1
|
Zhu H, Liu L, Yang M, Zhu X, Cai J, Huang H. Nephroblastoma Overexpressed Protein (NOV/CCN3) Elevated Expression of Inflammation Regulators in a Model of Sepsis-Induced Lung Injury. Bull Exp Biol Med 2025; 178:453-459. [PMID: 40156746 DOI: 10.1007/s10517-025-06355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 04/01/2025]
Abstract
Nephroblastoma overexpressed protein (NOV, also named CCN3), a member of the CCN (Cy61, CTGF, and NOV) family, is a critical biological marker of the severity of acute respiratory distress syndrome (ARDS). However, no evidence has been presented that CCN3 directly affects acute lung injury (ALI) or ARDS. Intratracheal infusion of LPS is an established method to simulate sepsis and induce ALI. To examine the effect of CCN3 on ALI, we developed in vivo and in vitro models of this disease on mice and type II alveolar epithelial A549 cells, respectively. To further clarify the role of CCN3 in ALI, we constructed a CCN3 overexpression model based on plasmid transfection. The results showed that CCN3 expression was up-regulated in LPS-induced ALI both in vivo and in vitro; this effect was time- and dose-dependent. ELISA revealed that overexpression of CCN3 increased the levels of proinflammatory cytokines IL-1β and TNFα. Flow cytometry and Western blotting showed that overexpression of CCN3 increased the expression of proapoptotic protein Bax and decreased the expression of anti-apoptotic protein Bcl-2, thereby promoting apoptosis of A549 cells. The results suggest that CCN3 antagonists can inhibit progression of inflammation and the development of apoptosis in lung epithelial cells, thereby exerting a possible therapeutic effect in ALI.
Collapse
Affiliation(s)
- H Zhu
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - L Liu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - M Yang
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - X Zhu
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - J Cai
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - H Huang
- Department of Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Zhou F, Wang L, Ge H, Zhang D, Wang W. H3K27 acetylation activated-CD109 evokes 5-fluorouracil resistance in gastric cancer via the JNK/MAPK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2857-2866. [PMID: 37661780 DOI: 10.1002/tox.23919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023]
Abstract
Drug resistance is a considerable obstacle to gastric cancer (GC) treatment. The current work aimed to elucidate the functional mechanism of CD109 in 5-fluorouracil (5-FU) resistance in GC. In this study, we demonstrated that CD109 was extremely heightened in 5-FU-resistant GC cells. CD109 deficiency lessened the IC50 value, impaired cell viability and metastatic capability, and induced cell apoptosis after 5-FU treatment in cells. In addition, we found that PAX5 bound p300 increased the enrichment of H3K27ac at the promoter region of the CD109 gene, which resulted in the upregulation of CD109 in GC. Moreover, we also revealed that CD109 triggered 5-FU resistance via activating the JNK/MAPK signaling. Blockage of JNK/MAPK signaling using JNK inhibitor, SP600125, abolished CD109 upregulation-induced changes of IC50 values, cell viability, metastasis and apoptosis in NCI-N87/5-FU and SNU-1/5-FU cells. Importantly, CD109 silencing enhanced the therapeutic efficacy of 5-FU, leading to reduced tumor growth in vivo. In conclusion, our results unveiled that H3K27 acetylation activated-CD109 enhanced 5-FU resistance of GC cells via modulating the JNK/MAPK signaling pathway, which might provide an attractive therapeutic target for GC.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Gastric Surgery, The Affiliated Shuyang Hospital of Xuzhou Medical University, Xuzhou, China
| | - Leiming Wang
- Department of Gastric Surgery, The Affiliated Shuyang Hospital of Xuzhou Medical University, Xuzhou, China
| | - Han Ge
