRPC and to provide proof-of-concept evidence that KDM4B is a potential CRPC target. Methods: CRPC cells (C4-2B or CWR22Rv1) depleted with KDM4B followed by cell proliferation (in vitro and xenograft), microarray, qRT-PCR, Seahorse Flux, and metabolomic analyses were employed to identify the expression and metabolic profiles mediated by KDM4B. Immunoprecipitation was used to determine the KDM4B-c-Myc interaction region. Reporter activity assay and ChIP analysis were used to characterize the KDM4B-c-Myc complex-mediated mechanistic actions. The clinical relevance between KDM4B and c-Myc was determined using UCSC Xena analysis and immunohistochemistry. Results: We showed that KDM4B knockdown impaired CRPC proliferation, switched Warburg to OXPHOS metabolism, and suppressed gene expressions including those targeted by c-Myc. We further demonstrated that KDM4B physically interacted with c-Myc and they were co-recruited to the c-Myc-binding sequence on the promoters of metabolic genes (LDHA, ENO1, and PFK). Importantly, KDM4B and c-Myc synergistically promoted the transactivation of the LDHA promoter in a demethylase-dependent manner. We also provided evidence that KDM4B and c-Myc are co-expressed in PCa tissue and that high expression of both is associated with worse clinical outcome. Conclusions: KDM4B partners with c-Myc and serves as a coactivator of c-Myc to directly enhance c-Myc-mediated metabolism, hence promoting CRPC progression. Targeting KDM4B is thus an alternative therapeutic strategy for advanced prostate cancers driven by c-Myc and AR.
Collapse
Affiliation(s)
- Meng-Jen Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Ting-Yu Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Ying-Yuan Liu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Lin-Lu Tseng
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Ling Kuo
- Division of Breast Surgery, General Surgery, Department of Surgery, Chang Gung Memorial Hospital Linko Medical Center, Taoyuan 333, Taiwan
| | - Hsing-Jien Kung
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Centre, Sacramento, CA 95817, USA
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
11
|
Abstract
Glucose-regulating protein 78 (GRP78) is a molecular chaperone in the endoplasmic reticulum (ER) that promotes folding and assembly of proteins, controls the quality of proteins, and regulates ER stress signaling through Ca2+ binding to the ER. In tumors, GRP78 is often upregulated, acting as a central stress sensor that senses and adapts to changes in the tumor microenvironment, mediating ER stress of cancer cells under various stimulations of the microenvironment to trigger the folding protein response. Increasing evidence has shown that GRP78 is closely associated with the progression and poor prognosis of lung cancer, and plays an important role in the treatment of lung cancer. Herein, we reviewed for the first time the functions and mechanisms of GRP78 in the pathological processes of lung cancer, including tumorigenesis, apoptosis, autophagy, progression, and drug resistance, giving a comprehensive understanding of the function of GRP78 in lung cancer. In addition, we also discussed the potential role of GRP78 as a prognostic biomarker and therapeutic target for lung cancer, which is conducive to improving the assessment of lung cancer and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xinri Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China. .,Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
12
|
Chen Y, Luo X, Zou Z, Liang Y. The Role of Reactive Oxygen Species in Tumor Treatment and its Impact on Bone Marrow Hematopoiesis. Curr Drug Targets 2021; 21:477-498. [PMID: 31736443 DOI: 10.2174/1389450120666191021110208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients' life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.
