1
|
Liu C, Xia S, Wang B, Li J, Wang X, Ren Y, Zhou X. Osteopontin promotes tumor microenvironment remodeling and therapy resistance. Cancer Lett 2025; 617:217618. [PMID: 40058726 DOI: 10.1016/j.canlet.2025.217618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Osteopontin (OPN) is a multifunctional secretory protein which can be expressed and secreted by a variety of tumor cells and immune cells. Tumor microenvironment remodeling provides favorable conditions for tumor progression, immune escape and therapy resistance. As a bridge molecule in crosstalk between tumor cells and tumor microenvironment, OPN can not only come from tumor cells to regulate the functions of various immune cells, promoting the formation of immunosuppressive environment, but also can be secreted by immune cells to act on tumor cells, leading to tumor progression, thus constructing a positive feedback regulatory network. Here, we summarize the molecular structure, source and receptor of OPN, and clarify the mechanism of OPN on tumor-associated macrophages, dendritic cells, myeloid-derived suppressor cells, tumor progression and therapy resistance to comprehensively understand the great potential of OPN as a tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
- Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Shunjin Xia
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jiayong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xuyan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
2
|
Xu X, Lin J, Wang J, Wang Y, Zhu Y, Wang J, Guo J. SPP1 expression indicates outcome of immunotherapy plus tyrosine kinase inhibition in advanced renal cell carcinoma. Hum Vaccin Immunother 2024; 20:2350101. [PMID: 38738709 PMCID: PMC11093034 DOI: 10.1080/21645515.2024.2350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Clinical guidelines have recently advised combination therapy involving immunotherapy (IO) and tyrosine kinase inhibitors (TKI) as the first-line therapy approach for advanced renal cell carcinoma (RCC). Nevertheless, there is currently no available biomarker that can effectively distinguish the progression-free survival (PFS). RNA-sequencing and immunohistochemistry were conducted on our cohort of metastatic RCC patients, namely ZS-MRCC, who received combination therapy consisting of IO and TKI. We further applied RNA-sequencing, immunohistochemistry, and flow cytometry to examine the immune cell infiltration and functionality inside the tumor microenvironment of high-risk localized RCC samples. SPP1 expression was significantly higher in non-responders to IO-TKI therapy. Elevated levels of SPP1 were associated with poor PFS in both the ZS-MRCC cohort (HR = 2.73, p = .018) and validated in the JAVELIN Renal 101 cohort (HR = 1.61, p = .004). By multivariate Cox analysis, SPP1 was identified as a significant independent prognosticator. Furthermore, there existed a negative correlation between elevated levels of SPP1 and the presence of GZMB+CD8+ T cells (Spearman's ρ= -0.48, p < .001). Conversely, SPP1 expression is associated with T cell exhaustion markers. A significant increase in the abundance of Tregs was observed in tumors with high levels of SPP1. Additionally, a machine-learning-based model was constructed to predict the benefit of IO-TKI treatment. High SPP1 is associated with therapeutic resistance and unfavorable PFS in IO-TKI therapy. SPP1 expression have also been observed to be indicative of malfunction and exhaustion in T cells. Increased SPP1 expression has the potential to serve as a potential biomarker for treatment selection of metastatic RCC.
