1
|
Ding J, Chen Z, Ding W, Xiang Y, Yang J. DNA polymerase ζ suppresses the radiosensitivity of glioma cells by regulating the PI3K/AKT/mTOR pathway. Autoimmunity 2023; 56:2234101. [PMID: 37448296 DOI: 10.1080/08916934.2023.2234101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Glioblastoma is the most common glioma with high mortality and poor prognosis. Radiation resistance is one of the large challenges in the treatment of glioma. The study aimed to identify whether DNA polymerase ζ affects glioma cell radiosensitivity. The mRNA and protein levels of REV3L and REV7 were examined using quantitative real-time PCR and western blot. After REV3L and REV7 knockdown in a GBM cell line (A172), we assessed cell viability, colonies, apoptosis, and immune escape. The underlying mechanisms were evaluated using western blot and were confirmed using rescue experiments. The results showed that REV3L and REV7 levels were increased in glioma and related to poor survival. γ-ray treatment inhibited cell viability, survival fraction, and immune escape, and induced apoptosis of glioma cells from a GBM cell line, whereas knockdown of REV3L or REV7 enhanced these effects. Mechanically, silencing of REV3L or REV7 inactivated the PI3K/AKT/mTOR pathway. IGF-1 treatment abrogated the effects on cell viability, colonies, and apoptosis induced by REV3L or REV7 knocking down. Taken together, silencing of REV3L and REV7 inhibited radiation resistance via inactivating the PI3K/AKT/mTOR pathway, suggesting that targeting DNA polymerase ζ may be a new strategy to reduce the radiotherapy resistance of glioma.
Collapse
Affiliation(s)
- Jiqiang Ding
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhisheng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Weilong Ding
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yongsheng Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Junbao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel) 2023; 15:1897. [PMID: 36980782 PMCID: PMC10047301 DOI: 10.3390/cancers15061897] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
First-line cancer treatments successfully eradicate the differentiated tumour mass but are comparatively ineffective against cancer stem cells (CSCs), a self-renewing subpopulation thought to be responsible for tumour initiation, metastasis, heterogeneity, and recurrence. CSCs are thus presented as the principal target for elimination during cancer treatment. However, CSCs are challenging to drug target because of numerous intrinsic and extrinsic mechanisms of drug resistance. One such mechanism that remains relatively understudied is the DNA damage response (DDR). CSCs are presumed to possess properties that enable enhanced DNA repair efficiency relative to their highly proliferative bulk progeny, facilitating improved repair of double-strand breaks induced by radiotherapy and most chemotherapeutics. This can occur through multiple mechanisms, including increased expression and splicing fidelity of DNA repair genes, robust activation of cell cycle checkpoints, and elevated homologous recombination-mediated DNA repair. Herein, we summarise the current knowledge concerning improved genome integrity in non-transformed stem cells and CSCs, discuss therapeutic opportunities within the DDR for re-sensitising CSCs to genotoxic stressors, and consider the challenges posed regarding unbiased identification of novel DDR-directed strategies in CSCs. A better understanding of the DDR mediating chemo/radioresistance mechanisms in CSCs could lead to novel therapeutic approaches, thereby enhancing treatment efficacy in cancer patients.
Collapse
Affiliation(s)
- Matthew S. Gillespie
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
- School of Cancer Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ciara M. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| |
Collapse
|
3
|
Zhao Y, Qing B, Xu C, Zhao J, Liao Y, Cui P, Wang G, Cai S, Song Y, Cao L, Duan J. DNA Damage Response Gene-Based Subtypes Associated With Clinical Outcomes in Early-Stage Lung Adenocarcinoma. Front Mol Biosci 2022; 9:901829. [PMID: 35813819 PMCID: PMC9257065 DOI: 10.3389/fmolb.2022.901829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
DNA damage response (DDR) pathways play a crucial role in lung cancer. In this retrospective analysis, we aimed to develop a prognostic model and molecular subtype based on the expression profiles of DDR-related genes in early-stage lung adenocarcinoma (LUAD). A total of 1,785 lung adenocarcinoma samples from one RNA-seq dataset of The Cancer Genome Atlas (TCGA) and six microarray datasets of Gene Expression Omnibus (GEO) were included in the analysis. In the TCGA dataset, a DNA damage response gene (DRG)–based signature consisting of 16 genes was constructed to predict the clinical outcomes of LUAD patients. Patients in the low-DRG score group had better outcomes and lower genomic instability. Then, the same 16 genes were used to develop DRG-based molecular subtypes in the TCGA dataset to stratify early-stage LUAD into two subtypes (DRG1 and DRG2) which had significant differences in clinical outcomes. The Kappa test showed good consistency between molecular subtype and DRG (K = 0.61, p < 0.001). The DRG subtypes were significantly associated with prognosis in the six GEO datasets (pooled estimates of hazard ratio, OS: 0.48 (0.41–0.57), p < 0.01; DFS: 0.50 (0.41–0.62), p < 0.01). Furthermore, patients in the DRG2 group benefited more from adjuvant therapy than standard-of-care, which was not observed in the DRG1 group. In summary, we constructed a DRG-based molecular subtype that had the potential to predict the prognosis of early-stage LUAD and guide the selection of adjuvant therapy for early-stage LUAD patients.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Liming Cao, ; Jianchun Duan,
| | - Jing Zhao
- Burning Rock Biotech, Guangzhou, China
| | | | - Peng Cui
- Burning Rock Biotech, Guangzhou, China
| | | | | | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Liming Cao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liming Cao, ; Jianchun Duan,
| | - Jianchun Duan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
- *Correspondence: Liming Cao, ; Jianchun Duan,
| |
Collapse
|
4
|
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int J Mol Sci 2022; 23:ijms23031532. [PMID: 35163459 PMCID: PMC8835907 DOI: 10.3390/ijms23031532] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.