Collapse
Affiliation(s)
- Yongfeng Chen
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xingjing Luo
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yong Liang
- Taizhou University Hosipital, Taizhou University, Taizhou, 318000, Zhejiang, China.,Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
13
|
Khurana S, Kukreti S, Kaushik M. Designing a two-stage colorimetric sensing strategy based on citrate reduced gold nanoparticles: Sequential detection of Sanguinarine (anticancer drug) and visual sensing of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119039. [PMID: 33080515 DOI: 10.1016/j.saa.2020.119039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Distance dependent optical properties of colloidal gold nanoparticles offer designing of colorimetric sensing modalities for detection of a variety of analytes. Herein, we report a simple and facile colorimetric detection assay for an anti-cancer drug, Sanguinarine (SNG) and Calf Thymus DNA (Ct-DNA) based on citrate reduced gold nanoparticles (CI-Au NPs). The electrostatic interaction between SNG and CI-Au NPs induce aggregation of Au NPs accompanied with visible colour change of colloidal solution. The assay conditions like salt concentration, pH and reaction time had been adjusted to achieve highly sensitive and fast colorimetric response. Furthermore, the optimized CI-Au NPs/SNG sensing system is used for the detection of Ct-DNA based on the mechanism of anti-aggregation of CI-Au NPs. The simultaneous presence of SNG and Ct-DNA prevent aggregation of Au NPs owing to preferential formation of Ct-DNA-SNG intercalation complex and colour of the Au NPs solution tends to remain red, depending on the concentration of Ct-DNA in solution. The degree of aggregation and anti-aggregation of CI-Au NPs was monitored using Transmission electron microscopic (TEM) measurements and UV-Visible spectrophotometry by analysing the ratio of absorptions for aggregated and dispersed Au NPs. The intercalation mode of binding between SNG and Ct-DNA in CI-Au NPs/SNG sensing system was determined by Fluorescence spectral studies and UV-thermal melting studies. The absorption ratio (A627/A525) of Au NPs exhibited a linear correlation with SNG concentrations in the range from 0 to 0.9 μM with detection limit as 0.046 μM. This optical method can determine Ct-DNA as low as 0.36 μM and the calibration is linear for concentration range 0 to 5 μM. The proposed sensing strategy enables detection as well as quantification of SNG & Ct-DNA in real samples with satisfactory results and finds application in drug or DNA monitoring.
Collapse
Affiliation(s)
- Sonia Khurana
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
14
|
Guo S, Lei J, Liu L, Qu X, Li P, Liu X, Guo Y, Gao Q, Lan F, Xiao B, He C, Zou X. Effects of Macleaya cordata extract on laying performance, egg quality, and serum indices in Xuefeng black-bone chicken. Poult Sci 2021; 100:101031. [PMID: 33684648 PMCID: PMC7938252 DOI: 10.1016/j.psj.2021.101031] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/12/2022] Open
Abstract
The abuse of antibiotic growth promoters (AGPs) in feed has led to drug resistance and ecological damage would threaten human health eventually. Natural plants have become a hotspot in the research and application of substituting AGPs because of their advantages of safety, efficiency, and availability. This study was conducted to investigate the effects of Macleaya cordata extract (MCE) in the diet of Xuefeng black-bone chicken on laying performance, egg quality, and serum indices. In this study, 576 birds (47-week-old) were evenly distributed between 4 treatments with 6 replicates of 24 hens each. The control group was fed a basal diet without MCE and the remaining groups received 100, 150, or 200 mg/kg MCE for 84 d. Results revealed that the strength and thickness of the eggshell increased significantly with the dietary addition of MCE (P < 0.05). The serum concentrations of glutathione peroxidase increased in the MCE groups (P < 0.01). Simultaneously, progesterone, follicle stimulating hormone, estradiol as well as serum luteinizing hormone levels also increased with the addition of MCE (P < 0.05). Compared with the control group, supplementation of MCE significantly decreased the tumor necrosis factor-α and interleukin-6 levels (P < 0.01). In summary, it was concluded that diet addition of 200 mg/kg MCE ameliorated egg quality, enhanced anti-oxidation and immune activity, and regulated hormone secretion of Xuefeng black-bone chicken.