- Department of Gastric Surgery, Jiangsu Provincial People's Hospital, Nanjing, China
| | - Diancai Zhang
- Department of Gastric Surgery, Jiangsu Provincial People's Hospital, Nanjing, China
| | - Weizhi Wang
- Department of Gastric Surgery, Jiangsu Provincial People's Hospital, Nanjing, China
| |
Collapse
|
3
|
Mclaughlin M, Hesketh KL, Horgan SL, Florida-James G, Cocks M, Strauss JA, Ross M. Ex Vivo treatment of coronary artery endothelial cells with serum post-exercise training offers limited protection against in vitro exposure to FEC-T chemotherapy. Front Physiol 2023; 14:1079983. [PMID: 36818448 PMCID: PMC9932712 DOI: 10.3389/fphys.2023.1079983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Background: Chemotherapy treatment for breast cancer associates with well-documented cardiovascular detriments. Exercise has shown promise as a potentially protective intervention against cardiac toxicity. However, there is a paucity of evidence for the benefits of exercise on the vasculature. Objectives: This study aimed to determine the effects of chemotherapy on the vascular endothelium; and if there are protective effects of serological alterations elicited by an exercise training intervention. Methods and Results: 15 women participated in a 12-week home-based exercise intervention consisting of three high-intensity interval sessions per week. Human coronary artery endothelial cells (HCAEC) were exposed to physiological concentrations of 5-fluorouracil, epirubicin, cyclophosphamide (FEC) and docetaxel to determine a dose-response. Twenty-4 hours prior to FEC and docetaxel exposure, HCAECs were preconditioned with serum collected pre- and post-training. Annexin V binding and cleaved caspase-3 were assessed using flow cytometry and wound repair by scratch assays. Chemotherapy exposure increased HCAEC Annexin V binding, cleaved caspase-3 expression in a dose-dependent manner; and inhibited wound repair. Compared to pre-training serum, conditioning HCAECs with post-training serum, reduced Annexin V binding (42% vs. 30%, p = 0.01) when exposed to FEC. For docetaxel, there were no within-group differences (pre-vs post-exercise) for Annexin V binding or cleaved caspase-3 expression. There was a protective effect of post-training serum on wound repair for 5-flurouracil (p = 0.03) only. Conclusion: FEC-T chemotherapy drugs cause significant damage and dysfunction of endothelial cells. Preconditioning with serum collected after an exercise training intervention, elicited some protection against the usual toxicity of FEC-T, when compared to control serum.
Collapse
Affiliation(s)
- Marie Mclaughlin
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom,School of Health and Life Sciences, University of the West of Scotland, Lanarkshire, United Kingdom
| | - Katie L. Hesketh
- Liverpool John Moores University, School of Sport and Exercise Sciences, Liverpool, United Kingdom
| | - Sarah L. Horgan
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | | | - Matthew Cocks
- Liverpool John Moores University, School of Sport and Exercise Sciences, Liverpool, United Kingdom
| | - Juliette A. Strauss
- Liverpool John Moores University, School of Sport and Exercise Sciences, Liverpool, United Kingdom
| | - Mark Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom,School of Energy, Geoscience, Infrastructure and Society, Heriot Watt University, Edinburgh, United Kingdom,*Correspondence: Mark Ross,
| |
Collapse
|
4
|
Yan X, Yan W, Fu X, Xu Y, Zhu N, Qiu C, Bu M, Shen Y, Chen M. Single nucleotide mutation changes the capability of CCN3 in osteosarcoma cell invasion and differentiation. Transl Oncol 2022; 24:101485. [PMID: 35858494 PMCID: PMC9294644 DOI: 10.1016/j.tranon.2022.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
The frequency of G-to-A mutation in CCN3 is higher than para-carcinoma tissue. Mutation in CCN3 change its capacity of osteosarcoma invasion and differentiation. Mutant CCN3 decrease nuclear ratio of glycosylated/non-glycosylated isoforms.