Collapse
Affiliation(s)
- Shaloam Dasari
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Sylvianne Njiki
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Ariane Mbemi
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
- Correspondence: ; Tel.: +1-601-979-0777
| |
Collapse
|
5
|
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021; 13:303-328. [PMID: 33776489 PMCID: PMC7987268 DOI: 10.2147/jep.s267383] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin and other platinum-based chemotherapeutic drugs have been used extensively for the treatment of human cancers such as bladder, blood, breast, cervical, esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is commonly administered intravenously as a first-line chemotherapy for patients suffering from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with cellular macromolecules and exerts its cytotoxic effects through a series of biochemical mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular mechanism of action has been associated with the induction of both intrinsic and extrinsic pathways of apoptosis resulting from the production of reactive oxygen species through lipid peroxidation, activation of various signal transduction pathways, induction of p53 signaling and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many studies have reported substantial side effects associated with cisplatin monotherapy, while others have shown substantial drug resistance in some cancer patients. Hence, new formulations and several combinational therapies with other drugs have been tested for the purpose of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive understanding of its molecular mechanisms of action in cancer therapy and discusses the therapeutic approaches to overcome cisplatin resistance and side effects.
Collapse
Affiliation(s)
- Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Shaloam Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Felicite K Noubissi
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Paresh Ray
- Department of Chemistry and Biochemistry, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
6
|
Fuchs J, Cheblal A, Gasser SM. Underappreciated Roles of DNA Polymerase δ in Replication Stress Survival. Trends Genet 2021; 37:476-487. [PMID: 33608117 DOI: 10.1016/j.tig.2020.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
Recent structural analysis of Fe-S centers in replication proteins and insights into the structure and function of DNA polymerase δ (DNA Pol δ) subunits have shed light on the key role played by this polymerase at replication forks under stress. The sequencing of cancer genomes reveals multiple point mutations that compromise the activity of POLD1, the DNA Pol δ catalytic subunit, whereas the loci encoding the accessory subunits POLD2 and POLD3 are amplified in a very high proportion of human tumors. Consistently, DNA Pol δ is key for the survival of replication stress and is involved in multiple long-patch repair pathways. Synthetic lethality arises from compromising the function and availability of the noncatalytic subunits of DNA Pol δ under conditions of replication stress, opening the door to novel therapies.
Collapse
Affiliation(s)
- Jeannette Fuchs
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Sciences, University of Basel, Klingelbergstrasse 90, CH-4056 Basel, Switzerland.
| |
Collapse
|
7
|
Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Smal MP, Makarova AV. Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance. BIOCHEMISTRY (MOSCOW) 2021; 85:869-882. [PMID: 33045948 DOI: 10.1134/s0006297920080039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many chemotherapy drugs block tumor cell division by damaging DNA. DNA polymerases eta (Pol η), iota (Pol ι), kappa (Pol κ), REV1 of the Y-family and zeta (Pol ζ) of the B-family efficiently incorporate nucleotides opposite a number of DNA lesions during translesion DNA synthesis. Primase-polymerase PrimPol and the Pol α-primase complex reinitiate DNA synthesis downstream of the damaged sites using their DNA primase activity. These enzymes can decrease the efficacy of chemotherapy drugs, contribute to the survival of tumor cells and to the progression of malignant diseases. DNA polymerases are promising targets for increasing the effectiveness of chemotherapy, and mutations and polymorphisms in some DNA polymerases can serve as additional prognostic markers in a number of oncological disorders.