Collapse
Affiliation(s)
- Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Jiaxing Lei
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Lulu Liu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Peng Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xu Liu
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ying Guo
- Research and Development Center, Hunan Yunfeifeng Agricultural Co. Ltd., Hunan, Huaihua 418200, China
| | - Qiaoqin Gao
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Fulin Lan
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Bing Xiao
- Research and Development Center, Hunan Yunfeifeng Agricultural Co. Ltd., Hunan, Huaihua 418200, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; Hunan Engineering Research Center of Poultry Production Safety, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xiaoyan Zou
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, Changsha 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Hunan, Changsha 410128, China; College of Horticulture, Hunan Agricultural University, Hunan, Changsha 410128, China.
| |
Collapse
|
15
|
Yang L, Yu H, Touna A, Yin X, Zhang Q, Leng T. Identification of differentially expressed genes and biological pathways in sanguinarine-treated ovarian cancer by integrated bioinformatics analysis. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_111_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Hałas-Wiśniewska M, Zielińska W, Izdebska M, Grzanka A. The Synergistic Effect of Piperlongumine and Sanguinarine on the Non-Small Lung Cancer. Molecules 2020; 25:E3045. [PMID: 32635287 PMCID: PMC7411589 DOI: 10.3390/molecules25133045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancers are one of the leading causes of deaths nowadays. The development of new treatment schemes for oncological diseases is an interesting direction in experimental medicine. Therefore, the evaluation of the influence of two alkaloids-piperlongumine (PL), sanguinarine (SAN) and their combination-on the basic life processes of the A549 cell line was considered reasonable. METHODS The aim was achieved by analyzing the cytotoxic effects of PL and SAN and their combination in the ratio of 4:1 on the induction of cell death, changes in the distribution of cell cycle phases, reorganization of cytoskeleton and metastatic potential of A549 cells. The versatility of the applied concentration ratio was evaluated in terms of other cancer cell lines: MCF-7, H1299 and HepG2. RESULTS The results obtained from the MTT assay indicated that the interaction between the alkaloids depends on the concentration and type of cells. Additionally, the compounds and their combination did not exhibit a cytotoxic effect against normal cells. The combined effects of PL and SAN increased apoptosis and favored metastasis inhibition. CONCLUSION Selected alkaloids exhibit a cytotoxic effect on A549 cells. In turn, treatment with the combination of PL and SAN in a 4:1 ratio indicates a synergistic effect and is associated with an increase in the level of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.Z.); (M.I.); (A.G.)
| | | | | | | |
Collapse
|
17
|
Dong XZ, Song Y, Lu YP, Hu Y, Liu P, Zhang L. Sanguinarine inhibits the proliferation of BGC-823 gastric cancer cells via regulating miR-96-5p/miR-29c-3p and the MAPK/JNK signaling pathway. J Nat Med 2019; 73:777-788. [PMID: 31243669 DOI: 10.1007/s11418-019-01330-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023]
Abstract
Sanguinarine (SAN), a quaternary benzophenanthridine alkaloid extracted from the root of Papaveraceae plants, has shown antitumour effects in multiple cancer cells. However, the therapeutic effects and the underlying mechanisms of SAN in gastric cancer (GC) remain elusive. In this study, the in vitro proliferation inhibition effect of SAN in GC cells was determined using CCK-8 assay, the in vivo antitumor effect of SAN was evaluated in mice with xenotransplanted tumor. The mechanism underlying the antitumor activity of SAN was explored by gene microarray assay and bioinformatics analysis. The levels of differentially expressed miRNAs and target genes were verified by real-time RT-PCR and immunohistochemistry. SAN inhibited the proliferation of BGC-823 cells in a concentration-dependent manner in vitro and in vivo. The miR-96-5p and miR-29c-3p were significantly upregulated in untreated BGC-823 cells and significantly downregulated in SAN treated cells. The mRNA and protein expression of their target gene MAP4K4 were upregulated in SAN treated xenotransplanted tumors, and pMEK4 and pJNK1 proteins in the MAPK/JNK signaling pathway were also upregulated by SAN. These indicate that SAN may inhibit the proliferation of BGC-823 cells through the inhibition of miR-96-5p and miR-29c-3p expression, and subsequent activation of the MAPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, 100053, Beijing, China
| | - Yan Song
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, 100053, Beijing, China
| | - Yu-Pan Lu
- Department of Pharmacy, Chinese PLA General Hospital, 100853, Beijing, China
| | - Yuan Hu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, 100853, Beijing, China
| | - Ping Liu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, 100853, Beijing, China.
