1
|
Collins K, Bridge JA, Mehra R, Mannan R, Dickson BC, Lotan TL, Idrees MT, Ulbright TM, Acosta AM. Renal epithelioid angiomyolipomas overexpress TFE3 and the TFE3-regulated gene TRIM63 in the absence of TFE3 rearrangement. Virchows Arch 2024; 485:471-478. [PMID: 38971946 DOI: 10.1007/s00428-024-03855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/08/2024]
Abstract
Angiomyolipoma (AML) is a neoplasm within the perivascular epithelioid cell tumor family that occurs somewhat frequently in the kidney. Most are indolent and discovered incidentally, with rare tumors demonstrating malignant clinical behavior. A small subset of renal AMLs with epithelioid features are associated with aggressive behavior, and may demonstrate morphologic overlap with renal cell carcinomas (e.g., clear cell renal cell carcinoma (RCC), TFE3-rearranged RCC). Prior studies of spindle cell and epithelioid AMLs have identified rare examples with underlying TFE3 gene fusions. TFE3 protein expression (demonstrated by immunohistochemistry) with no evidence of concurrent TFE3 rearrangements has been reported previously in 4/24 AMLs (17%) (Argani et al. Am J Surg Pathol 34:1395-1406, 2010). Currently, the relationship between TFE3 protein expression, TFE3 fusions, and expression of TFE3-mediated genes remains incompletely understood in renal epithelioid AMLs. We sought to explore these relationships using TFE3 break-apart fluorescence in situ hybridization (FISH) and TRIM63 RNA in situ hybridization (ISH) on epithelioid AMLs with moderate to strong TFE3 expression by immunohistochemistry. RNA sequencing (fusion panel) was performed on two cases with negative FISH results to assess for FISH-cryptic gene fusions. The series comprised five epithelioid AMLs from four patients (three women, one man) aged 13 to 76 years. All were considered positive for TFE3 by immunohistochemistry (2 + /3 + expression). TRIM63 ISH was performed on four specimens from three patients, yielding positive results in 3/3 tumors (100%) that were successfully analyzed. TFE3 break-apart FISH was performed on all samples, demonstrating a TFE3 rearrangement in only 1/4 tumors (25%). RNA sequencing demonstrated the absence of productive TFE3 gene fusions in three tumors with negative break-apart TFE3 FISH results. This study demonstrates that renal epithelioid AMLs overexpress TFE3 and TFE3-mediated genes (TRIM63) even in the absence of TFE3 rearrangements. This finding could be explained by functional upregulation of TFE3 secondary to activation of the mammalian target of rapamycin complex 1 (mTORC1). Expression of TFE3 and TRIM63 in this tumor type represents a potential pitfall, given the morphologic and immunophenotypic overlap between epithelioid AML and TFE3-altered renal cell carcinoma.
Collapse
Affiliation(s)
- Katrina Collins
- Department of Pathology, Indiana University School of Medicine, 305 W 11 Street, Room 4080, Indianapolis, IN, USA
| | - Julia A Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- ProPath, Division of Molecular Pathology, Dallas, TX, USA
| | - Rohit Mehra
- Department of Pathology and Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rahul Mannan
- Department of Pathology and Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Tamara L Lotan
- Department of PathologyDepartment of OncologyDepartment of Urology, Johns Hopkins University School of MedicineJohns Hopkins University School of MedicineJohns Hopkins University School of Medicine, Baltimore, USA
| | - Muhammad T Idrees
- Department of Pathology, Indiana University School of Medicine, 305 W 11 Street, Room 4080, Indianapolis, IN, USA
| | - Thomas M Ulbright
- Department of Pathology, Indiana University School of Medicine, 305 W 11 Street, Room 4080, Indianapolis, IN, USA