Collapse
Affiliation(s)
- E S Shilkin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - E O Boldinova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - R N Chuprov-Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - M P Smal
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus.
| | - A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
8
|
Pang J, Ye L, Zhao D, Zhao D, Chen Q. Circular RNA PRMT5 confers cisplatin-resistance via miR-4458/REV3L axis in non-small-cell lung cancer. Cell Biol Int 2020; 44:2416-2426. [PMID: 32808744 DOI: 10.1002/cbin.11449] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
Abstract
Multifactor and multistep processes were elucidated to participate in the progression of non-small-cell lung cancer (NSCLC). Circular RNA 0031250 (circ-PRMT5) was a vital factor in NSCLC. However, the role of circ-PRMT5 in cisplatin (DDP)-resistance needed to be further highlighted. Expression profiles of circ-PRMT5, microRNA (miR)-4458, and EV3-like DNA-directed polymerase ζ catalytic subunit (REV3L) were detected using quantitative real-time polymerase chain reaction. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and transwell assays were performed to determine the half-maximal inhibitory concentration of DDP, cell viability, apoptosis, and invasion in vitro. Besides, the protein levels of REV3L and indicated proteins were examined by adopting western blot. Dual-luciferase reporter assay was performed to analyze the interaction between miR-4458 and circ-PRMT5 or REV3L. The functional role of circ-PRMT5 was explored using a xenograft tumor model. Levels of circ-PRMT5 and REV3L were markedly increased, while miR-4458 was downregulated in resistant tissues and cells. Knockdown of circ-PRMT5 enhanced cell apoptosis, DDP-sensitivity, and declined metastasis in NSCLC with DDP resistance. Besides, miR-4458 inhibition or REV3L upregulation could revert circ-PRMT5 absence-mediated effect on DDP-sensitivity in vitro. Mechanically, circ-PRMT5 was a sponge of miR-4458 to regulate REV3L. Importantly, circ-PRMT5 silencing could interact with DDP treatment expedite the decrease of tumor growth in vivo. Circ-PRMT5 promoted DDP resistance via REV3L by sponging miR-4458 in NSCLC, thus providing a novel therapeutic strategy for patients with NSCLC.
Collapse
Affiliation(s)
- Jun Pang
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Anesthesiology, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China.,Institute of Anorectal Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Liwen Ye
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Zhao
- Medical Examination Center, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Ding Zhao
- Emergency Department, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Qingwei Chen
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Huang F, Tanaka H, Knudsen BS, Rutgers JK. Mutant POLQ and POLZ/REV3L DNA polymerases may contribute to the favorable survival of patients with tumors with POLE mutations outside the exonuclease domain. BMC MEDICAL GENETICS 2020; 21:167. [PMID: 32838755 PMCID: PMC7446057 DOI: 10.1186/s12881-020-01089-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mutations in the exonuclease domain of POLE, a DNA polymerase associated with DNA replication and repair, lead to cancers with ultra-high mutation rates. Most studies focus on intestinal and uterine cancers with POLE mutations. These cancers exhibit a significant immune cell infiltrate and favorable prognosis. We questioned whether loss of function of other DNA polymerases can cooperate to POLE to generate the ultramutator phenotype. METHODS We used cases and data from 15 cancer types in The Cancer Genome Atlas to investigate mutation frequencies of 14 different DNA polymerases. We tested whether tumor mutation burden, patient outcome (disease-free survival) and immune cell infiltration measured by ESTIMATE can be attributed to mutations in POLQ and POLZ/REV3L. RESULTS Thirty six percent of colorectal, stomach and endometrial cancers with POLE mutations carried additional mutations in POLQ (E/Q), POLZ/REV3L (E/Z) or both DNA polymerases (E/Z/Q). The mutation burden in these tumors was significantly greater compared to POLE-only (E) mutant tumors (p < 0.001). In addition, E/Q, E/Z, and E/Q/Z mutant tumors possessed an increased frequency of mutations in the POLE exonuclease domain (p = 0.013). Colorectal, stomach and endometrial E/Q, E/Z, and E/Q/Z mutant tumors within TCGA demonstrated 100% disease-free survival, even if the POLE mutations occurred outside the exonuclease domain (p = 0.003). However, immune scores in these tumors were related to microsatellite instability (MSI) and not POLE mutation status. This suggests that the host immune response may not be the sole mechanism for prolonged disease-free survival of ultramutated tumors in this cohort. CONCLUSION Results in this study demonstrate that mutations in POLQ and REV3L in POLE mutant tumors should undergo further investigation to determine whether POLQ and REV3L mutations contribute to the ultramutator phenotype and favorable outcome of patients with POLE mutant tumors.
