1
|
Panmanee J, Charoensutthivarakul S, Cheng CW, Promthep K, Mukda S, Prasertporn T, Nopparat C, Teerapo K, Supcharoen P, Petchyam N, Chetsawang B, Govitrapong P, Phanchana M. A Complex Interplay Between Melatonin and RORβ: RORβ is Unlikely a Putative Receptor for Melatonin as Revealed by Biophysical Assays. Mol Neurobiol 2025; 62:2333-2347. [PMID: 39105871 PMCID: PMC11772548 DOI: 10.1007/s12035-024-04395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
A nuclear retinoic acid receptor (RAR)-related orphan receptor β (RORβ) is strictly expressed in the brain, particularly in the pineal gland where melatonin is primarily synthesized and concentrated. The controversial issues regarding the direct interaction of melatonin toward ROR receptors have prompted us to investigate the potential melatonin binding sites on different ROR isoforms. We adopted computational and biophysical approaches to investigate the potential of melatonin as the ligand for RORs, in particular RORβ. Herein, possible melatonin binding sites were predicted by molecular docking on human RORs. The results showed that melatonin might be able to bind within the ligand-binding domain (LBD) of all RORs, despite their difference in sequence homology. The predicted melatonin binding scores were comparable to binding energies with respect to those of melatonin interaction to the well-characterized membrane receptors, MT1 and MT2. Although the computational analyses suggested the binding potential of melatonin to the LBD of RORβ, biophysical validation failed to confirm the binding. Melatonin was unable to alter the stability of human RORβ as shown by the unaltered melting temperatures upon melatonin administration in differential scanning fluorometry (DSF). A thermodynamic isothermal titration calorimetry (ITC) profile showed that melatonin did not interact with human RORβ in solutions, even in the presence of SRC-1 co-activator peptide. Although the direct interaction between the LBD of RORβ could not be established, RORα and RORβ gene expressions were increased upon 24 h treatment with μM-range melatonin. Our data, thus, support the studies that the nuclear effects of melatonin may not be directly mediated via its interaction with the RORβ. These findings warrant further investigation on how melatonin interacts with ROR signaling and urge the melatonin research community for a paradigm shift in the direct interaction of melatonin toward RORs. The quest to identify nuclear receptors for melatonin in neuronal cells remains valid for the community to achieve.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sitthivut Charoensutthivarakul
- Innovative Molecular Discovery Laboratory (iMOD), School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chew Weng Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Kornkanok Promthep
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanya Prasertporn
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok, 10110, Thailand
| | - Kittitat Teerapo
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Promsup Supcharoen
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Panigrahi AK, Pal PK, Sarkar Paria D. Melatonin as an Ameliorative Agent Against Cadmium- and Lead-Induced Toxicity in Fish: an Overview. Appl Biochem Biotechnol 2024; 196:5790-5820. [PMID: 38224395 DOI: 10.1007/s12010-023-04723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 01/16/2024]
Abstract
Diverse anthropogenic activities and lack of knowledge on its consequences have promoted serious heavy metal contaminations in different aquatic systems throughout the globe. The non-biodegradable nature of most of these toxic heavy metals has increased the concern on their possible bioaccumulation in aquatic organisms as well as in other vertebrates. Among these aquatic species, fish are most sensitive to such contaminated water that not only decreases their chance of survivability in the nature but also increases the probability of biomagnifications of these heavy metals in higher order food chain. After entering the fish body, heavy metals induce detrimental changes in different vital organs by impairing multiple physiological and biochemical pathways that are essential for the species. Such alterations may include tissue damage, induction of oxidative stress, immune-suppression, endocrine disorders, uncontrolled cell proliferation, DNA damage, and even apoptosis. Although uncountable reports have explored the toxic effects of different heavy metals in diverse fish species, but surprisingly, only a few attempts have been made to ameliorate such toxic effects. Since, oxidative stress seems to be the underlying common factor in such heavy metal-induced toxicity, therefore, a potent and endogenous antioxidant with no side effect may be an appropriate therapeutic solution. Apart from summarizing the toxic effects of two important toxicants, i.e., cadmium and lead in fish, the novelty of the present treatise lies in its arguments in favor of using melatonin, an endogenous free radical scavenger and indirect antioxidant, in ameliorating the toxic effects of heavy metals in any fish species.
Collapse
Affiliation(s)
- Ashis Kumar Panigrahi
- The University of Burdwan, Burdwan, West Bengal, 713104, India
- Eco-toxicology, Fisheries & Aquaculture Extension Laboratory, Department of Zoology, University of Kalyani, Kalyani, West Beng, al-741235, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Dipanwita Sarkar Paria
- Department of Zoology, Chandernagore College, The University of Burdwan, Chandernagore, West Beng, al-712136, India.
| |
Collapse
|
4
|
Begum RF, Mohan S. Pharmacological investigation of vitamin E with combined oral contraceptives on INHBA gene against PCOS that intricate through melatonin PKC pathway. Syst Biol Reprod Med 2023; 69:450-464. [PMID: 37962399 DOI: 10.1080/19396368.2023.2276082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
The most prevalent endocrine and metabolic condition in women of reproductive age are polycystic ovary syndrome (PCOS) with significant risk factors such as circadian rhythm and melatonin disruption. The aim of this study is to assess the effect of vitamin E in combination with a combined oral contraceptive (COC) on continuous light-induced PCOS using hormonal measures, oxidative stress (OS) indicators, and the inhibin beta-A (INHBA) gene, which targets the melatonin protein kinase C (PKC) pathway. An in silico technique anticipated INHBA's binding affinity for vitamin E and COC. For the in vivo investigation (IAEC/240/2021), female SD rats were divided into six groups and subjected to a 16-week induction period, followed by a 2-month test drug treatment with drospirenone (DRSP) as a standard. Serum testosterone, FSH, melatonin, and OS were calculated as hormonal markers. The expression of the INHBA gene was studied to see if it could be linked to the circadian rhythm and OS via the melatonin PKC pathway. According to the in silico study, vitamin E and DRSP had higher binding energy for the INHBA (-8.6 kcal/mol and -8.4 kcal/mol, respectively). When compared to the control group, in vivo results showed a substantial decrease in testosterone levels (p = .05), as well as changes in FSH (p = .78) and melatonin (p = .13). IHNBA gene expression has also dramatically increased, stimulating FSH production in the pituitary gland. Vitamin E and COC concomitantly are beneficial against PCOS because it modulates OS, which in turn influences circadian rhythm and the melatonin PKC pathway.