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, 100053, Beijing, China.
| |
Collapse
|
18
|
Akhtar S, Achkar IW, Siveen KS, Kuttikrishnan S, Prabhu KS, Khan AQ, Ahmed EI, Sahir F, Jerobin J, Raza A, Merhi M, Elsabah HM, Taha R, Omri HE, Zayed H, Dermime S, Steinhoff M, Uddin S. Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling. Front Oncol 2019; 9:285. [PMID: 31058086 PMCID: PMC6478801 DOI: 10.3389/fonc.2019.00285] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Sanguinarine (SNG), a benzophenanthridine alkaloid, has displayed various anticancer abilities in several vivo and in vitro studies. However, the anticancer potential of SNG is yet to be established in multiple myeloma (MM), a mostly incurable malignancy of plasma cells. In this study, we aimed to investigate the potential anti-proliferative and pro-apoptotic activities of SNG in a panel of MM cell lines (U266, IM9, MM1S, and RPMI-8226). SNG treatment of MM cells resulted in a dose-dependent decrease in cell viability through mitochondrial membrane potential loss and activation of caspase 3, 9, and cleavage of PARP. Pre-treatment of MM cells with a universal caspase inhibitor, Z-VAD-FMK, prevented SNG mediated loss of cell viability, apoptosis, and caspase activation, confirming that SNG-mediated apoptosis is caspase-dependent. The SNG-mediated apoptosis appears to be resulted from suppression of the constitutively active STAT3 with a concomitant increase in expression of protein tyrosine phosphatase (SHP-1). SNG treatment of MM cells leads to down-regulation of the anti-apoptotic proteins including cyclin D, Bcl-2, Bclxl, and XIAP. In addition, it also upregulates pro-apoptotic protein, Bax. SNG mediated cellular DNA damage in MM cell lines by induction of oxidative stress through the generation of reactive oxygen species and depletion of glutathione. Finally, the subtoxic concentration of SNG enhanced the cytotoxic effects of anticancer drugs bortezomib (BTZ) by suppressing the viability of MM cells via induction of caspase-mediated apoptosis. Altogether our findings demonstrate that SNG induces mitochondrial and caspase-dependent apoptosis, generates oxidative stress, and suppresses MM cell lines proliferation. In addition, co-treatment of MM cell lines with sub-toxic doses of SNG and BTZ potentiated the cytotoxic activity. These results would suggest that SNG could be developed into therapeutic agent either alone or in combination with other anticancer drugs in MM.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Iman W. Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Eiman I. Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fairooz Sahir
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jayakumar Jerobin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Hesham M. Elsabah
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Ruba Taha
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Halima El Omri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell-Medicine, Doha, Qatar
- Weill Cornell-Medicine, Cornell University, New York, NY, United States
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
19
|
Rahman A, Pallichankandy S, Thayyullathil F, Galadari S. Critical role of H 2O 2 in mediating sanguinarine-induced apoptosis in prostate cancer cells via facilitating ceramide generation, ERK1/2 phosphorylation, and Par-4 cleavage. Free Radic Biol Med 2019; 134:527-544. [PMID: 30735839 DOI: 10.1016/j.freeradbiomed.2019.01.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Natural products are a major source of potential anticancer agents, and in order to develop improved and more effective cancer treatments, there is an immense need in exploring and elucidating their mechanism of action. Sanguinarine (SNG), a quaternary benzophenanthridine alkaloid, has been shown to induce cytotoxicity in various human cancers and suppresses various pro-tumorigenic processes such as invasion, angiogenesis, and metastasis in different cancers. Lack of understanding the anticancer mechanism(s) of SNG has impeded the development of this molecule as a potential anticancer agent. Earlier, we have reported that SNG induces reactive oxygen species (ROS)-dependent ceramide (Cer) generation and Akt dephosphorylation, leading to the induction of apoptosis in human leukemic cells. In the present study, we demonstrate that SNG has potent anti-proliferative activity against prostate cancer cells. Our data suggest that SNG induces Cer generation via inhibiting acid ceramidase and glucosylceramide synthase, two important enzymes involved in Cer metabolism. Furthermore, we demonstrate that SNG induces ROS-depended extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation, and prostate apoptosis response-4 (Par-4) cleavage, leading to the induction of apoptosis in human prostate cancer cells. Overall, our findings provide molecular insight into the role of ROS signaling in the anticancer mechanism(s) of SNG. This may provide the basis for its use as a nontoxic and an effective therapeutic agent in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Anees Rahman