Collapse
Affiliation(s)
- Fangjin Huang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hisashi Tanaka
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Samuel Oschin Cancer Research Institute (SOCCI), Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Beatrice S Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Samuel Oschin Cancer Research Institute (SOCCI), Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Joanne K Rutgers
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
10
|
Sharpnack MF, Cho JH, Johnson TS, Otterson GA, Shields PG, Huang K, Carbone DP, He K. Clinical and Molecular Correlates of Tumor Mutation Burden in Non-Small Cell Lung Cancer. Lung Cancer 2020; 146:36-41. [DOI: 10.1016/j.lungcan.2020.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
|
11
|
Wang D, Zhou X, Yin J, Zhou Y. Lnc-PICSAR contributes to cisplatin resistance by miR-485-5p/REV3L axis in cutaneous squamous cell carcinoma. Open Life Sci 2020; 15:488-500. [PMID: 33817237 PMCID: PMC7874590 DOI: 10.1515/biol-2020-0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Dysregulation of long noncoding RNAs (lncRNAs) is associated with drug resistance in multiple cancers. We explored the roles of lncRNA p38 inhibited cutaneous squamous cell carcinoma-associated lincRNA (PICSAR) in cisplatin (DDP) resistance of cutaneous squamous cell carcinoma (CSCC). Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure the expression of lnc-PICSAR, miR-485-5p and reversionless 3-like (REV3L) mRNA. The cell counting kit-8 (CCK-8) assay was conducted to evaluate DDP resistance and cell viability. The transwell assay was performed to determine cell migration and invasion. Western blot assay and immunohistochemistry (IHC) staining assay were carried out to measure protein levels. The dual-luciferase reporter assay was used to investigate the association between miR-485-5p and lnc-PICSAR or REV3L. Murine xenograft model was constructed to explore the function of lnc-PICSAR in vivo. The morphology of exosomes was analyzed by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Results Lnc-PICSAR was elevated in DDP-resistant CSCC cells. Lnc-PICSAR silencing suppressed cell viability, DDP resistance, migration and invasion in DDP-resistant CSCC cells. MiR-485-5p acted as a target of lnc-PICSAR, and miR-485-5p inhibition reversed the impacts of lnc-PICSAR silencing on DDP resistance and cell progression in DDP-resistant CSCC cells. Lnc-PICSAR promoted REV3L expression via sponging miR-485-5p. Moreover, REV3L overexpression overturned the effects of lnc-PICSAR on cell progression and DDP resistance. Lnc-PICSAR knockdown suppressed DDP resistance in vivo. In addition, lnc-PICSAR was increased in the exosomes derived from CSCC patients’ serum and CSCC cells. Conclusion Lnc-PICSAR enhanced DDP resistance via miR-485-5p/REV3L axis in DDP-resistant CSCC cells. Besides, exosome-mediated lnc-PICSAR might be involved in the regulation of drug resistance in CSCC.
Collapse
Affiliation(s)
- Dan Wang
- Plastic Surgery Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Xiaoqiang Zhou
- Department of Dermatology, Medical College of Shaoguan University, Shaoguan, 512026, China
| | - Jing Yin
- Department of Interventional Vascular, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, 214000, China
| | - Yang Zhou
- Department of Dermatology, Yancheng First People's Hospital, Jiangsu Province, No.166 yulong west road, Yancheng, Jiangsu, 224001, China
| |
Collapse
|
12
|
Silvestri R, Landi S. DNA polymerases in the risk and prognosis of colorectal and pancreatic cancers. Mutagenesis 2020; 34:363-374. [PMID: 31647559 DOI: 10.1093/mutage/gez031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Human cancers arise from the alteration of genes involved in important pathways that mainly affect cell growth and proliferation. DNA replication and DNA damages recognition and repair are among these pathways and DNA polymerases that take part in these processes are frequently involved in cancer onset and progression. For example, damaging alterations within the proofreading domain of replicative polymerases, often reported in patients affected by colorectal cancer (CRC), are considered risk factors and drivers of carcinogenesis as they can lead to the accumulation of several mutations throughout the genome. Thus, replicative polymerases can be involved in cancer when losses of their physiological functions occur. On the contrary, reparative polymerases are often involved in cancer precisely because of their physiological role. In fact, their ability to repair and bypass DNA damages, which confers genome stability, can also counteract the effect of most anticancer drugs. In addition, the altered expression can characterise some type of cancers, which exacerbates this aspect. For example, all of the DNA polymerases involved a damage bypass mechanism, known as translesion synthesis, with the only exception of polymerase theta, are downregulated in CRC. Conversely, in pancreatic ductal adenocarcinoma (PDAC), most of these polymerase result upregulated. This suggests that different types of cancer can rely on different reparative polymerases to acquire drug resistance. Here we will examine all of the aspects that link DNA polymerases with CRC and PDAC.
Collapse
Affiliation(s)
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
MiR-204 reduces cisplatin resistance in non-small cell lung cancer through suppression of the caveolin-1/AKT/Bad pathway. Aging (Albany NY) 2020; 11:2138-2150. [PMID: 30981205 PMCID: PMC6503872 DOI: 10.18632/aging.101907] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common and lethal human malignant tumor worldwide. Platinum-based chemotherapy is still the mainstay of treatment for NSCLC. However, long-term chemotherapy usually induces serious drug resistance in NSCLC cells. Accordingly, treatment strategies that reverse the resistance of NSCLC cells against platinum-based drugs may have considerable clinical value. In the present study, we observed significant upregulation of CAV-1 expression and a significant decrease of miR-204 expression in cisplatin-resistant A549 (CR-A549) and cisplatin-resistant PC9 (CR-PC9) cells compared to their parental A549 and PC9 cells. Furthermore, we demonstrated that the downregulation of miR-204 expression was responsible for CAV-1 overexpression in these cisplatin-resistant NSCLC cells. We then found that enforced expression of miR-204 can resensitize CR-A549 and CR-PC9 cells to cisplatin-induced mitochondrial apoptosis through suppression of the caveolin-1/AKT/Bad pathway. We demonstrated that dysregulation of miR-204/caveolin-1 axis is an important mechanism for NSCLC cells to develop the chemoresistance.