Collapse
Affiliation(s)
- Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Sumithra Mohan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
5
|
Wilson JB, Epstein M, Lopez B, Brown AK, Lutfy K, Friedman TC. The role of Neurochemicals, Stress Hormones and Immune System in the Positive Feedback Loops between Diabetes, Obesity and Depression. Front Endocrinol (Lausanne) 2023; 14:1224612. [PMID: 37664841 PMCID: PMC10470111 DOI: 10.3389/fendo.2023.1224612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and depression are significant public health and socioeconomic issues. They commonly co-occur, with T2DM occurring in 11.3% of the US population, while depression has a prevalence of about 9%, with higher rates among youths. Approximately 31% of patients with T2DM suffer from depressive symptoms, with 11.4% having major depressive disorders, which is twice as high as the prevalence of depression in patients without T2DM. Additionally, over 80% of people with T2DM are overweight or obese. This review describes how T2DM and depression can enhance one another, using the same molecular pathways, by synergistically altering the brain's structure and function and reducing the reward obtained from eating. In this article, we reviewed the evidence that eating, especially high-caloric foods, stimulates the limbic system, initiating Reward Deficiency Syndrome. Analogous to other addictive behaviors, neurochemical changes in those with depression and/or T2DM are thought to cause individuals to increase their food intake to obtain the same reward leading to binge eating, weight gain and obesity. Treating the symptoms of T2DM, such as lowering HbA1c, without addressing the underlying pathways has little chance of eliminating the disease. Targeting the immune system, stress circuit, melatonin, and other alterations may be more effective.
Collapse
Affiliation(s)
- Julian B. Wilson
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Ma’ayan Epstein
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Psychiatric Emergency Room, Olive View – University of California, Los Angeles (UCLA) Medical Center, Sylmar, CA, United States
| | - Briana Lopez
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| | - Amira K. Brown
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Kabirullah Lutfy
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Theodore C. Friedman
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| |
Collapse
|
6
|
Iesanu MI, Zahiu CDM, Dogaru IA, Chitimus DM, Pircalabioru GG, Voiculescu SE, Isac S, Galos F, Pavel B, O’Mahony SM, Zagrean AM. Melatonin-Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions. Antioxidants (Basel) 2022; 11:2244. [PMID: 36421432 PMCID: PMC9686962 DOI: 10.3390/antiox11112244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Melatonin is a pineal indolamine, allegedly known as a circadian rhythm regulator, and an antioxidative and immunomodulatory molecule. In both experimental and clinical trials, melatonin has been shown to have positive effects in various pathologies, as a modulator of important biochemical pathways including inflammation, oxidative stress, cell injury, apoptosis, and energy metabolism. The gut represents one of melatonin's most abundant extra pineal sources, with a 400-times-higher concentration than the pineal gland. The importance of the gut microbial community-namely, the gut microbiota, in multiple critical functions of the organism- has been extensively studied throughout time, and its imbalance has been associated with a variety of human pathologies. Recent studies highlight a possible gut microbiota-modulating role of melatonin, with possible implications for the treatment of these pathologies. Consequently, melatonin might prove to be a valuable and versatile therapeutic agent, as it is well known to elicit positive functions on the microbiota in many dysbiosis-associated conditions, such as inflammatory bowel disease, chronodisruption-induced dysbiosis, obesity, and neuropsychiatric disorders. This review intends to lay the basis for a deeper comprehension of melatonin, gut microbiota, and host-health subtle interactions.
Collapse
Affiliation(s)
- Mara Ioana Iesanu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana-Alexandra Dogaru
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Diana Maria Chitimus
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Section Earth, Environmental and Life Sciences, Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sebastian Isac
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Pavel
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
7
|
Ucaryilmaz Metin C, Ozcan G. The HIF-1α as a Potent Inducer of the Hallmarks in Gastric Cancer. Cancers (Basel) 2022; 14:2711. [PMID: 35681691 PMCID: PMC9179860 DOI: 10.3390/cancers14112711] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxia is the principal architect of the topographic heterogeneity in tumors. Hypoxia-inducible factor-1α (HIF-1α) reinforces all hallmarks of cancer and donates cancer cells with more aggressive characteristics at hypoxic niches. HIF-1α potently induces sustained growth factor signaling, angiogenesis, epithelial-mesenchymal transition, and replicative immortality. Hypoxia leads to the selection of cancer cells that evade growth suppressors or apoptotic triggers and deregulates cellular energetics. HIF-1α is also associated with genetic instability, tumor-promoting inflammation, and escape from immunity. Therefore, HIF-1α may be an important therapeutic target in cancer. Despite that, the drug market lacks safe and efficacious anti-HIF-1α molecules, raising the quest for fully unveiling the complex interactome of HIF-1α in cancer to discover more effective strategies. The knowledge gap is even wider in gastric cancer, where the number of studies on hypoxia is relatively low compared to other well-dissected cancers. A comprehensive review of the molecular mechanisms by which HIF-1α induces gastric cancer hallmarks could provide a broad perspective to the investigators and reveal missing links to explore in future studies. Thus, here we review the impact of HIF-1α on the cancer hallmarks with a specific focus on gastric cancer.