| | - Andres M Acosta
- Department of Pathology, Indiana University School of Medicine, 305 W 11 Street, Room 4080, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Wangsiricharoen S, Ingram DR, Morey RR, Wani K, Lazar AJ, Wang WL. Glycoprotein Nonmetastatic Melanoma Protein B (GPNMB) Immunohistochemistry Can Be a Useful Ancillary Tool to Identify Perivascular Epithelioid Cell Tumor. Mod Pathol 2024; 37:100426. [PMID: 38219952 DOI: 10.1016/j.modpat.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/13/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors that express smooth muscle and melanocytic makers. Diagnosis of PEComas can be challenging due to focal or lost expression of traditional immunohistochemical markers, limited availability of molecular testing, and morphological overlap with much more common smooth muscle tumors. This study evaluates the use of glycoprotein nonmetastatic melanoma protein B (GPNMB) immunohistochemical staining as a surrogate marker for TSC1/2/MTOR alteration or TFE3 rearrangement to differentiate PEComas from other mesenchymal tumors. Cathepsin K was also assessed for comparison. A total of 399 tumors, including PEComas, alveolar soft part sarcomas, and other histologic PEComa mimics, were analyzed using GPNMB and cathepsin K immunohistochemistry. GPNMB expression was seen in all PEComas and alveolar soft part sarcomas with the majority showing diffuse and moderate-to-strong labeling, whereas other sarcomas were negative or showed focal labeling. When a cutoff of diffuse and at least moderate staining was used, GPNMB demonstrated 95% sensitivity and 97% specificity in distinguishing PEComas from leiomyosarcoma, well-differentiated/dedifferentiated liposarcomas, and undifferentiated pleomorphic sarcomas. Cathepsin K with a cutoff of any labeling had lower sensitivity (78%) and similar specificity (94%) to GPNMB. This study highlights GPNMB as a highly sensitive marker for PEComas and suggests its potential use as an ancillary tool within a panel of markers for accurate classification of these tumors.
Collapse
Affiliation(s)
- Sintawat Wangsiricharoen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, Oregon
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rohini R Morey
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Asrani K, Woo J, Mendes AA, Schaffer E, Vidotto T, Villanueva CR, Feng K, Oliveira L, Murali S, Liu HB, Salles DC, Lam B, Argani P, Lotan TL. An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss. Nat Commun 2022; 13:6808. [PMID: 36357396 PMCID: PMC9649702 DOI: 10.1038/s41467-022-34617-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/01/2022] [Indexed: 11/12/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates inputs from growth factors and nutrients, but how mTORC1 autoregulates its activity remains unclear. The MiT/TFE transcription factors are phosphorylated and inactivated by mTORC1 following lysosomal recruitment by RagC/D GTPases in response to amino acid stimulation. We find that starvation-induced lysosomal localization of the RagC/D GAP complex, FLCN:FNIP2, is markedly impaired in a mTORC1-sensitive manner in renal cells with TSC2 loss, resulting in unexpected TFEB hypophosphorylation and activation upon feeding. TFEB phosphorylation in TSC2-null renal cells is partially restored by destabilization of the lysosomal folliculin complex (LFC) induced by FLCN mutants and is fully rescued by forced lysosomal localization of the FLCN:FNIP2 dimer. Our data indicate that a negative feedback loop constrains amino acid-induced, FLCN:FNIP2-mediated RagC activity in renal cells with constitutive mTORC1 signaling, and the resulting MiT/TFE hyperactivation may drive oncogenesis with loss of the TSC2 tumor suppressor.