Collapse
|
14
|
Agulló-Ortuño MT, García-Ruiz I, Díaz-García CV, Enguita AB, Pardo-Marqués V, Prieto-García E, Ponce S, Iglesias L, Zugazagoitia J, López-Martín JA, Paz-Ares L, Nuñez JA. Blood mRNA expression of REV3L and TYMS as potential predictive biomarkers from platinum-based chemotherapy plus pemetrexed in non-small cell lung cancer patients. Cancer Chemother Pharmacol 2019; 85:525-535. [PMID: 31832811 DOI: 10.1007/s00280-019-04008-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/04/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Therapeutic options for cancer patients have increased in the last years, although drugs resistance problem remains unresolved. Genetic background in individual susceptibility to cancer treatment could influence the therapy responses. The aim of this study was to explore the feasibility of using blood 4 genes (AEG-1, BRCA-1, REV3L and TYMS) expression levels as a predictor of the efficacy of pemetrexed therapy in patients with advanced non-small cell lung cancer. METHODS Sixteen patients from the Medical Oncology Department at "12 de Octubre" Hospital, were included in the study. Total mRNA was isolated from blood samples, and gene expression was analyzed by RT-qPCR. A panel of lung tumor cell lines were used in cell proliferation tests and siRNA-mediated silencing assays. RESULTS Similarity between blood gene expression levels and protein expression in matched tumor tissue was observed in 54.54% (REV3L) and 81.81% (TYMS) of cases. Gene expression of REV3L and TYMS in blood correlated directly and inversely, respectively, with progression-free survival and overall survival in the patients from our cohort. In tumor cell lines, the knockdown of REV3L conferred resistance to pemetrexed treatment, and the TYMS silencing increased the pemetrexed sensitivity of tumor cells. CONCLUSIONS The use of peripheral blood samples for expression quantification of interest genes is an affordable method with promising results in the evaluation of response to pemetrexed treatment. Therefore, expression levels of REV3L and TYMS genes might be used as predictive biomarkers in advanced NSCLC patients.
Collapse
Affiliation(s)
- M Teresa Agulló-Ortuño
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Avda de Córdoba s/n, 28041, Madrid, Spain. .,Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,Biomedical Research Networking Centre: Oncology (CIBERONC), Instituto de Salud Carlos III, C. Monforte de Lemos, 3, 28029, Madrid, Spain.
| | - Inmaculada García-Ruiz
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Avda de Córdoba s/n, 28041, Madrid, Spain
| | - C Vanesa Díaz-García
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Ana B Enguita
- Pathology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Virginia Pardo-Marqués
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Elena Prieto-García
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Santiago Ponce
- Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Lara Iglesias
- Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Jon Zugazagoitia
- Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - José A López-Martín
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Avda de Córdoba s/n, 28041, Madrid, Spain.,Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| | - Luis Paz-Ares
- Laboratory of Clinical and Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Avda de Córdoba s/n, 28041, Madrid, Spain.,Lung Cancer Group, Clinical Research Program, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Biomedical Research Networking Centre: Oncology (CIBERONC), Instituto de Salud Carlos III, C. Monforte de Lemos, 3, 28029, Madrid, Spain.,Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain.,Medicine Department, Facultad de Medicina y Cirugía, Universidad Complutense de Madrid (UCM), Avda de Séneca, 2, 28040, Madrid, Spain
| | - Juan A Nuñez
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Avda de Córdoba s/n, 28041, Madrid, Spain
| |
Collapse
|
15
|
Ghandhi SA, Shuryak I, Morton SR, Amundson SA, Brenner DJ. New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Sci Rep 2019; 9:18441. [PMID: 31804590 PMCID: PMC6895166 DOI: 10.1038/s41598-019-54967-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
In the event of a nuclear attack or large-scale radiation event, there would be an urgent need for assessing the dose to which hundreds or thousands of individuals were exposed. Biodosimetry approaches are being developed to address this need, including transcriptomics. Studies have identified many genes with potential for biodosimetry, but, to date most have focused on classification of samples by exposure levels, rather than dose reconstruction. We report here a proof-of-principle study applying new methods to select radiation-responsive genes to generate quantitative, rather than categorical, radiation dose reconstructions based on a blood sample. We used a new normalization method to reduce effects of variability of signal intensity in unirradiated samples across studies; developed a quantitative dose-reconstruction method that is generally under-utilized compared to categorical methods; and combined these to determine a gene set as a reconstructor. Our dose-reconstruction biomarker was trained using two data sets and tested on two independent ones. It was able to reconstruct dose up to 4.5 Gy with root mean squared error (RMSE) of ± 0.35 Gy on a test dataset using the same platform, and up to 6.0 Gy with RMSE of ± 1.74 Gy on a test set using a different platform.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA.