Collapse
Affiliation(s)
| | - Gulnihal Ozcan
- Department of Medical Pharmacology, School of Medicine, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
8
|
Sadoughi F, Dana PM, Homayoonfal M, Sharifi M, Asemi Z. Molecular basis of melatonin protective effects in metastasis: A novel target of melatonin. Biochimie 2022; 202:15-25. [DOI: 10.1016/j.biochi.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
9
|
Hagström A, Kal Omar R, Williams PA, Stålhammar G. The rationale for treating uveal melanoma with adjuvant melatonin: a review of the literature. BMC Cancer 2022; 22:398. [PMID: 35413810 PMCID: PMC9006630 DOI: 10.1186/s12885-022-09464-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Uveal melanoma is a rare form of cancer with high mortality. The incidence of metastases is attributed to early seeding of micrometastases from the eye to distant organs, primarily the liver. Once these seeded clusters of dormant tumor cells grow into larger radiologically detectable macrometastases, median patient survival is about 1 year. Melatonin is an important hormone for synchronizing circadian rhythms. It is also involved in other aspects of human physiology and may offer therapeutic benefits for a variety of diseases including cancer. METHODS Articles involving the physiological effects of melatonin, pharmacokinetics, and previous use in cancer studies were acquired using a comprehensive literature search in the Medline (PubMed) and Web of Science databases. In total, 147 publications were selected and included in the review. RESULTS Melatonin has been observed to suppress the growth of cancer cells, inhibit metastatic spread, enhance immune system functions, and act as an anti-inflammatory in both in vitro and in vivo models. Melatonin may also enhance the efficacy of cancer treatments such as immuno- and chemotherapy. Numerous studies have shown promising results for oral melatonin supplementation in patients with other forms of cancer including cutaneous malignant melanoma. Cell line and animal studies support a hypothesis in which similar benefits may exist for uveal melanoma. CONCLUSIONS Given its low cost, good safety profile, and limited side effects, there may be potential for the use of melatonin as an adjuvant oncostatic treatment. Future avenues of research could include clinical trials to evaluate the effect of melatonin in prevention of macrometastases of uveal melanoma.
Collapse
Affiliation(s)
- Anna Hagström
- Department of Medicine, Karolinska Institutet, D1:04, 171 76, Stockholm, Sweden.
| | - Ruba Kal Omar
- Department of Medicine, Karolinska Institutet, D1:04, 171 76, Stockholm, Sweden.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64, Stockholm, Sweden
| | - Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 171 64, Stockholm, Sweden
- St. Erik Eye Hospital, Box 4078, 171 04, Stockholm, Sweden
| |
Collapse
|
10
|
Akhzari M, Barazesh M, Jalili S. Melatonin as an antioxidant agent in disease prevention: A biochemical focus. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220325124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Abstract:
In the recent years, free radicals and oxidative stress have been found to be associated with aging, cancer, atherosclerosis, neurodegenerative disorders, diabetes, and inflammatory diseases. Confirming the role of oxidants in numerous pathological situations including cancer, developing antioxidants as therapeutic platforms is needed. It has been well established that melatonin and its derived metabolites function as endogenous free-radical scavengers and broad spectrum antioxidants. To achieve this function, melatonin can directly detoxify reactive oxygen and reactive nitrogen species and indirectly overexpress antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. Many investigations have also confirmed the role of melatonin and its derivatives in different physiological processes and therapeutic functions such as controlling the circadian rhythm and immune functions. This review aimed to focus on melatonin as a beneficial agent for the stimulation of antioxidant enzymes and inhibition of lipid peroxidation and to evaluate its contribution to protection against oxidative damages. In addition, the clinical application of melatonin in several diseases is discussed. Finally, the safety and efficacy of melatonin in clinical backgrounds is also reviewed.
Collapse
Affiliation(s)
- Morteza Akhzari
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, Faculty of Medicine, Ahvaz, Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Kvetnoy I, Ivanov D, Mironova E, Evsyukova I, Nasyrov R, Kvetnaia T, Polyakova V. Melatonin as the Cornerstone of Neuroimmunoendocrinology. Int J Mol Sci 2022; 23:ijms23031835. [PMID: 35163757 PMCID: PMC8836571 DOI: 10.3390/ijms23031835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
Much attention has been recently drawn to studying melatonin – a hormone whose synthesis was first found in the epiphysis (pineal gland). This interest can be due to discovering the role of melatonin in numerous physiological processes. It was the discovery of melatonin synthesis in endocrine organs (pineal gland), neural structures (Purkinje cells in the cerebellum, retinal photoreceptors), and immunocompetent cells (T lymphocytes, NK cells, mast cells) that triggered the evolution of new approaches to the unifield signal regulation of homeostasis, which, at the turn of the 21st century, lead to the creation of a new integral biomedical discipline — neuroimmunoendocrinology. While numerous hormones have been verified over the last decade outside the “classical” locations of their formation, melatonin occupies an exclusive position with regard to the diversity of locations where it is synthesized and secreted. This review provides an overview and discussion of the major data regarding the role of melatonin in various physiological and pathological processes, which affords grounds for considering melatonin as the “cornerstone” on which neuroimmunoendocrinology has been built as an integral concept of homeostasis regulation.
Collapse
Affiliation(s)
- Igor Kvetnoy
- Center of Molecular Biomedicine, Saint-Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia;
- Department of Physiology and Department of Pathology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Dmitry Ivanov
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| | - Ekaterina Mironova
- Center of Molecular Biomedicine, Saint-Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia;
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint-Petersburg, Russia;
- Correspondence:
| | - Inna Evsyukova
- Department of Perinatal Pathology, Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia;
| | - Ruslan Nasyrov
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| | - Tatiana Kvetnaia
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint-Petersburg, Russia;
| | - Victoria Polyakova
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| |
Collapse
|
12
|
Patel R, Parmar N, Pramanik Palit S, Rathwa N, Ramachandran AV, Begum R. Diabetes mellitus and melatonin: Where are we? Biochimie 2022; 202:2-14. [PMID: 35007648 DOI: 10.1016/j.biochi.2022.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) and diabetes-related complications are amongst the leading causes of mortality worldwide. The international diabetes federation (IDF) has estimated 592 million people to suffer from DM by 2035. Hence, finding a novel biomolecule that can effectively aid diabetes management is vital, as other existing drugs have numerous side effects. Melatonin, a pineal hormone having antioxidative and anti-inflammatory properties, has been implicated in circadian dysrhythmia-linked DM. Reduced levels of melatonin and a functional link between melatonin and insulin are implicated in the pathogenesis of type 2 diabetes (T2D) Additionally, genomic studies revealed that rare variants in melatonin receptor 1b (MTNR1B) are also associated with impaired glucose tolerance and increased risk of T2D. Moreover, exogenous melatonin treatment in cell lines, rodent models, and diabetic patients has shown a potent effect in alleviating diabetes and other related complications. This highlights the role of melatonin in glucose homeostasis. However, there are also contradictory reports on the effects of melatonin supplementation. Thus, it is essential to explore if melatonin can be taken from bench to bedside for diabetes management. This review summarizes the therapeutic potential of melatonin in various diabetic models and whether it can be considered a safe drug for managing diabetic complications and diabetic manifestations like oxidative stress, inflammation, ER stress, mitochondrial dysfunction, metabolic dysregulation, etc.