This study aimed to identify significant mutations in CCN3 gene in osteosarcoma, and to explore the influence of this gene on cell invasion and differentiation and the underlying mechanism. Sanger sequencing was used to identify CCN3 gene sequence in human osteosarcoma cell lines, peripheral blood mononuclear cells (PBMC), and osteosarcoma tissues. Wild-type and mutant CCN3 (mCCN3) were ectopically expressed by lentivirus in human osteosarcoma cell lines. Tumor cell invasion was measured by trans-well assay. Osteogenic differentiation was induced by osteogenic differentiating medium and evaluated based on alkaline phosphatase activity and collagen type I alpha 1 chain and osteocalcin expression. Western blotting was used to detect protein levels of CCN3 and mCCN3 in cytoplasmic, nuclear and secreted fractions of cells. A G-to-A single nucleotide mutation in the coding region of CCN3 was found in both osteosarcoma cells and tissues. The frequency of this mutation in osteosarcoma tissue was much higher than that in para-carcinoma tissue and PBMC of healthy people. This nucleotide mutation decreased nuclear glycosylated full length protein level of CCN3 and affected osteosarcoma cell invasion and differentiation. A lower nuclear ratio of glycosylated/non-glycosylated isoforms accounted for the different behavior of mCCN3 compared with CCN3. The G-to-A mutation identified in CCN3 resulted in differential glycosylated full-length protein levels and altered the functional role of CCN3 in osteosarcoma cell invasion and differentiation.
Collapse
Affiliation(s)
- Xuejing Yan
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, China
| | - Wei Yan
- Department of Pathology, Xijing Hospital of Fourth Military Medical University, Xi'an, China; Department of Surgery, The University of Michigan, MI, USA.
| | - Xin Fu
- Department of Pathology, Xijing Hospital of Fourth Military Medical University, Xi'an, China
| | - Yuqiao Xu
- Department of Pathology, Xijing Hospital of Fourth Military Medical University, Xi'an, China
| | - Ning Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, China
| | - Chuan Qiu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, China
| | - Mengmeng Bu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, China
| | - Yan Shen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, China
| | - Meihong Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, China.
| |
Collapse
|
5
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
6
|
Siddiqui S, Pandey V, Ali S, Singh A, Sharma D, Yadav M, Raikwar A. CCN3 Proteins as a diagnostic marker in osteosarcoma patients: A case control study. Cancer Treat Res Commun 2021; 28:100381. [PMID: 33946014 DOI: 10.1016/j.ctarc.2021.100381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Osteosarcoma is the most prevalent type of primary bone sarcoma and is the major cause of deaths associated with cancer in children and adolescents. Despite novel and innovative therapies, early diagnosis of the osteosarcoma is still critically needed. Our study aimed to analyse the CCN3 proteins as a diagnostic marker and correlate their expression level with the severity of primary osteosarcoma patients. METHODS In this prospective case-control study, after ethical clearance and informed consent, a total of 35 cases with primary osteosarcoma and ten otherwise healthy controls were enroled according to our strict inclusion-exclusion criteria. Tissue samples were collected during biopsy procedures in suspected cases and in controls during bone grafting procedures. The CCN3 expression level was measured by the western blotting assay. The clinic-radiological examinations were done in cases and graded according to the AJCC classification. Comparisons of CCN3 expression were measured between cases and controls, followed by correlation of their expression level with severity/grade of osteosarcoma in cases. RESULTS All the demographic parameters showed insignificant differences. The CCN3 protein expressions were significantly upregulated in tissue samples of osteosarcoma patients (cases) compared to controls. The mean difference (p<0.0001) in CCN3 protein expression between cases' and controls' bony tissues was significant but showed insignificant correlation with the different grades of osteosarcoma. CONCLUSIONS The upregulated CCN3 protein expression in osteosarcoma tissue along with significant differential manifestation in accordance with different grades of osteosarcoma make CCN3 suitable for a potential diagnostic biomarker. However, the author recommends further extensive multi-centric collaborative studies to increase our study reliability and generalizability.