| | - Igor Shuryak
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Shad R Morton
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Sally A Amundson
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - David J Brenner
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| |
Collapse
|
16
|
Gomes LR, Rocha CRR, Martins DJ, Fiore APZP, Kinker GS, Bruni-Cardoso A, Menck CFM. ATR mediates cisplatin resistance in 3D-cultured breast cancer cells via translesion DNA synthesis modulation. Cell Death Dis 2019; 10:459. [PMID: 31189884 PMCID: PMC6561919 DOI: 10.1038/s41419-019-1689-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Tissue architecture and cell–extracellular matrix (cell–ECM) interaction determine the organ specificity; however, the influences of these factors on anticancer drugs preclinical studies are highly neglected. For considering such aspects, three-dimensional (3D) cell culture models are relevant tools for accurate analysis of cellular responses to chemotherapy. Here we compared the MCF-7 breast cancer cells responses to cisplatin in traditional two-dimensional (2D) and in 3D-reconstituted basement membrane (3D-rBM) cell culture models. The results showed a substantial increase of cisplatin resistance mediated by 3D microenvironment. This phenotype was independent of p53 status and autophagy activity and was also observed for other cellular models, including lung cancer cells. Such strong decrease on cellular sensitivity was not due to differences on drug-induced DNA damage, since similar levels of γ-H2AX and cisplatin–DNA adducts were detected under both conditions. However, the processing of these cisplatin-induced DNA lesions was very different in 2D and 3D cultures. Unlike cells in monolayer, cisplatin-induced DNA damage is persistent in 3D-cultured cells, which, consequently, led to high senescence induction. Moreover, only 3D-cultured cells were able to progress through S cell cycle phase, with unaffected replication fork progression, due to the upregulation of translesion (TLS) DNA polymerase expression and activation of the ATR-Chk1 pathway. Co-treatment with VE-821, a pharmacological inhibitor of ATR, blocked the 3D-mediated changes on cisplatin response, including low sensitivity and high TLS capacity. In addition, ATR inhibition also reverted induction of REV3L by cisplatin treatment. By using REV3L-deficient cells, we showed that this TLS DNA polymerase is essential for the cisplatin sensitization effect mediated by VE-821. Altogether, our results demonstrate that 3D-cell architecture-associated resistance to cisplatin is due to an efficient induction of REV3L and TLS, dependent of ATR. Thus co-treatment with ATR inhibitors might be a promising strategy for enhancement of cisplatin treatment efficiency in breast cancer patients.
Collapse
Affiliation(s)
- Luciana Rodrigues Gomes
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil. .,Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil.
| | - Clarissa Ribeiro Reily Rocha
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Departamento de Oncologia Clínica e Experimental, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Davi Jardim Martins
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Gabriela Sarti Kinker
- Departamento de Fisiologia, Instituto de Biologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
17
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
18
|
Chen X, Zhu H, Ye W, Cui Y, Chen M. MicroRNA‑29a enhances cisplatin sensitivity in non‑small cell lung cancer through the regulation of REV3L. Mol Med Rep 2018; 19:831-840. [PMID: 30535450 PMCID: PMC6323222 DOI: 10.3892/mmr.2018.9723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
Cisplatin-based chemotherapy may greatly enhance patient prognosis; however, chemotherapy resistance remains an obstacle to curing patients with non-small cell lung cancer (NSCLC). The aim of the present study was to explore the microRNAs (miRs) that could regulate cisplatin sensitivity and provide a potential treatment method for cisplatin resistance in clinical. Results from the present study revealed that miR-29a overexpression enhanced and miR-29a inhibition reduced the sensitivity of two NSCLC cell lines, A549 and H1650, to cisplatin treatment. In addition, reduced miR-29a expression levels were observed in cisplatin-resistant A549 cells (A549rCDDP), and increased expression of miR-29a augmented cisplatin-induced inhibition of proliferation and apoptosis in A549rCDDP cells. These data indicated that miR-29a expression may be involved in the development of cisplatin resistance. miR-29a was revealed to negatively regulate REV3-like DNA-directed polymerase ζ catalytic subunit (REV3L) expression in both A549 and H1650 cells; elevated expression of REV3L in A549rCDDP cells was also detected. REV3L encodes the catalytic subunit of DNA polymerase ζ and was hypothesized, based on results from the online tool TargetScan 7.1, to be a target gene of miR-29a; this was confirmed with a dual luciferase assay. Cells treated with a very low concentration of cisplatin exhibited a significant reduction in proliferation and cell cycle arrest at the G2/M phase in REV3L-knockdown as well as in miR-29a-upregulated A549 cells. Notably, reduced miR-29a expression and an increase in REV3L mRNA expression were observed in tumor tissues from patients with NSCLC. Additionally, a negative correlation between miR-29a and REV3L mRNA expression levels in tumor tissues from patients with NSCLC was observed; low expression of miR-29a and high expression of REV3L were closely associated with an advanced tumor-node-metastasis classification. The results of the present study suggested a pivotal role of miR-29a in mediating NSCLC cell sensitivity towards cisplatin through the regulation of REV3L.