Collapse
Affiliation(s)
- Roma Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nirali Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - A V Ramachandran
- Division of Life Science, School of Sciences, Navrachana University, Vadodara, 391 410, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
13
|
Usefulness of Melatonin and Other Compounds as Antioxidants and Epidrugs in the Treatment of Head and Neck Cancer. Antioxidants (Basel) 2021; 11:antiox11010035. [PMID: 35052539 PMCID: PMC8773331 DOI: 10.3390/antiox11010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Along with genetic mutations, aberrant epigenetic alterations are the initiators of head and neck cancer carcinogenesis. Currently, several drugs are being developed to correct these epigenetic alterations, known as epidrugs. Some compounds with an antioxidant effect have been shown to be effective in preventing these malignant lesions and in minimizing the complications derived from cytotoxic treatment. Furthermore, in vitro and in vivo studies show a promising role in the treatment of head and neck squamous cell carcinoma (HNSCC). This is the case of supplements with DNA methylation inhibitory function (DNMTi), such as epigallocatechin gallate, sulforaphane, and folic acid; histone deacetylase inhibitors (HDACi), such as sodium butyrate and melatonin or histone acetyltransferase inhibitors (HATi), such as curcumin. The objective of this review is to describe the role of some antioxidants and their epigenetic mechanism of action, with special emphasis on melatonin and butyric acid given their organic production, in the prevention and treatment of HNSCC.
Collapse
|
14
|
Wang R, Liu H, Song J, Wu Q. Activity of Melatonin Against Gastric Cancer Growth in a Chick Embryo Tumor Xenograft Model. Cancer Manag Res 2021; 13:8803-8808. [PMID: 34853535 PMCID: PMC8627858 DOI: 10.2147/cmar.s329728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Previous studies have shown the antitumor activity of melatonin against a wide range of human cancers; however, the impact of melatonin on gastric cancer growth remains to be illustrated. This study aimed to investigate the activity of melatonin against gastric cancer growth in a chick embryo tumor xenograft model and explore the possible mechanisms. Materials and Methods The growth of gastric cancer SGC-7901 cells was measured using MTT assay, and a chick embryo tumor xenograft model was generated to observe the effect of melatonin on gastric cancer growth in vivo. In addition, the VEGF and angiogenin secretion was measured in the supernatant of chick embryo tumor xenograft models with ELISA. Results MLT treatment inhibited the growth of SGC-7901 cells at a concentration-dependent manner, and treatment with MLT at 1 mM was found to markedly reduce the volume and weight of tumors bearing the allantois of chicken embryos. ELISA showed that MLT at concentrations of 0.0041, 0.012, 0.037 and 0.11 had no remarkable impact on VEGF and angiopoietin secretion, while MLT at 1 mM significantly suppressed VEGF and angiopoietin production in chick embryo tumor xenograft models with SGC-7901 cells (P = 0.023). Conclusion Our data demonstrate that MLT inhibits gastric cancer growth in vitro at a concentration-dependent manner, and suppresses angiogenesis of the chick embryo tumor xenograft model with SGC-7901 cells through inhibiting VEGF and angiogenin secretion. Further studies are needed to investigate the therapeutic potential of MLT for gastric cancer as compared to drugs clinically approved.
Collapse
Affiliation(s)
- Rixiong Wang
- Department of Oncology, the First Affiliated Hospital of Fujian Medical University, Fuzhou City, People's Republic of China.,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital of Fujian Medical University, Fuzhou City, People's Republic of China
| | - Hui Liu
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou City, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou City, People's Republic of China
| | - Jun Song
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou City, People's Republic of China.,Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou City, People's Republic of China
| | - Qing Wu
- Department of Oncology, the First Affiliated Hospital of Fujian Medical University, Fuzhou City, People's Republic of China.,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital of Fujian Medical University, Fuzhou City, People's Republic of China
| |
Collapse
|
15
|
Bezerra TMM, Monteiro BVDB, Pereira JDS, Silva LAB, Nonaka CFW, Silveira ÉJDD, Miguel MCDC. Assessment of the presence of interleukin 17 + macrophages and Th17 cells in situ in lip and oral tongue cancer. Hum Immunol 2021; 82:945-949. [PMID: 34426031 DOI: 10.1016/j.humimm.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022]
Abstract
Increasing clinical evidence indicates that Th17 cells may promote or inhibit tumor progression, however the exact role of these cells in Oral Squamous Cell Carcinoma (OSCCs) pathogenesis and progression remains unclear. Tumor associated macrophages are highly plastic phenotype cells which can differentiate as M1 or M2. The mechanism and cellular phenotype of IL-17 expressing macrophages are unknown. 40 cases of lip and 28 of tongue SCCs were submitted to immunohistochemical analysis, and histologically graded. In tongue cases TNM was analyzed. The number of IL-17+ T cells was higher in lip SCC (p = 0.028). IL-17+ macrophages was greater in tongue SCC (p = 0.014). There were more IL-17+ macrophages in the high-grade malignancy oral tongue SCCs (p = 0.016), yet there was no significant difference in the numbers of RORγt+ lymphocytes by histopathological or TNM analysis. This study provides evidence concerning IL-17's pleiotropic roles, being possibly dependent on its cellular sources in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Joabe Dos Santos Pereira
- Department of Pathology, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luiz Arthur Barbosa Silva
- School of Dentistry, Dentistry Department, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | | |
Collapse
|
16
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
17
|
Zou Y, Sun H, Guo Y, Shi Y, Jiang Z, Huang J, Li L, Jiang F, Lin Z, Wu J, Zhou R, Liu Y, Ao L. Integrative Pan-Cancer Analysis Reveals Decreased Melatonergic Gene Expression in Carcinogenesis and RORA as a Prognostic Marker for Hepatocellular Carcinoma. Front Oncol 2021; 11:643983. [PMID: 33842355 PMCID: PMC8029983 DOI: 10.3389/fonc.2021.643983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Melatonin has been shown to play a protective role in the development and progression of cancer. However, the relationship between alterations in the melatonergic microenvironment and cancer development has remained unclear. Methods We performed a comprehensive investigation on 12 melatonergic genes and their relevance to cancer occurrence, progression and survival by integrating multi-omics data from microarray analysis and RNA sequencing across 11 cancer types. Specifically, the 12 melatonergic genes that we investigated, which reflect the melatonergic microenvironment, included three membrane receptor genes, three nuclear receptor genes, two intracellular receptor genes, one synthetic gene, and three metabolic genes. Results Widely coherent underexpression of nuclear receptor genes, intracellular receptor genes, and metabolic genes was observed in cancerous samples from multiple cancer types compared to that in normal samples. Furthermore, genomic and/or epigenetic alterations partially contributed to these abnormal expression patterns in cancerous samples. Moreover, the majority of melatonergic genes had significant prognostic effects in predicting overall survival. Nevertheless, few corresponding alterations in expression were observed during cancer progression, and alterations in expression patterns varied greatly across cancer types. However, the association of melatonergic genes with one specific cancer type, hepatocellular carcinoma, identified RORA as a tumor suppressor and a prognostic marker for patients with hepatocellular carcinoma. Conclusions Overall, our study revealed decreased melatonergic gene expression in various cancers, which may help to better elucidate the relationship between melatonin and cancer development. Taken together, our findings highlight the potential prognostic significance of melatonergic genes in various cancers.