Collapse
Affiliation(s)
- Kaushal Asrani
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Juhyung Woo
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Adrianna A. Mendes
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Ethan Schaffer
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Thiago Vidotto
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Clarence Rachel Villanueva
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kewen Feng
- grid.21107.350000 0001 2171 9311Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Lia Oliveira
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Sanjana Murali
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Hans B. Liu
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Daniela C. Salles
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Brandon Lam
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Pedram Argani
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Tamara L. Lotan
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
4
|
Shi Q, Chang C, Saliba A, Bhat MA. Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the 5XFAD Alzheimer's Disease Model. J Neurosci 2022; 42:5294-5313. [PMID: 35672148 PMCID: PMC9270922 DOI: 10.1523/jneurosci.2427-21.2022] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway plays a major role in key cellular processes including metabolism and differentiation; however, the role of mTOR in microglia and its importance in Alzheimer's disease (AD) have remained largely uncharacterized. We report that selective loss of Tsc1, a negative regulator of mTOR, in microglia in mice of both sexes, caused mTOR activation and upregulation of Trem2 with enhanced β-Amyloid (Aβ) clearance, reduced spine loss, and improved cognitive function in the 5XFAD AD mouse model. Combined loss of Tsc1 and Trem2 in microglia led to reduced Aβ clearance and increased Aβ plaque burden revealing that Trem2 functions downstream of mTOR. Tsc1 mutant microglia showed increased phagocytosis with upregulation of CD68 and Lamp1 lysosomal proteins. In vitro studies using Tsc1-deficient microglia revealed enhanced endocytosis of the lysosomal tracker indicator Green DND-26 suggesting increased lysosomal activity. Incubation of Tsc1-deficient microglia with fluorescent-labeled Aβ revealed enhanced Aβ uptake and clearance, which was blunted by rapamycin, an mTOR inhibitor. In vivo treatment of mice of relevant genotypes in the 5XFAD background with rapamycin, affected microglial activity, decreased Trem2 expression and reduced Aβ clearance causing an increase in Aβ plaque burden. Prolonged treatment with rapamycin caused even further reduction of mTOR activity, reduction in Trem2 expression, and increase in Aβ levels. Together, our findings reveal that mTOR signaling in microglia is critically linked to Trem2 regulation and lysosomal biogenesis, and that the upregulation of Trem2 in microglia through mTOR activation could be exploited toward better therapeutic avenues to Aβ-related AD pathologies.SIGNIFICANCE STATEMENT Mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator for major cellular metabolic processes. However, the link between mTOR signaling and Alzheimer's disease (AD) is not well understood. In this study, we provide compelling in vivo evidence that mTOR activation in microglia would benefit β-Amyloid (Aβ)-related AD pathologies, as it upregulates Trem2, a key receptor for Aβ plaque uptake. Inhibition of mTOR pathway with rapamycin, a well-established immunosuppressant, downregulated Trem2 in microglia and reduced Aβ plaque clearance indicating that mTOR inactivation may be detrimental in Aβ-associated AD patients. This finding will have a significant public health impact and benefit, regarding the usage of rapamycin in AD patients, which we believe will aggravate the Aβ-related AD pathologies.
Collapse
Affiliation(s)
- Qian Shi
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Cheng Chang
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Afaf Saliba
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| |
Collapse
|
5
|
Salles DC, Asrani K, Woo J, Vidotto T, Liu HB, Vidal I, Matoso A, Netto GJ, Argani P, Lotan TL. GPNMB
expression identifies
TSC1
/2/
mTOR
‐associated and
MiT
family translocation‐driven renal neoplasms. J Pathol 2022; 257:158-171. [PMID: 35072947 PMCID: PMC9310781 DOI: 10.1002/path.5875] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