Collapse
Affiliation(s)
- Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jinglai Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Jiahao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Gao Y, Yang Z, Bajpai AK, Wang W, Zhang L, Xia Z. Resveratrol enhances the antiliver cancer effect of cisplatin by targeting the cell membrane protein PLA2. Front Oncol 2024; 14:1453164. [PMID: 39381045 PMCID: PMC11458693 DOI: 10.3389/fonc.2024.1453164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Background In this study, we aimed to explore the mechanism by which resveratrol promotes cisplatin-induced death of HepG2 cells and to provide a potential strategy for resveratrol in the treatment of cancer. Methods HepG2 cells were exposed to a range of drug concentrations for 24 h: resveratrol (2.5 μg/mL [10.95 μM], 5 μg/mL [21.91 μM], 10 μg/mL [43.81 μM], 20 μg/mL [87.62 μM], 40 μg/mL [175.25 μM], and 80 μg/mL [350.50 μM]), cisplatin (0.625 μg/mL [2.08 μM], 1.25 μg/mL [4.17 μM], 2.5 μg/mL [8.33 μM], 4.5 μg/mL [15.00 μM], and 10 μg/mL [33.33 μM]), 24 μg/mL (105.15 μM) resveratrol + 9 μg/mL (30.00 μM) cisplatin, and 12 μg/mL (52.57 μM) resveratrol + 4.5 μg/mL (15.00 μM) cisplatin. The interaction of two drugs was evaluated by coefficient of drug interaction (CDI), which was based on the Pharmacological Additivity model. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect the effect of different concentrations of drugs on cell viability, while transcriptome sequencing was used to identify pathways associated with higher gene enrichment. Synchrotron radiation FTIR microspectroscopy experiments and data analysis were conducted to obtain detailed spectral information. The second-derivative spectra were calculated using the Savitzky-Golay algorithm. Single-cell infrared spectral absorption matrices were constructed to analyze the spectral characteristics of individual cells. The Euclidean distance between cells was calculated to assess their spectral similarity. The cell-to-cell Euclidean distance was computed to evaluate the spatial relationships between cells. The target protein of resveratrol was verified by performing a Western blot analysis. Results After 24 h of treatment with resveratrol, HepG2 cell growth was inhibited in a dose-dependent manner. Resveratrol promotes cisplatin-induced HepG2 cell death through membrane-related pathways. It also significantly changes the membrane components of HepG2 cells. Additionally, resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2. Conclusion Resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2 and promotes cisplatin-induced HepG2 cell death. The combination of cisplatin and resveratrol can play a synergistic therapeutic effect on HepG2 cells.
Collapse
Affiliation(s)
- Yu Gao
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhanyi Yang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenben Wang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liyuan Zhang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhenhong Xia
- Department of Pharmacy, Binzhou Medical University, Yantai, China
- Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
4
|
Panda VK, Mishra B, Nath AN, Butti R, Yadav AS, Malhotra D, Khanra S, Mahapatra S, Mishra P, Swain B, Majhi S, Kumari K, Radharani NNV, Kundu GC. Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines 2024; 12:1527. [PMID: 39062100 PMCID: PMC11274826 DOI: 10.3390/biomedicines12071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Ramesh Butti
- Division of Hematology and Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA;
| | - Amit Singh Yadav
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - N. N. V. Radharani
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
5
|
Osteopontin and Cancer: Insights into Its Role in Drug Resistance. Biomedicines 2023; 11:biomedicines11010197. [PMID: 36672705 PMCID: PMC9855437 DOI: 10.3390/biomedicines11010197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. Currently, drug resistance is the main obstacle in cancer treatments with the underlying mechanisms of drug resistance yet to be fully understood. Osteopontin (OPN) is a member of the integrin binding glycophosphoprotein family that is overexpressed in several tumour types. It is involved in drug transport, apoptosis, stemness, energy metabolism, and autophagy, which may contribute to drug resistance. Thus, understanding the role of OPN in cancer drug resistance could be important. This review describes the OPN-based mechanisms that might contribute to cancer drug resistance, demonstrating that OPN may be a viable target for cancer therapy to reduce drug resistance in sensitive tumours.