Collapse
Affiliation(s)
- Salma Siddiqui
- Department of Biochemistry, King George's Medical University, Lucknow, U.P., India
| | - Vaishnavi Pandey
- Department of Paediatric Orthopaedic, King George's Medical University, Lucknow U.P., India
| | - Sabir Ali
- Department of Paediatric Orthopaedic, King George's Medical University, Lucknow U.P., India
| | - Ajai Singh
- Department of Paediatric Orthopaedic, King George's Medical University, Lucknow U.P., India.
| | - Dilutpal Sharma
- Department of Biochemistry, King George's Medical University, Lucknow, U.P., India
| | - Manish Yadav
- Department of Paediatric Orthopaedic, King George's Medical University, Lucknow U.P., India
| | - Archana Raikwar
- Department of Paediatric Orthopaedic, King George's Medical University, Lucknow U.P., India
| |
Collapse
|
7
|
Yin Y, Gao H, Guo J, Gao Y. [Effect of Circular RNA UBAP2 Silencing on Proliferation and Invasion of Human Lung Cancer A549 Cells and Its Mechanism]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 20:800-807. [PMID: 29277177 PMCID: PMC5973395 DOI: 10.3779/j.issn.1009-3419.2017.12.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND It has been proven that circular RNAs (circRNAs) play an important role on the process of many types cancer and circUBAP2 was a cancer-promoting circRNA, however, the role and mechanism in lung cancer was not clear. The aim of this study is to investigate the effects of circUBAP2 on cell proliferation and invasion of human lung cancer A549 cells. METHODS CCK-8 assay was employed to detect the effect of circUBAP2 sliencing on cell proliferation of A549 cells. Fow cytometry was applied to detect the impact of circUBAP2 sliencing on cell cycle and cell anoikis, and Transwell invasion assay was applied to determine cell invasion of A549 cells. We also employed Western blot and Real-time PCR to determine the expressions of CDK6, cyclin D1, p27 and c-IAP1, Bcl-2, Survivin, Bax, FAK, Rac1 and MMP2, and the activities of JNK and ERK1/2, luciferase report gene assay was used to detect the targets. RESULTS CCK-8 assay showed that the inhibition of cell proliferation in the circUBAP2-siRNA group compared to untreated group and siRNA control group. Results of cell cycle detected by flow cytometry showed that cell cycle arrestd at G0/G1 after circUBAP2 silencing, cell apoptosis rate increased also. We also found that after circUBAP2 silencing, cell invasion of A549 cells was significantly inhibited. Western blot and Real-time PCR results showed that expression of CDK6, cyclin D1, c-IAP1, Bcl-2, Survivin, FAK, Rac1 and MMP2 were down-regulated, and the expression of p27 and Bax were up-regulated. Moreover, the activities of JNK and ERK1/2 were inhibited because of circUBAP2 silencing, the target genes were miR-339-5p, miR-96-3p and miR-135b-3p. CONCLUSIONS CircUBAP2 plays an important role in the proliferation and invasion of human lung cancer. Silencing of circUBAP2 might be a novel target for molecular targeted therapy of patients with lung cancer.
.