Collapse
Affiliation(s)
- Yi Zou
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huaqin Sun
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yating Guo
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yidan Shi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhiyu Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jingxuan Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Li Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fengle Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zeman Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junling Wu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ruixiang Zhou
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuncai Liu
- Department of Automation and Key Laboratory of China MOE for System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Ao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Astone M, Santoro MM. Time to fight: targeting the circadian clock molecular machinery in cancer therapy. Drug Discov Today 2021; 26:1164-1184. [PMID: 33549826 DOI: 10.1016/j.drudis.2021.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The circadian clock regulates a wide range of molecular pathways and biological processes. The expression of clock genes is often altered in cancer, fostering tumor initiation and progression. Inhibition and activation of core circadian clock genes, as well as treatments that restore circadian rhythmicity, have been successful in counteracting tumor growth in different experimental models. Here, we provide an up-to-date overview of studies that show the therapeutic effects of targeting the clock molecular machinery in cancer, both genetically and pharmacologically. We also highlight future areas for progress that offer a promising path towards innovative anticancer strategies. Substantial limitations in the current understanding of the complex interplay between the circadian clock and cancer in vivo need to be addressed in order to allow clock-targeting therapies in cancer.
Collapse
Affiliation(s)
- Matteo Astone
- Department of Biology, University of Padova, I-35131, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padova, I-35131, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy.
| |
Collapse
|
19
|
Huang Y, Yuan K, Tang M, Yue J, Bao L, Wu S, Zhang Y, Li Y, Wang Y, Ou X, Gou J, Zhao Q, Yuan L. Melatonin inhibiting the survival of human gastric cancer cells under ER stress involving autophagy and Ras-Raf-MAPK signalling. J Cell Mol Med 2020; 25:1480-1492. [PMID: 33369155 PMCID: PMC7875909 DOI: 10.1111/jcmm.16237] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Melatonin exhibits antitumour activities in the treatment of many human cancers. In the present study, we aimed to improve the therapeutic potential of melatonin in gastric cancer. Our results confirmed that melatonin dose‐dependently suppressed the proliferation and necrosis, and increased G0/G1 phase arrest, apoptosis, autophagy and endoplasmic reticulum (ER) stress. The Ras‐Raf‐MAPK signalling pathway was activated in cells after melatonin treatment. RNA‐seq was performed and GSEA analysis further confirmed that many down‐regulated genes in melatonin‐treated cells were associated with proliferation. However, GSEA analysis also indicated that many pathways related to metastasis were increased after melatonin treatment. Subsequently, combinatorial treatment was conducted to further investigate the therapeutic outcomes of melatonin. A combination of melatonin and thapsigargin increased the apoptotic rate and G0/G1 cell cycle arrest when compared to treatment with melatonin alone. Melatonin in combination with thapsigargin triggered the increased expression of Bip, LC3‐II, phospho‐Erk1/2 and phospho‐p38 MAPK. In addition, STF‐083010, an IRE1a inhibitor, further exacerbated the decrease in survival rate induced by combinatorial treatment with melatonin and thapsigargin. Collectively, melatonin was effective in gastric cancer treatment by modifying ER stress.
Collapse
Affiliation(s)
- Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Kexun Yuan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Meifang Tang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiaming Yue
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Lijun Bao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shuang Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanxin Zhang
- National Academy of Innovation Strategy, Beijing, China
| | - Yin Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yihang Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xu Ou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiaxin Gou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Lin Yuan
- Institute of Health Science, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Madapusi Balaji T, Varadarajan S, Jagannathan R, Raj AT, Sridhar LP, Patil S. Hypothesizing the potential role of melatonin in inhibiting epithelial to mesenchymal transition in oral squamous cell carcinoma. Med Hypotheses 2020; 145:110346. [PMID: 33096354 DOI: 10.1016/j.mehy.2020.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/10/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Thodur Madapusi Balaji
- Department of Dentistry, Bharathirajaa Hospital, and Research Institute, Chennai, India.
| | - Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | | | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Lakshmi Priya Sridhar
- Department of Pedodontics and Preventive Dentistry,Tagore Dental College and Hospital, Chennai, India
| | - Shankaragouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
21
|
Zeng M, Liu W, Hu Y, Fu N. Sumoylation in liver disease. Clin Chim Acta 2020; 510:347-353. [PMID: 32710938 DOI: 10.1016/j.cca.2020.07.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Small ubiquitin-like modifiers (SUMO) are highly conserved post-translational modification proteins that are present in eukaryotic cells. They are extensively expressed in diverse tissues, including the heart, liver, kidney, and lungs. SUMOylation, a crucial post-translational modification, exhibits a strong effect on DNA repair, transcriptional regulation, protein stability and cell cycle progression. Increasing evidence has demonstrated that SUMOylation is closely related to the development of liver disease. Therefore, the effects of SUMOylation in liver diseases, such as Hepatocellular carcinoma (HCC), viral hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis and primary biliary cirrhosis (PBC) were reviewed in this study. Specifically, SUMO1 was found to promote the invasion and metastasis of HCC and may promote hypoxia-mediated P65 nuclear transport while accelerating the progression of HCC. In addition, SUMO1-modified centrosomal P4.1-associated protein (CAPA) was observed to be overexpressed in Hepatitis B virus (HBV)-related HCC in response to TNF-α stimulation. Furthermore, SUMOylated CAPA was found to induce HBX-triggered NF-κB activation. Considering the diversity and significance of SUMOylation, targeting of the SUMOylation pathway may serve as an effective approach in the treatment of liver diseases.