Collapse
Affiliation(s)
- Xialin Chen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Hong Zhu
- Department of Radiation Oncology, Minhang Branch of Cancer Hospital of Fudan University, Shanghai 200240, P.R. China
| | - Wanli Ye
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Gusu, Suzhou, Jiangsu 215000, P.R. China
| | - Yayun Cui
- Department of Radiation Oncology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Ming Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Gongshu, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
19
|
Kong L, Murata MM, Digman MA. Absence of REV3L promotes p53-regulated cancer cell metabolism in cisplatin-treated lung carcinoma cells. Biochem Biophys Res Commun 2018; 496:199-204. [PMID: 29307819 DOI: 10.1016/j.bbrc.2018.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022]
Abstract
Lung cancer is one of the deadliest cancers in the world because of chemo-resistance to the commonly used cisplatin-based treatments. The use of low fidelity DNA polymerases in the translesional synthesis (TLS) DNA damage response pathway that repairs lesions caused by cisplatin also presents a mutational carcinogenic burden on cells that needs to be regulated by the tumor suppressor protein p53. However, there is much debate over the roles of the reversionless 3-like (REV3L) protein responsible for TLS and p53 in regulating cancer cell metabolism. In this study, the fluorescence lifetime of the metabolic coenzyme NADH reveals that the absence of REV3L can promote the p53-mediated upregulation of oxidative phosphorylation in cisplatin-treated H1299 lung carcinoma cells and increases cancer cell sensitivity to this platinum-based chemotherapy. These results demonstrate a previously unrecognized relationship between p53 and REV3L in cancer cell metabolism and may lead to improvements in chemotherapy treatment plans that reduce cisplatin resistance in lung cancer.
Collapse
Affiliation(s)
- Linghao Kong
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA; University High School, Irvine, CA 92612, USA
| | - Michael M Murata
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Arivazhagan R, Lee J, Bayarsaikhan D, Kwak P, Son M, Byun K, Salekdeh GH, Lee B. MicroRNA-340 inhibits the proliferation and promotes the apoptosis of colon cancer cells by modulating REV3L. Oncotarget 2017; 9:5155-5168. [PMID: 29435169 PMCID: PMC5797040 DOI: 10.18632/oncotarget.23703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
DNA Directed Polymerase Zeta Catalytic Subunit (REV3L) has recently emerged as an important oncogene. Although the expressions of REV3L are similar in normal and cancer cells, several mutations in REV3L have been shown to play important roles in cancer. These mutations cause proteins misfolding and mislocalization, which in turn alters their interactions and biological functions. miRNAs play important regulatory roles during the progression and metastasis of several human cancers. This study was undertaken to determine how changes in the location and interactions of REV3L regulate colon cancer progression. REV3L protein mislocalization confirmed from the immunostaining results and the known interactions of REV3L was found to be broken as seen from the PLA assay results. The mislocalized REV3L might interact with new proteins partners in the cytoplasm which in turn may play role in regulating colon cancer progression. hsa-miR-340 (miR-340), a microRNA down-regulated in colon cancer, was used to bind to and downregulate REV3L, and found to control the proliferation and induce the apoptosis of colon cancer cells (HCT-116 and DLD-1) via the MAPK pathway. Furthermore, this down-regulation of REV3L also diminished colon cancer cell migration, and down-regulated MMP-2 and MMP-9. Combined treatment of colon cancer cells with miR-340 and 5-FU enhanced the inhibitory effects of 5-FU. In addition, in vivo experiments conducted on nude mice revealed tumor sizes were smaller in a HCT-116-miR-340 injected group than in a HCT-116-pCMV injected group. Our findings suggest mutations in REV3L causes protein mislocalization to the cytoplasm, breaking its interaction and is believed to form new protein interactions in cytoplasm contributing to colon cancer progression. Accordingly, microRNA-340 appears to be a good candidate for colon cancer therapy.