GPNMB (glycoprotein nonmetastatic B) and other TFE3/TFEB transcriptional targets have been proposed as markers for microphthalmia (MiT) translocation renal cell carcinomas (tRCCs). We recently demonstrated that constitutive mTORC1 activation via TSC1/2 loss leads to increased activity of TFE3/TFEB, suggesting that the pathogenesis and molecular markers for tRCCs and TSC1/2‐associated tumors may be overlapping. We examined GPNMB expression in human kidney and angiomyolipoma (AML) cell lines with TSC2 and/or TFE3/TFEB loss produced using CRISPR–Cas9 genome editing as well as in a mouse model of Tsc2 inactivation‐driven renal tumorigenesis. Using an automated immunohistochemistry (IHC) assay for GPNMB, digital image analysis was employed to quantitatively score expression in clear cell RCC (ccRCC, n = 87), papillary RCC (papRCC, n = 53), chromophobe RCC (chRCC, n = 34), oncocytoma (n = 4), TFE3‐ or TFEB‐driven tRCC (n = 56), eosinophilic solid and cystic RCC (ESC, n = 6), eosinophilic vacuolated tumor (EVT, n = 4), and low‐grade oncocytic tumor (LOT, n = 3), as well as AML (n = 29) and perivascular epithelioid cell tumors (PEComas, n = 8). In cell lines, GPNMB was upregulated following TSC2 loss in a MiT/TFE‐ and mTORC1‐dependent fashion. Renal tumors in Tsc2+/− A/J mice showed upregulation of GPNMB compared with normal kidney. Mean GPNMB expression was significantly higher in tRCC than in ccRCC (p < 0.0001), papRCC (p < 0.0001), and chRCC (p < 0.0001). GPNMB expression in TSC1/2/MTOR alteration‐associated renal tumors (including ESC, LOT, AML, and PEComa) was comparable to that in tRCC. The immunophenotype of tRCC and TSC1/2/MTOR alteration‐associated renal tumors is highly overlapping, likely due to the increased activity of TFE3/TFEB in both, revealing an important caveat regarding the use of TFE3/TFEB‐transcriptional targets as diagnostic markers. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Daniela C. Salles
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Kaushal Asrani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Juhyung Woo
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Thiago Vidotto
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Hans B. Liu
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Igor Vidal
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Andres Matoso
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - George J. Netto
- Department of Pathology University of Alabama Birmingham Alabama USA
| | - Pedram Argani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Tamara L. Lotan
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Urology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
6
|
A novel TSC1 variant associated with tuberous sclerosis and sacrococcygeal teratoma. Hum Genome Var 2020; 7:39. [PMID: 33298910 PMCID: PMC7677537 DOI: 10.1038/s41439-020-00124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 11/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease associated with tumors and malformed tissues in the brain and other vital organs. We report a novel de novo frameshift variant of the TSC1 gene (c.434dup;p. Ser146Valfs*8) in a child with TSC who initially presented with a sacral teratoma. This previously unreported association between TSC and teratoma has broad implications for the pathophysiology of embryonic tumors and mechanisms underlying cellular differentiation.
Collapse
|
7
|
Asrani K, Murali S, Lam B, Na CH, Phatak P, Sood A, Kaur H, Khan Z, Noë M, Anchoori RK, Talbot CC, Smith B, Skaro M, Lotan TL. mTORC1 feedback to AKT modulates lysosomal biogenesis through MiT/TFE regulation. J Clin Invest 2020; 129:5584-5599. [PMID: 31527310 DOI: 10.1172/jci128287] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/10/2019] [Indexed: 01/02/2023] Open
Abstract
The microphthalmia family of transcription factors (MiT/TFEs) controls lysosomal biogenesis and is negatively regulated by the nutrient sensor mTORC1. However, the mechanisms by which cells with constitutive mTORC1 signaling maintain lysosomal catabolism remain to be elucidated. Using the murine epidermis as a model system, we found that epidermal Tsc1 deletion resulted in a phenotype characterized by wavy hair and curly whiskers, and was associated with increased EGFR and HER2 degradation. Unexpectedly, constitutive mTORC1 activation with Tsc1 loss increased lysosomal content via upregulated expression and activity of MiT/TFEs, whereas genetic deletion of Rheb or Rptor or prolonged pharmacologic mTORC1 inactivation had the reverse effect. This paradoxical increase in lysosomal biogenesis by mTORC1 was mediated by feedback inhibition of AKT, and a resulting suppression of AKT-induced MiT/TFE downregulation. Thus, inhibiting hyperactive AKT signaling in the context of mTORC1 loss-of-function fully restored MiT/TFE expression and activity. These data suggest that signaling feedback loops work to restrain or maintain cellular lysosomal content during chronically inhibited or constitutively active mTORC1 signaling, respectively, and reveal a mechanism by which mTORC1 regulates upstream receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
| | | | | | - Chan-Hyun Na
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pornima Phatak
- Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, USA