Collapse
|
6
|
Ji J, Zhang Z, Peng Q, Hao L, Guo Y, Xue Y, Liu Y, Li C, Shi X. The Effects of Qinghao-Kushen and Its Active Compounds on the Biological Characteristics of Liver Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8763510. [PMID: 35722140 PMCID: PMC9205744 DOI: 10.1155/2022/8763510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Artemisia annua (Qinghao) and Sophora flavescens (Kushen) are traditional Chinese medicines (TCMs). They are widely used in disease therapy, including hepatocellular carcinoma (HCC). However, their key compounds and targets for HCC treatment are unclear. This article mainly analyzed the vital active compounds and the mechanism of Qinghao-Kushen acting on HCC. METHODS First, we chose a traditional Chinese medicine, which has an excellent clinical effect on HCC by network meta-analysis. Then, we composed the Qinghao-Kushen herb pair and prepared the medicated serum. The active compounds of Qinghao-Kushen were verified by the LC-MS method. Next, we detected key targets from PubChem, SymMap, SwissTargetPrediction, DisGeNET, and GeneCards databases. Subsequently, the mechanism of Qinghao-Kushen was predicted by network pharmacology strategy and primarily examined in HuH-7 cells, HepG2 cells, and HepG2215 cells. RESULTS The effect of the Qinghao-Kushen combination was significantly better than that of single Qinghao or single Kushen in HepG2 and HuH-7 cells. Qinghao-Kushen increased the expression of activated caspase-3 protein than Qinghao or Kushen alone in HepG2 and HepG2215 cells. Network analyses and the LC-MS method revealed that the pivotal compounds of Qinghao-Kushen were matrine and scopoletin. GSK-3β was one of the critical molecules related to Qinghao-Kushen. We confirmed that Qinghao-Kushen and matrine-scopoletin decreased the expression of GSK-3β in HepG2 cells while increased GSK-3β expression in HepG2215 cells. CONCLUSIONS This work not only illustrated that the practical components of Qinghao-Kushen on HCC were matrine and scopoletin but shed light on the inhibitory of Qinghao-Kushen and matrine-scopoletin on liver cancer cells. Moreover, Qinghao-Kushen and matrine-scopoletin had a synergistic effect over the drug alone in HuH-7, HepG2, or HepG2215 cells. GSK-3β may be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
7
|
Baj J, Bryliński Ł, Woliński F, Granat M, Kostelecka K, Duda P, Flieger J, Teresiński G, Buszewicz G, Furtak-Niczyporuk M, Portincasa P. Biomarkers and Genetic Markers of Hepatocellular Carcinoma and Cholangiocarcinoma-What Do We Already Know. Cancers (Basel) 2022; 14:1493. [PMID: 35326644 PMCID: PMC8946081 DOI: 10.3390/cancers14061493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with an increasing worldwide mortality rate. Cholangiocarcinoma (CCA) is the second most common primary liver cancer. In both types of cancers, early detection is very important. Biomarkers are a relevant part of diagnosis, enabling non-invasive detection and control of cancer recurrence, as well as in the application of screening tests in high-risk groups. Furthermore, some of these biomarkers are useful in controlling therapy and treatment selection. Detection of some markers presents higher sensitivity and specificity in combination with other markers when compared with a single detection. Some gene aberrations are also prognostic markers in the two types of cancers. In the following review, we discuss the most common biomarkers and genetic markers currently being used in the diagnosis of hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Łukasz Bryliński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | - Michał Granat
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Katarzyna Kostelecka
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Piotr Duda
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | | | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
8
|
Abstract
Hepatocellular carcinoma is one of the major causes of cancer-related deaths worldwide and is associated with several inflammatory mediators, since 90% of HCCs occur based on chronic hepatitis B or C, alcoholism or increasingly metabolic syndrome-associated inflammation. EMT is a physiological process, with coordinated changes in epithelial gene signatures and is regulated by multiple factors, including cytokines and growth factors such as TGFβ, EGF, and FGF. Recent reports propose a strong association between EMT and inflammation, which is also correlated with tumor aggressiveness and poor outcomes. Cellular heterogeneity results collectively as an outcome of EMT, inflammation, and the tumor microenvironment, and it plays a fundamental role in the progression, complexity of cancer, and chemoresistance. In this review, we highlight recent developments concerning the association of EMT and inflammation in the context of HCC progression. Identifying potential EMT-related biomarkers and understanding EMT regulatory molecules will likely contribute to promising developments in clinical practice and will be a valuable tool for predicting metastasis in general and specifically in HCC.