Collapse
Affiliation(s)
- Yujing Yin
- Department of Pathology, Baotou Cancer Hospital, Baotou 014030, China
| | - Hui Gao
- Department of Pathology, Baotou Cancer Hospital, Baotou 014030, China
| | - Jia Guo
- Department of Pathology, Baotou Cancer Hospital, Baotou 014030, China
| | - Yang Gao
- Department of Pathology, Baotou Cancer Hospital, Baotou 014030, China
| |
Collapse
|
8
|
Lin X, Xie J, Sun S, Ren X, Kong J, Ji P. Toll-Like Receptor 4 (TLR4) Stimulates Synovial Injury of Temporomandibular Joint in Rats Through the Activation of p38 Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway. Med Sci Monit 2018; 24:4405-4412. [PMID: 29944647 PMCID: PMC6053946 DOI: 10.12659/msm.908526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background Synovitis is an important disease that cause intractable pain in temporomandibular joint (TMJ), and the inflammation process played a crucial role in the initiation and development of temporomandibular joint disorder. A series of investigations suggested that the increasing expression of interleukin-(IL) 1β secreted by synovial lining cells plays an important role in synovial inflammation and cartilage destruction in TMJ. In this present study, we investigated the signaling pathways which regulate the expression of IL-1β. Material/Methods The occlusal interference animal model was created to induce synovial injury. Forty-eight rats were divided into 4 groups: 1) control group, 2) occlusal interference group, 3) TAK-242 (a specific inhibitor targeting the Toll-like receptor (TLR)-4) group, and 4) SB203580 (a specific inhibitor targeting the p38) group. The inflammation changes were observed, and the expression of p38 and IL-1β in the synovial membranes were assayed. Results The results showed that downstream p38 MAPK (mitogen-activated protein kinase) signaling was triggered following the activation of TLR4. Moreover, the injection of SB203580 could inhibit the inflammatory reactions and the increased expression of IL-1β at both mRNA and protein levels. Conclusions The results prompted us that TLR4 may stimulates synovial inflammatory reactions and increased expression of IL-1β in rats through the activation of p38 MAPK signaling pathway, p38 was an important mediator in the mechanisms of the initiation and development of synovial injury by regulating the expression of IL-1β in synovial membranes.
Collapse
Affiliation(s)
- Xuefen Lin
- Key Laboratory of Oral Biomedicine of Shandong Province, Stomatological Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jianli Xie
- Jinan Stomatological Hospital, Number 101, Jinan, Shandong, China (mainland)
| | - Shuzhen Sun
- Jinan Stomatological Hospital, Number 101, Jinan, Shandong, China (mainland)
| | - Xusheng Ren
- Jinan Stomatological Hospital, Number 101, Jinan, Shandong, China (mainland)
| | - Jingjing Kong
- Jinan Stomatological Hospital, Number 101, Jinan, Shandong, China (mainland)
| | - Ping Ji
- Key Laboratory of Oral Biomedicine of Shandong Province, Stomatological Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
9
|
Zhang M, Xin W, Yi Z, Li Y, Liu Y, Zhang H, Chen H, Chen X, Tan S, Zhu D. Human biliverdin reductase regulates the molecular mechanism underlying cancer development. J Cell Biochem 2017; 119:1337-1345. [DOI: 10.1002/jcb.26285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Min Zhang
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical University (Daqing)DaqingChina
| | - Wei Xin
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical University (Daqing)DaqingChina
| | - Zhi Yi
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical University (Daqing)DaqingChina
| | - Yue Li
- College of PharmacyHarbin University of CommerceHarbinChina
| | - Ying Liu
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical University (Daqing)DaqingChina
| | - Hongyue Zhang
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical University (Daqing)DaqingChina
| | - He Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xinxin Chen
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical University (Daqing)DaqingChina
| | - Shujie Tan
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical University (Daqing)DaqingChina
| | - Daling Zhu
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical University (Daqing)DaqingChina
- Biopharmaceutical Key Laboratory of Heilongjiang ProvinceHarbinChina
| |
Collapse
|
10
|
Shi H, Yu J, Li J. Nephroblastoma overexpressed gene expression and its prognostic implications of clinical outcomes in renal cell carcinoma patients. Cancer Biomark 2017; 20:241-246. [PMID: 28800310 DOI: 10.3233/cbm-170017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The nephroblastoma overexpressed gene (NOV) expressions in tissues and organs has become abnormal during tumorigenesis and progression. This study intended to investigate the correlation between clinical outcomes and NOV expression in renal cell carcinoma (RCC) patients. METHODS Fifty RCC patients who attended the hospital from January 2013 to January 2015 were enrolled in this study. NOV expression in cancerous tissues and adjacent non-tumor (ANT) renal tissues of RCC patients was detected by immunohistochemistry (IHC). According to the percentage of NOV-positive cells, cases were divided into NOV-positive and NOV-negative groups. The correlations between age, gender, disease course, tumor diameter, pathological grades (WHO/ISUP grading system) or tumor-node-metastasis (TNM) staging and NOV-positive rate were determined. Kaplan-Meier method was utilized for analyzing the 3- and 5-survial rates of RCC patients. The Cox proportional hazards regression model was used for the multivariate analysis. RESULTS NOV-positive rate was uncorrelated with age, gender, disease course or TNM classification while was negatively correlated with pathological grades. NOV-positive rate in RCC tumor and ANT tissues was 58% and 100%, respectively. Five-year survival rate in NOV-positive group was significantly lower than that in NOV-negative group. CONCLUSION Our data suggested that NOV down-regulation might be a biomarker for RCC but its positivity might be an indicator of poor prognosis.