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
20
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Molecular targets and anticancer potential of sanguinarine-a benzophenanthridine alkaloid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:143-153. [PMID: 28899497 DOI: 10.1016/j.phymed.2017.08.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/06/2017] [Accepted: 08/06/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cancer is an enormous global health burden, and should be effectively addressed with better therapeutic strategies. Currently, over 60% of the clinically approved anticancer agents are either directly isolated from natural sources or are modified from natural lead molecules. Sanguinarine (SNG), a quaternary benzophenanthridine alkaloid has gained increasing attention in recent years as a potential anticancer agent. PURPOSE There is a large untapped source of phytochemical-based anticancer agents remaining to be explored. This review article aims to recapitulate different anticancer properties of SNG, and describes some of the molecular targets involved in exerting its effect. It also depicts the pharmacokinetic and toxicological properties of SNG, two parameters important in determining the druggability of a molecule. METHODS Numerous in vivo and in vitro published studies have signified the anticancer properties of SNG. In order to collate and decipher these properties, an extensive literature search was conducted in PubMed, ScienceDirect, and Scopus using keywords followed by the evaluation of the relevant articles where the relevant reports are integrated and analyzed. RESULTS Apart from inducing cell death, SNG inhibits pro-tumorigenic processes such as invasion, angiogenesis, and metastasis in different cancers. Moreover, SNG has been shown to synergistically enhance the sensitivity of several chemotherapeutic agents and is effective against a variety of multi-drug resistant cancers.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Anees Rahman
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| |
Collapse
|
21
|
Yuan R, Hou Y, Sun W, Yu J, Liu X, Niu Y, Lu JJ, Chen X. Natural products to prevent drug resistance in cancer chemotherapy: a review. Ann N Y Acad Sci 2017; 1401:19-27. [DOI: 10.1111/nyas.13387] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Renyikun Yuan
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Yanan Niu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine; Institute of Chinese Medical Sciences, University of Macau; Macao China
| |
Collapse
|
22
|
Croaker A, King GJ, Pyne JH, Anoopkumar-Dukie S, Simanek V, Liu L. Carcinogenic potential of sanguinarine, a phytochemical used in 'therapeutic' black salve and mouthwash. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:46-56. [PMID: 29173498 DOI: 10.1016/j.mrrev.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/17/2017] [Accepted: 09/02/2017] [Indexed: 02/07/2023]
Abstract
Black salves are escharotic skin cancer therapies in clinical use since the mid 19th century. Sanguinaria canadensis, a major ingredient of black salve formulations, contains a number of bioactive phytochemicals including the alkaloid sanguinarine. Despite its prolonged history of clinical use, conflicting experimental results have prevented the carcinogenic potential of sanguinarine from being definitively determined. Sanguinarine has a molecular structure similar to known polyaromatic hydrocarbon carcinogens and is a DNA intercalator. Sanguinarine also generates oxidative and endoplasmic reticulum stress resulting in the unfolded protein response and the formation of 8-hydroxyguanine genetic lesions. Sanguinarine has been the subject of contradictory in vitro and in vivo genotoxicity and murine carcinogenesis test results that have delayed its carcinogenic classification. Despite this, epidemiological studies have linked mouthwash that contains sanguinarine with the development of oral leukoplakia. Sanguinarine is also proposed as an aetiological agent in gallbladder carcinoma. This literature review investigates the carcinogenic potential of sanguinarine. Reasons for contradictory genotoxicity and carcinogenesis results are explored, knowledge gaps identified and a strategy for determining the carcinogenic potential of sanguinarine especialy relating to black salve are discussed. As patients continue to apply black salve, especially to skin regions suffering from field cancerization and skin malignancies, an understanding of the genotoxic and carcinogenic potential of sanguinarine is of urgent clinical relevance.