Collapse
Affiliation(s)
- Roshini Arivazhagan
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Jaesuk Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Delger Bayarsaikhan
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Peter Kwak
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Myeongjoo Son
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea
| | - Kyunghee Byun
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Molecular Sciences, Macquarie University Sydney, New South Wales, Australia
| | - Bonghee Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
21
|
Hadjadj D, Kim SJ, Denecker T, Driss LB, Cadoret JC, Maric C, Baldacci G, Fauchereau F. A hypothesis-driven approach identifies CDK4 and CDK6 inhibitors as candidate drugs for treatments of adrenocortical carcinomas. Aging (Albany NY) 2017; 9:2695-2716. [PMID: 29283884 PMCID: PMC5764399 DOI: 10.18632/aging.101356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/17/2017] [Indexed: 12/17/2022]
Abstract
High proliferation rate and high mutation density are both indicators of poor prognosis in adrenocortical carcinomas. We performed a hypothesis-driven association study between clinical features in adrenocortical carcinomas and the expression levels of 136 genes involved in DNA metabolism and G1/S phase transition. In 79 samples downloaded from The Cancer Genome Atlas portal, high Cyclin Dependent Kinase 6 (CDK6) mRNA levels gave the most significant association with shorter time to relapse and poorer survival of patients. A hierarchical clustering approach assembled most tumors with high levels of CDK6 mRNA into one group. These tumors tend to cumulate mutations activating the Wnt/β-catenin pathway and show reduced MIR506 expression. Actually, the level of MIR506 RNA is inversely correlated with the levels of both CDK6 and CTNNB1 (encoding β-catenin). Together these results indicate that high CDK6 expression is found in aggressive tumors with activated Wnt/β-catenin pathway. Thus we tested the impact of Food and Drug Administration-approved CDK4 and CDK6 inhibitors, namely palbociclib and ribociclib, on SW-13 and NCI-H295R cells. While both drugs reduced viability and induced senescence in SW-13 cells, only palbociclib was effective on the retinoblastoma protein (pRB)-negative NCI-H295R cells, by inducing apoptosis. In NCI-H295R cells, palbociclib induced an increase of the active form of Glycogen Synthase Kinase 3β (GSK3β) responsible for the reduced amount of active β-catenin, and altered the amount of AXIN2 mRNA. Taken together, these data underline the impact of CDK4 and CDK6 inhibitors in treating adrenocortical carcinomas.
Collapse
Affiliation(s)
- Djihad Hadjadj
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Su-Jung Kim
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Thomas Denecker
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Laura Ben Driss
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Jean-Charles Cadoret
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Chrystelle Maric
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Giuseppe Baldacci
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| | - Fabien Fauchereau
- Pathologies de la Réplication de l'ADN, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
- ePôle de Génoinformatique, Université Paris-Diderot – Paris 7, Sorbonne Paris Cité, CNRS UMR7592, Institut Jacques-Monod, 75205 Paris Cedex 13, France
| |
Collapse
|
22
|
|
23
|
Can the response to a platinum-based therapy be predicted by the DNA repair status in non-small cell lung cancer? Cancer Treat Rev 2016; 48:8-19. [DOI: 10.1016/j.ctrv.2016.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
|
24
|
Samuel P, Pink RC, Brooks SA, Carter DR. miRNAs and ovarian cancer: a miRiad of mechanisms to induce cisplatin drug resistance. Expert Rev Anticancer Ther 2015; 16:57-70. [PMID: 26567444 DOI: 10.1586/14737140.2016.1121107] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ovarian cancer is the most aggressive gynecological cancer. One reason for the low 5-year survival rate of under 40% is that ovarian tumors usually acquire resistance to the platinum-based compounds used to treat them. Resistance to one such compound, cisplatin, can arise via numerous mechanisms that can be categorized as pre-, post-, on- or off-target. Pre-target mechanisms prevent accumulation of cisplatin in the cell, on-target mechanisms allow DNA damage to be repaired more efficiently, post-target mechanisms prevent the damage from inducing apoptosis and off-target mechanisms increase resistance via unrelated compensatory mechanisms. miRNAs are short non-coding RNAs that influence cellular function by repressing gene expression. Here we describe how miRNAs can induce cisplatin resistance in ovarian cancer cells via pre-, post-, on- and off-target mechanisms. A better understanding of how miRNAs feed into the mechanisms of drug resistance will inform the rational design of combination therapies for ovarian cancer.
Collapse
Affiliation(s)
- Priya Samuel
- a Department of Biological and Medical Sciences, Faculty of Health and Life Sciences , Oxford Brookes University , Oxford , UK
| | - Ryan Charles Pink
- a Department of Biological and Medical Sciences, Faculty of Health and Life Sciences , Oxford Brookes University , Oxford , UK
| | - Susan Ann Brooks
- a Department of Biological and Medical Sciences, Faculty of Health and Life Sciences , Oxford Brookes University , Oxford , UK
| | - David RaulFrancisco Carter
- a Department of Biological and Medical Sciences, Faculty of Health and Life Sciences , Oxford Brookes University , Oxford , UK
| |
Collapse
|