Collapse
Affiliation(s)
- Hongbin Shi
- Department of Urology Surgery, Ningxia People's Hospital, Yinchuan 750001, Ningxia, China
| | - Jianping Yu
- Department of Laboratory, Xianyang Hospital of Yan'an University, Xianyang 712000, Shaanxi, China
| | - Jie Li
- Department of Nephropathy, Xi'an Central Hospital, Xi'an 710003, Shaanxi, China
| |
Collapse
|
11
|
Gu YT, Chen J, Meng ZL, Ge WY, Bian YY, Cheng SW, Xing CK, Yao JL, Fu J, Peng L. Research progress on osteoarthritis treatment mechanisms. Biomed Pharmacother 2017; 93:1246-1252. [DOI: 10.1016/j.biopha.2017.07.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
|
12
|
Cheng DD, Zhu B, Li SJ, Yuan T, Yang QC, Fan CY. Down-regulation of RPS9 Inhibits Osteosarcoma Cell Growth through Inactivation of MAPK Signaling Pathway. J Cancer 2017; 8:2720-2728. [PMID: 28928861 PMCID: PMC5604204 DOI: 10.7150/jca.19130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/17/2017] [Indexed: 01/10/2023] Open
Abstract
Objectives: Osteosarcoma is the most common malignant bone tumor in adolescents; however, the mechanisms involved in the pathogenesis and progression of osteosarcoma remain to be elucidated. Researchers have provided valuable insights into the tumorigenesis of Ribosomal protein S9 (RPS9) in some cancers. The purpose of this study was to elucidate the expression, functions, and mechanisms of RPS9 in human osteosarcoma. Methods: The expression of RPS9 in osteosarcoma tissues and cell lines was evaluated by qRT-PCR and western blotting. Knockdown of RPS9 induced by RNA interference (RNAi) method in three osteosarcoma cell lines (MNNG/HOS, MG63, and U2OS) was employed to analyze the effects of RPS9 on cell proliferation and cell cycle distribution. The host signaling pathways affected by RPS9 were detected using the intracellular signaling antibody array kit PathScan®. Results: The expression of RPS9 was found to be up-regulated in human osteosarcoma tissues and cell lines. Its expression was positively correlated with Enneking stage and the tumor recurrence. Down-regulation of RPS9 inhibited osteosarcoma cell proliferation, colony-forming ability, and cell cycle G1 phase in vitro. In addition, our data demonstrated that knockdown of RPS9 repressed the protein levels of phospho-SAPK/JNK and phospho-p38. Conclusion: RPS9 is up-regulated and has a pro-tumor effect in osteosarcoma through the activation of MAPK signaling pathway and thus can be used as a potential target for gene therapy.