Collapse
Affiliation(s)
- Min Zeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Wenhui Liu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Yang Hu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.
| | - Nian Fu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
22
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
23
|
Melatonin Antagonizes Nickel-Induced Aerobic Glycolysis by Blocking ROS-Mediated HIF-1 α/miR210/ISCU Axis Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5406284. [PMID: 32566089 PMCID: PMC7275958 DOI: 10.1155/2020/5406284] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 11/23/2022]
Abstract
Nickel and its compounds, which are well-documented carcinogens, induce the Warburg effect in normal cells by stabilizing hypoxia-inducible factor 1α (HIF-1α). Melatonin has shown diverse anticancer properties for its reactive oxygen species- (ROS-) scavenging ability. Our aim was to explore how melatonin antagonized a nickel-induced increment in aerobic glycolysis. In the current work, a normal human bronchial epithelium cell line (BEAS-2B) was exposed to a series of nonlethal doses of NiCl2, with or without 1 mM melatonin. Melatonin attenuated nickel-enhanced aerobic glycolysis. The inhibition effects on aerobic glycolysis were attributed to the capability of melatonin to suppress the regulatory axis comprising HIF-1α, microRNA210 (miR210), and iron-sulfur cluster assembly scaffold protein (ISCU1/2). N-Acetylcysteine (NAC) manifested similar effects as melatonin in scavenging ROS, maintaining prolyl-hydroxylase activity, and mitigating HIF-1α transcriptional activity in nickel-exposed cells. Our results indicated that ROS generation contributed to nickel-caused HIF-1α stabilization and downstream signal activation. Melatonin could antagonize HIF-1α-controlled aerobic glycolysis through ROS scavenging.
Collapse
|
24
|
Gu F, Liu Y, Liu Y, Cheng S, Yang J, Kang M, Duan W, Liu Y. Distinct functions and prognostic values of RORs in gastric cancer. Open Med (Wars) 2020; 15:424-434. [PMID: 33336001 PMCID: PMC7711859 DOI: 10.1515/med-2020-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/06/2020] [Accepted: 02/22/2020] [Indexed: 11/15/2022] Open
Abstract
Retinoic acid receptor-related orphan receptors (RORs) are frequently abnormally expressed in several human malignancies, including gastric cancer (GC). RORs are involved in the development and progression of GC through Wnt signaling pathway receptors and other common receptors. However, the prognostic roles of individual RORs in patients with GC remain elusive. We accessed the prognostic roles of three RORs (RORα, RORβ, and RORγ) through "The Kaplan-Meier plotter" (KM plotter) database in patients with GC. For all patients with GC who were followed for 20 years, the low mRNA expression of all three RORs showed a significant correlation with better outcomes. We further accessed the prognostic value of individual RORs in different clinical pathological features including Lauren classification, clinical stages, pathological grades, HER2 status, and different treatments methods. The RORs demonstrated critical prognostic roles in GC. Expressions of RORs were higher in GC tissues when compared with normal gastric tissues. Moreover, knockdown of RORs significantly inhibited cell proliferation and migration, suggesting an oncogenic role of RORs in human GC. These findings suggest potential roles of RORs as biomarkers for GC prognosis and as oncogenes in GC.
Collapse
Affiliation(s)
- Feng Gu
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Yuming Liu
- General Hospital of Huabei Petroleum Administration Bureau, Renqiu, China
| | - Yuan Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shujie Cheng
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Jihong Yang
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Ming Kang
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Wendu Duan
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| | - Yan Liu
- Department of Hepatobiliary, Hospital of HeBei University, Baoding, China
| |
Collapse
|
25
|
Mirza-Aghazadeh-Attari M, Reiter RJ, Rikhtegar R, Jalili J, Hajalioghli P, Mihanfar A, Majidinia M, Yousefi B. Melatonin: An atypical hormone with major functions in the regulation of angiogenesis. IUBMB Life 2020; 72:1560-1584. [PMID: 32329956 DOI: 10.1002/iub.2287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a pleotropic molecule with a wide distribution, has received considerable attention in recent years, mostly because of its various major effects on tissues or cells since it has both receptor-dependent and receptor-independent actions over a wide range of concentrations. These biological and physiological functions of melatonin include regulation of circadian rhythms by modulating the expression of core oscillator genes, scavenging the reactive oxygen species and reactive nitrogen species, modulating the immune system and inflammatory response, and exerting cytoprotective and antiapoptotic effects. Given the multiple critical roles of melatonin, dysregulation of its production or any disruption in signaling through its receptors may have contributed in the development of a wide range of disorders including type 2 diabetes, aging, immune-mediated diseases, hypertension, and cancer. Herein, we focus on the modulatory effects of melatonin on angiogenesis and its implications as a therapeutic strategy in cancer and related diseases.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Reza Rikhtegar
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Jalili
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hajalioghli
- Radiology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
27
|
Bojková B, Kubatka P, Qaradakhi T, Zulli A, Kajo K. Melatonin May Increase Anticancer Potential of Pleiotropic Drugs. Int J Mol Sci 2018; 19:E3910. [PMID: 30563247 PMCID: PMC6320927 DOI: 10.3390/ijms19123910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is not only a pineal hormone, but also an ubiquitary molecule present in plants and part of our diet. Numerous preclinical and some clinical reports pointed to its multiple beneficial effects including oncostatic properties, and as such, it has become one of the most aspiring goals in cancer prevention/therapy. A link between cancer and inflammation and/or metabolic disorders has been well established and the therapy of these conditions with so-called pleiotropic drugs, which include non-steroidal anti-inflammatory drugs, statins and peroral antidiabetics, modulates a cancer risk too. Adjuvant therapy with melatonin may improve the oncostatic potential of these drugs. Results from preclinical studies are limited though support this hypothesis, which, however, remains to be verified by further research.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárová 2, 041 54 Košice, Slovak Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic.
- Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic.
| | - Tawar Qaradakhi
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Anthony Zulli
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia.
| | - Karol Kajo
- St. Elisabeth Oncology Institute, Heydukova 10, 811 08 Bratislava, Slovak Republic.
- Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic.
| |
Collapse
|
28
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Najafi M, Sahebkar A. Melatonin and cancer: From the promotion of genomic stability to use in cancer treatment. J Cell Physiol 2018; 234:5613-5627. [PMID: 30238978 DOI: 10.1002/jcp.27391] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Cancer remains among the most challenging human diseases. Several lines of evidence suggest that carcinogenesis is a complex process that is initiated by DNA damage. Exposure to clastogenic agents such as heavy metals, ionizing radiation (IR), and chemotherapy drugs may cause chronic mutations in the genomic material, leading to a phenomenon named genomic instability. Evidence suggests that genomic instability is responsible for cancer incidence after exposure to carcinogenic agents, and increases the risk of secondary cancers following treatment with radiotherapy or chemotherapy. Melatonin as the main product of the pineal gland is a promising hormone for preventing cancer and improving cancer treatment. Melatonin can directly neutralize toxic free radicals more efficiently compared with other classical antioxidants. In addition, melatonin is able to regulate the reduction/oxidation (redox) system in stress conditions. Through regulation of mitochondrial nction and inhibition of pro-oxidant enzymes, melatonin suppresses chronic oxidative stress. Moreover, melatonin potently stimulates DNA damage responses that increase the tolerance of normal tissues to toxic effect of IR and may reduce the risk of genomic instability in patients who undergo radiotherapy. Through these mechanisms, melatonin attenuates several side effects of radiotherapy and chemotherapy. Interestingly, melatonin has shown some synergistic properties with IR and chemotherapy, which is distinct from classical antioxidants that are mainly used for the alleviation of adverse events of radiotherapy and chemotherapy. In this review, we describe the anticarcinogenic effects of melatonin and also its possible application in clinical oncology.
Collapse
Affiliation(s)
- Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Departments of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Giudice A, Crispo A, Grimaldi M, Polo A, Bimonte S, Capunzo M, Amore A, D'Arena G, Cerino P, Budillon A, Botti G, Costantini S, Montella M. The Effect of Light Exposure at Night (LAN) on Carcinogenesis via Decreased Nocturnal Melatonin Synthesis. Molecules 2018; 23:E1308. [PMID: 29844288 PMCID: PMC6100442 DOI: 10.3390/molecules23061308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
In mammals, a master clock is located within the suprachiasmatic nucleus (SCN) of the hypothalamus, a region that receives input from the retina that is transmitted by the retinohypothalamic tract. The SCN controls the nocturnal synthesis of melatonin by the pineal gland that can influence the activity of the clock's genes and be involved in the inhibition of cancer development. On the other hand, in the literature, some papers highlight that artificial light exposure at night (LAN)-induced circadian disruptions promote cancer. In the present review, we summarize the potential mechanisms by which LAN-evoked disruption of the nocturnal increase in melatonin synthesis counteracts its preventive action on human cancer development and progression. In detail, we discuss: (i) the Warburg effect related to tumor metabolism modification; (ii) genomic instability associated with L1 activity; and (iii) regulation of immunity, including regulatory T cell (Treg) regulation and activity. A better understanding of these processes could significantly contribute to new treatment and prevention strategies against hormone-related cancer types.
Collapse
Affiliation(s)
- Aldo Giudice
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Anna Crispo
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Maria Grimaldi
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Andrea Polo
- Experimental Pharmacology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Mario Capunzo
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, 84081 Salerno, Italy.
| | - Alfonso Amore
- Abdominal Surgical Oncology and Hepatobiliary Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Giovanni D'Arena
- Department of Hematology and Stem Cell Transplantation Unit, IRCCS, Cancer Referral Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Napoli, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Gerardo Botti
- Pathology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Susan Costantini
- Experimental Pharmacology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Maurizio Montella
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| |
Collapse
|
30
|
Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB. Melatonin for the prevention and treatment of cancer. Oncotarget 2018; 8:39896-39921. [PMID: 28415828 PMCID: PMC5503661 DOI: 10.18632/oncotarget.16379] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 12/17/2022] Open
Abstract
The epidemiological studies have indicated a possible oncostatic property of melatonin on different types of tumors. Besides, experimental studies have documented that melatonin could exert growth inhibition on some human tumor cells in vitro and in animal models. The underlying mechanisms include antioxidant activity, modulation of melatonin receptors MT1 and MT2, stimulation of apoptosis, regulation of pro-survival signaling and tumor metabolism, inhibition on angiogenesis, metastasis, and induction of epigenetic alteration. Melatonin could also be utilized as adjuvant of cancer therapies, through reinforcing the therapeutic effects and reducing the side effects of chemotherapies or radiation. Melatonin could be an excellent candidate for the prevention and treatment of several cancers, such as breast cancer, prostate cancer, gastric cancer and colorectal cancer. This review summarized the anticancer efficacy of melatonin, based on the results of epidemiological,experimental and clinical studies, and special attention was paid to the mechanisms of action.