Collapse
Affiliation(s)
- Andrew Croaker
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia; Wesley Medical Research Institute, Wesley Hospital, Auchenflower, QLD, Australia; Quality Use of Medicines Network, Queensland, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - John H Pyne
- School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Shailendra Anoopkumar-Dukie
- Quality Use of Medicines Network, Queensland, Australia; School of Pharmacy and Pharmacology, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Vilim Simanek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia.
| |
Collapse
|
23
|
Achkar IW, Mraiche F, Mohammad RM, Uddin S. Anticancer potential of sanguinarine for various human malignancies. Future Med Chem 2017; 9:933-950. [PMID: 28636454 DOI: 10.4155/fmc-2017-0041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/03/2017] [Indexed: 08/28/2023] Open
Abstract
Sanguinarine (Sang) - a benzophenanthridine alkaloid extracted from Sanguinaria canadensis - exhibits antioxidant, anti-inflammatory, proapoptotic and growth inhibitory activities on tumor cells of various cancer types as established by in vivo and in vitro studies. Although the underlying mechanism of Sang antitumor activity is yet to be fully elucidated, Sang has displayed multiple biological effects, which remain to suggest its possible use in plant-derived treatments of human malignancies. This review covers the anticancer abilities of Sang including inhibition of aberrantly activated signal transduction pathways, induction of cell death and inhibition of cancer cell proliferation. It also highlights Sang-mediated inhibition of angiogenesis, inducing the expression of tumor suppressors, sensitization of cancer cells to standard chemotherapeutics to enhance their cytotoxic effects, while addressing the present need for further pharmacokinetic-based studies.
Collapse
Affiliation(s)
- Iman W Achkar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Ramzi M Mohammad
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
24
|
Activity of Sanguinarine against Candida albicans Biofilms. Antimicrob Agents Chemother 2017; 61:AAC.02259-16. [PMID: 28223387 DOI: 10.1128/aac.02259-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/08/2017] [Indexed: 12/14/2022] Open
Abstract
Candida albicans biofilms show resistance to many clinical antifungal agents and play a considerable contributing role in the process of C. albicans infections. New antifungal agents against C. albicans biofilms are sorely needed. The aim of this study was to evaluate sanguinarine (SAN) for its activity against Candida albicans biofilms and explore the underlying mechanism. The MIC50 of SAN was 3.2 μg/ml, while ≥0.8 μg/ml of SAN could suppress C. albicans biofilms. Further study revealed that ≥0.8 μg/ml of SAN could decrease cellular surface hydrophobicity (CSH) and inhibited hypha formation. Real-time reverse transcription-PCR (RT-PCR) results indicated that the exposure of C. albicans to SAN suppressed the expression of some adhesion- and hypha-specific/essential genes related to the cyclic AMP (cAMP) pathway, including ALS3, HWP1, ECE1, HGC1, and CYR1 Consistently, the endogenous cAMP level of C. albicans was downregulated after SAN treatment, and the addition of cAMP rescued the SAN-induced filamentation defect. In addition, SAN showed relatively low toxicity to human umbilical vein endothelial cells, the 50% inhibitory concentration (IC50) being 7.8 μg/ml. Collectively, the results show that SAN exhibits strong activity against C. albicans biofilms, and the activity was associated with its inhibitory effect on adhesion and hypha formation due to cAMP pathway suppression.