Collapse
Affiliation(s)
- Dong-Dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bin Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shi-Jie Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ting Yuan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qing-Cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cun-Yi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
13
|
Liu PC, Lu G, Deng Y, Wang CD, Su XW, Zhou JY, Chan TM, Hu X, Poon WS. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) Combination Therapy. PLoS One 2017; 12:e0171157. [PMID: 28135339 PMCID: PMC5279772 DOI: 10.1371/journal.pone.0171157] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/16/2017] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5) in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.
Collapse
Affiliation(s)
- Pi Chu Liu
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Lu
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Deng
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| | - Cheng Dong Wang
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Xian Wei Su
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Ye Zhou
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Tat Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Hu
- Shenzhen Beike Cell Engineering Research Institute, Shenzhen, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
14
|
CCN family of proteins: critical modulators of the tumor cell microenvironment. J Cell Commun Signal 2016; 10:229-240. [PMID: 27517291 DOI: 10.1007/s12079-016-0346-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The CCN family of proteins consisting of CCN1 (Cyr61), CCN2 (CTGF), CCN3 (NOV), CCN4 (WISP-1), CCN5 (WISP-2) and CCN6 (WISP-3) are considered matricellular proteins operating essentially in the extracellular microenvironment between cells. Evidence has also been gradually building since their first discovery of additional intracellular roles although the major activity is triggered at the cell membrane. The proteins consist of 4 motifs, a signal peptide (for secretion} followed consecutively by the IGFBP, VWC, TSP1 and CT (C-terminal cysteine knot domain) motifs, which signify their potential binding partners and functional connections to a variety of key regulators of physiological processes. With respect to cancer it is now clear that, whereas certain members can facilitate tumor behavior and progression, others can competitively counter the process. It is therefore clear that the net outcome of biological interactions in the matrix and what gets signaled or inhibited can be a function of the interplay of these CCN 1-6 proteins. Because the CCN proteins further interact with other key proteins, like growth factors in the matrix, the balance is not only important but can vary dynamically with the physiological states of tumor cells and the surrounding normal cells. The tumor niche with its many cell players has surfaced as a critical determinant of tumor behavior, invasiveness, and metastasis. It is in this context that CCN proteins should be investigated with the potential of being recognized and validated for future therapeutic approaches.
Collapse
|
15
|
Li YS, Deng ZH, Zeng C, Lei GH. JNK pathway in osteosarcoma: pathogenesis and therapeutics. J Recept Signal Transduct Res 2015; 36:465-70. [PMID: 26669256 DOI: 10.3109/10799893.2015.1122045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The c-Jun NH2-terminal kinase (JNK) is a member of the mitogen-activated protein kinase super family. JNK can phosphorylate a number of activator protein-1 components, activating several transcription factors, and thus, JNK signaling pathway is being involved in several carcinogenic mechanisms. OBJECTIVE In this study, we have reviewed the recent updates of the association of JNK pathway with osteosarcoma (OS), which is one of the most common and aggressive bone malignancies. METHODS In this review, we have explored the databases like PubMed, Google Scholar, MEDLINE, etc., and collected the most relevant papers of JNK signaling pathway involved in the pathogenesis and therapeutics of OS. RESULTS Evidence showed that JNK is a master protein kinase that plays an important role in osteoblast proliferation, differentiation and apoptosis. Interesting reports showed that chemical JNK inhibitors reduce OS cell proliferation and metastasis. Many of the components of this pathway have now been identified and the application of JNK inhibitors has been proven to work in vivo in human and in animal models; however, JNK pathway has not been translated into clinical use. CONCLUSION Therapeutic interventions of potent and selective inhibitors of JNK might provide promising therapeutic approaches for the treatment of OS, and could improve the survival rate and quality of life of OS patients.
Collapse
Affiliation(s)
- Yu-Sheng Li
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| | - Zhen-Han Deng
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| | - Chao Zeng
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| | - Guang-Hua Lei
- a Department of Orthopaedics , Xiangya Hospital of Central South University , Changsha , China
| |
Collapse
|