Collapse
Affiliation(s)
- Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
31
|
Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Hemati K, Ghaznavi H, Mehrzadi S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci 2018; 201:17-29. [PMID: 29567077 DOI: 10.1016/j.lfs.2018.03.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive loss of lung function due to tissue scarring. A variety of pro-inflammatory and pro-fibrogenic factors including interleukin‑17A, transforming growth factor β, Wnt/β‑catenin, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factors, endotelin‑1, renin angiotensin system and impaired caveolin‑1 function are involved in the IPF pathogenesis. Current therapies for IPF have some limitations and this highlights the need for effective therapeutic agents to treat this fatal disease. Melatonin and its metabolites are broad-spectrum antioxidants that not only remove reactive oxygen and nitrogen species by radical scavenging but also up-regulate the expression and activity of endogenous antioxidants. Via these actions, melatonin and its metabolites modulate a variety of molecular pathways in different pathophysiological conditions. Herein, we review the signaling pathways involved in the pathophysiology of IPF and the potentially protective effects of melatonin on these pathways.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran; Department of Anesthesiology, Ilam University of Medical Sciences, Ilam, Iran
| | - Habib Ghaznavi
- Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Melatonin as a potential anticarcinogen for non-small-cell lung cancer. Oncotarget 2018; 7:46768-46784. [PMID: 27102150 PMCID: PMC5216835 DOI: 10.18632/oncotarget.8776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/31/2016] [Indexed: 12/23/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of death from cancer worldwide. Melatonin, an indoleamine discovered in the pineal gland, exerts pleiotropic anticancer effects against a variety of cancer types. In particular, melatonin may be an important anticancer drug in the treatment of NSCLC. Herein, we review the correlation between the disruption of the melatonin rhythm and NSCLC incidence; we also evaluate the evidence related to the effects of melatonin in inhibiting lung carcinogenesis. Special focus is placed on the oncostatic effects of melatonin, including anti-proliferation, induction of apoptosis, inhibition of invasion and metastasis, and enhancement of immunomodulation. We suggest the drug synergy of melatonin with radio- or chemotherapy for NSCLC could prove to be useful. Taken together, the information complied herein may serve as a comprehensive reference for the anticancer mechanisms of melatonin against NSCLC, and may be helpful for the design of future experimental research and for advancing melatonin as a therapeutic agent for NSCLC.
Collapse
|
33
|
Lo Sardo F, Muti P, Blandino G, Strano S. Melatonin and Hippo Pathway: Is There Existing Cross-Talk? Int J Mol Sci 2017; 18:ijms18091913. [PMID: 28878191 PMCID: PMC5618562 DOI: 10.3390/ijms18091913] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.
Collapse
Affiliation(s)
- Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Sabrina Strano
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|
34
|
Asghari MH, Moloudizargari M, Ghobadi E, Fallah M, Abdollahi M. Melatonin as a multifunctional anti-cancer molecule: Implications in gastric cancer. Life Sci 2017; 185:38-45. [DOI: 10.1016/j.lfs.2017.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022]
|
35
|
Yeh CM, Su SC, Lin CW, Yang WE, Chien MH, Reiter RJ, Yang SF. Melatonin as a potential inhibitory agent in head and neck cancer. Oncotarget 2017; 8:90545-90556. [PMID: 29163852 PMCID: PMC5685773 DOI: 10.18632/oncotarget.20079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin is a molecule secreted by the pineal gland; it is an important regulator of sleep and circadian rhythms. Through multiple interrelated mechanisms, melatonin exhibits various inhibitory properties at different stages of tumor progression. Many studies have explored the oncostatic effects of melatonin on hormone-dependent tumors. In this review, we highlight recent advances in understanding the effects of melatonin on the development of head and neck cancers, including molecular mechanisms identified through experimental and clinical observations. Because melatonin exerts a wide range of effects, melatonin may influence many mechanisms that influence the development of cancer. These include cell proliferation, apoptosis, angiogenesis, extracellular matrix remodeling through matrix metalloproteinases, and genetic polymorphism. Thus, the evidence discussed in this article will serve as a basis for basic and clinical research to promote the use of melatonin for understanding and controlling the development of head and neck cancers.
Collapse
Affiliation(s)
- Chia-Ming Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
36
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
37
|
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF. Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res 2017; 62. [PMID: 27706852 DOI: 10.1111/jpi.12370] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Melatonin is a naturally occurring molecule secreted by the pineal gland and known as a gatekeeper of circadian clocks. Mounting evidence indicates that melatonin, employing multiple and interrelated mechanisms, exhibits a variety of oncostatic properties in a myriad of tumors during different stages of their progression. Tumor metastasis, which commonly occurs at the late stage, is responsible for the majority of cancer deaths; metastases lead to the development of secondary tumors distant from a primary site. In reference to melatonin, the vast majority of investigations have focused on tumor development and progression at the primary site. Recently, however, interest has shifted toward the role of melatonin on tumor metastases. In this review, we highlight current advances in understanding the molecular mechanisms by which melatonin counteracts tumor metastases, including experimental and clinical observations; emphasis is placed on the impact of both cancer and non-neoplastic cells within the tumor microenvironment. Due to the broad range of melatonin's actions, the mechanisms underlying its ability to interfere with metastases are numerous. These include modulation of cell-cell and cell-matrix interaction, extracellular matrix remodeling by matrix metalloproteinases, cytoskeleton reorganization, epithelial-mesenchymal transition, and angiogenesis. The evidence discussed herein will serve as a solid foundation for urging basic and clinical studies on the use of melatonin to understand and control metastatic diseases.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Melatonin and the von Hippel-Lindau/HIF-1 oxygen sensing mechanism: A review. Biochim Biophys Acta Rev Cancer 2016; 1865:176-83. [PMID: 26899267 DOI: 10.1016/j.bbcan.2016.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/20/2022]
Abstract
There are numerous reports that melatonin inhibits the hypoxia-inducible factor, HIF-1α, and the HIF-1α-inducible gene, VEGF, both in vivo and in vitro. Through the inhibition of the HIF-1-VEGF pathway, melatonin reduces hypoxia-induced angiogenesis. Herein we discuss the interaction of melatonin with HIF-1α and HIF-1α-inducible genes in terms of what is currently known concerning the HIF-1α hypoxia response element (HIF-1α-HRE) pathway. The von Hippel-Lindau protein (VHL), also known as the VHL tumor suppressor, functions as part of a ubiquitin ligase complex which recognizes HIF-1α as a substrate. As such, VHL is part of the oxygen sensing mechanism of the cell. Under conditions of hypoxia, HIF-1α stimulates the transcription of numerous HIF-1α-induced genes, including EPO, VEGF, and PFKFB3; the latter is an enzyme which regulates glycolysis. Data from several studies show that ROS generated in mitochondria under conditions of hypoxia stimulate HIF-1α. Since melatonin acts as an antioxidant and reduces ROS, these data suggest that the antioxidant action of melatonin could account for reduced HIF-1, less VEGF, and reduced glycolysis in cancer cells (Warburg effect). A direct or indirect inhibitory action (via the reduction in ROS) of melatonin on proteasome activity would account for much of the published data.
Collapse
|