Collapse
|
25
|
Wei G, Xu Y, Peng T, Yan J, Wang Z, Sun Z. Sanguinarine exhibits antitumor activity via up-regulation of Fas-associated factor 1 in non-small cell lung cancer. J Biochem Mol Toxicol 2017; 31. [PMID: 28296008 DOI: 10.1002/jbt.21914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Guangxia Wei
- Department of Cardiothoracic Surgery, Huangshi Central Hospital; Affiliated Hospital of Hubei Polytechnic University; Edong Healthcare Group Huangshi 435000 People's Republic of China
| | - Yahuan Xu
- Department of Cardiothoracic Surgery, Huangshi Central Hospital; Affiliated Hospital of Hubei Polytechnic University; Edong Healthcare Group Huangshi 435000 People's Republic of China
| | - Tao Peng
- Department of Cardiothoracic Surgery, Huangshi Central Hospital; Affiliated Hospital of Hubei Polytechnic University; Edong Healthcare Group Huangshi 435000 People's Republic of China
| | - Jie Yan
- Department of Cardiothoracic Surgery, Huangshi Central Hospital; Affiliated Hospital of Hubei Polytechnic University; Edong Healthcare Group Huangshi 435000 People's Republic of China
| | - Zhengjun Wang
- Department of Cardiothoracic Surgery, Huangshi Central Hospital; Affiliated Hospital of Hubei Polytechnic University; Edong Healthcare Group Huangshi 435000 People's Republic of China
| | - Zhanwen Sun
- Department of Cardiothoracic Surgery, Huangshi Central Hospital; Affiliated Hospital of Hubei Polytechnic University; Edong Healthcare Group Huangshi 435000 People's Republic of China
| |
Collapse
|
26
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses. Int J Mol Sci 2016; 17:ijms17091414. [PMID: 27618894 PMCID: PMC5037693 DOI: 10.3390/ijms17091414] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/26/2022] Open
Abstract
Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant’s history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S.canadensis therapies. Current veterinary and medicinal uses of the plant are studied with an assessment of obstacles to the pharmaceutical development of S. canadensis alkaloid based therapeutics.
Collapse
|
28
|
Rahman A, Thayyullathil F, Pallichankandy S, Galadari S. Hydrogen peroxide/ceramide/Akt signaling axis play a critical role in the antileukemic potential of sanguinarine. Free Radic Biol Med 2016; 96:273-89. [PMID: 27154977 DOI: 10.1016/j.freeradbiomed.2016.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 12/29/2022]
Abstract
Dysregulation of apoptosis is a prime hallmark of leukemia. Therefore, drugs which restore the sensitivity of leukemic cells to apoptotic stimuli are promising candidates in the treatment of leukemia. Recently, we have demonstrated that sanguinarine (SNG), a benzophenanthridine alkaloid, isolated from Sanguinaria canadensis induces ROS-dependent ERK1/2 activation and autophagic cell death in human malignant glioma cells (Pallichankandy et al., 2015; [43]). In this study, we investigated the antileukemic potential of SNG in vitro, and further examined the molecular mechanisms of SNG-induced cell death. In human leukemic cells, SNG activated apoptotic cell death pathway characterized by activation of caspase cascade, DNA fragmentation and down-regulation of anti-apoptotic proteins. Importantly, we have identified a crucial role for hydrogen peroxide (H2O2)-dependent ceramide (Cer) generation in the facilitation of SNG-induced apoptosis. Additionally, we have found that SNG inhibits Akt, a key anti-apoptotic protein kinase by dephosphorylating it at Ser(473), leading to the dephosphorylation of its downstream targets, GSK3β and mTOR. Interestingly, inhibition of Cer generation, using acid sphingomyelinase inhibitor, significantly reduced the SNG-induced Akt dephosphorylation and apoptosis, whereas, activation of Cer generation using inhibitors of acid ceramidase and glucosylceramide synthase enhanced it. Furthermore, using a group of ceramide activated protein phosphatases (CAPPs) inhibitor (calyculin A, Okadaic acid, and phosphatidic acid), the involvement of protein phosphatase 1 form of CAPP in SNG-induced Akt dephosphorylation and apoptosis was demonstrated. Altogether, these results underscore a critical role for H2O2-Cer-Akt signaling axis in the antileukemic action of SNG.
Collapse
Affiliation(s)
- Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| | - Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, United Arab Emirates; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, United Arab Emirates.
| |
Collapse
|