| | | | | | | | | | | | | | - Barbara Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
8
|
Lichner Z, Mac-Way F, Yousef GM. Obstacles in Renal Regenerative Medicine: Metabolic and Epigenetic Parallels Between Cellular Reprogramming and Kidney Cancer Oncogenesis. Eur Urol Focus 2017; 5:250-261. [PMID: 28847686 DOI: 10.1016/j.euf.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/11/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
CONTEXT Regenerative medicine has recently presented a revolutionary solution to end-stage kidney disease. Reprogramming patients' own cells generates induced pluripotent stem cells that are subsequently differentiated to "kidney organoid," a structure that is anatomically and functionally similar to the kidney. This approach holds the promise of a transplantable, immunocompetent, and functional kidney that could be produced in vitro. However, caution must be taken due to the molecular-level similarities between induced pluripotent stem cells and renal cell carcinomas. As such, if cell reprogramming is not tightly controlled, it can lead to carcinogenic changes. OBJECTIVE Based on recent next-generation sequencing results and other supporting data, we identified three major molecular attributes of renal cell carcinoma: metabolic alterations, epigenetic changes, and miRNA-based alterations. Strikingly, these variations are mirrored in induced pluripotent stem cells, which are the main cell source of renal regenerative medicine. Our objective was to discuss the shared metabolic, epigenetic and miRNA-regulated characteristics and to abridge their significance in renal regenerative medicine. EVIDENCE ACQUISITION English-language literature was retrieved through PubMed. EVIDENCE SYNTHESIS Authors collected the published evidence and evaluated the content based on independent literature findings. Articles were filtered to include only highly relevant, recent publications that presented reproducible results by authorities of the field. CONCLUSIONS The kidney represents a unique metabolic environment that could be hijacked by induced pluripotent stem cells or by partially differentiated cells for oncogenic transformation. Future differentiation protocols must produce kidney organoids that are fully engaged in filtration function. PATIENT SUMMARY A new technology can produce mini-kidneys or kidney organoids. This review discusses some of the challenges this technology has to face, including its high oncogenic potential. Understanding these similarities will lead to the safe creation of new functional kidney units in patients with kidney failure.
Collapse
Affiliation(s)
- Zsuzsanna Lichner
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Fabrice Mac-Way
- Research Center of CHU de Québec, l'Hôtel-Dieu de Québec Hospital, Division of Nephrology, Faculty and Department of Medicine, Laval University, Quebec, Canada
| | - George M Yousef
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Hino O, Kobayashi T. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci 2017; 108:5-11. [PMID: 27862655 PMCID: PMC5276834 DOI: 10.1111/cas.13116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 12/16/2022] Open
Abstract
On July 10, 2016, Alfred G. Knudson, Jr., MD, PhD, a leader in cancer research, died at the age of 93 years. We deeply mourn his loss. Knudson's two-hit hypothesis, published in 1971, has been fundamental for understanding tumor suppressor genes and familial tumor-predisposing syndromes. To understand the molecular mechanism of two-hit-initiated tumorigenesis, Knudson used an animal model of a dominantly inherited tumor, the Eker rat. From the molecular identification of Tsc2 germline mutations, the Eker rat became a model for tuberous sclerosis complex (TSC), a familial tumor-predisposing syndrome. Animal models, including the fly, have greatly contributed to TSC research. Because the product of the TSC2/Tsc2 gene (tuberin) together with hamartin, the product of another TSC gene (TSC1/Tsc1), suppresses mammalian/mechanistic target of rapamycin complex 1 (mTORC1), rapalogs have been used as therapeutic drugs for TSC. Although significant activity of these drugs has been reported, there are still problems such as recurrence of residual tumors and adverse effects. Recent studies indicate that there are mTORC1-independent signaling pathways downstream of hamartin/tuberin, which may represent new therapeutic targets. The establishment of cellular models, such as pluripotent stem cells with TSC2/Tsc2 gene mutations, will facilitate the understanding of new aspects of TSC pathogenesis and the development of novel treatment options. In this review, we look back at the history of Knudson and animal models of TSC and introduce recent progress in TSC research.
Collapse
Affiliation(s)
- Okio Hino
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Kobayashi
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|