Collapse
|
9
|
Li P, Song R, Yin F, Liu M, Liu H, Ma S, Jia X, Lu X, Zhong Y, Yu L, Li X, Li X. circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther 2022; 30:431-447. [PMID: 34450251 PMCID: PMC8753434 DOI: 10.1016/j.ymthe.2021.08.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death worldwide. Circular RNAs (circRNAs), a novel class of non-coding RNA, have been reported to be involved in the etiology of various malignancies. However, the underlying cellular mechanisms of circRNAs implicated in the pathogenesis of HCC remain unknown. In this study, we identified a functional RNA, hsa_circ_0000384 (circMRPS35), from public tumor databases using a set of computational analyses, and we further identified that circMRPS35 was highly expressed in 35 pairs of HCC from patients. Moreover, knockdown of the expression of circMRPS35 in Huh-7 and HCC-LM3 cells suppressed their proliferation, migration, invasion, clone formation, and cell cycle in vitro, and it suppressed tumor growth in vivo as well. Mechanically, circMRPS35 sponged microRNA-148a-3p (miR-148a), regulating the expression of Syntaxin 3 (STX3), which modulated the ubiquitination and degradation of phosphatase and tensin homolog (PTEN). Unexpectedly, we detected a peptide encoded by circMRPS35 (circMRPS35-168aa), which was significantly induced by chemotherapeutic drugs and promoted cisplatin resistance in HCC. These results demonstrated that circMRPS35 might be a novel mediator in HCC progress, and they raise the potential of a new biomarker for HCC diagnosis and prognosis, as well as a novel therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Runjie Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fan Yin
- Department of Oncology, The Second Medical Centre & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, Beijing 100071, China
| | - Mei Liu
- Department of Pathology, Chinese PLA General Hospital, Beijing 100071, China
| | - Huijiao Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuoqian Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaomeng Jia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohui Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuting Zhong
- Department of Surgery, Chinese PLA General Hospital, Beijing, 100071, China
| | - Lei Yu
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Xiru Li
- Department of Surgery, Chinese PLA General Hospital, Beijing, 100071, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland,Department of Nutrition and Health, China Agricultural University, Beijing 100193, China,Corresponding author: Xiangdong Li, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Zubareva EY, Senchukova MA. Prognostic and predictive significance of osteopontin in malignant neoplasms. ADVANCES IN MOLECULAR ONCOLOGY 2021; 8:23-28. [DOI: 10.17650/2313-805x-2021-8-2-23-28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osteopontin is an extracellular matrix protein which is produced by different types of cells and plays an important functional role in many biological processes. This review discusses the main functions of osteopontin, its role in the progression and chemoresistance of malignant neoplasms, in the regulation of epithelial-mesenchymal transition, angiogenesis, and the body’s immune response to the tumor. The article considers the currently known mechanisms by which osteopontin affects to the survival, mobility and invasion of tumor cells, to tumor sensitivity to drug treatment, as well as the prospects for a integrated study of the predictive significance of osteopontin, markers of hypoxia, angiogenesis, epithelial- mesenchymal transition, and immunological tolerance.
Collapse
Affiliation(s)
- E. Yu. Zubareva
- Orenburg Regional Clinical Oncological Dispensary; Orenburg State Medical University
| | - M. A. Senchukova
- Orenburg Regional Clinical Oncological Dispensary; Orenburg State Medical University
| |
Collapse
|
11
|
Cao H, Yang M, Yang Y, Fang J, Cui Y. PBK/TOPK promotes chemoresistance to oxaliplatin in hepatocellular carcinoma cells by regulating PTEN. Acta Biochim Biophys Sin (Shanghai) 2021; 53:584-592. [PMID: 33772548 DOI: 10.1093/abbs/gmab028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 11/14/2022] Open
Abstract
Oxaliplatin (OXA) resistance limits the efficiency of treatment for hepatocellular carcinoma (HCC). Studies have shown that the PDZ-binding kinase (PBK) plays important roles in tumors. However, the role of PBK in HCC is still a problem. In this study, we explored whether PBK is involved in the chemoresistance to OXA in HCC. Expressions of PBK in six HCC cell lines and one human hepatocytes line were determined by real-time quantitative PCR and western blot analysis. SNU-182 and HepG2 cells were chosen to induce OXA resistance. PBK was silenced or overexpressed in OXA-resistant and sensitive cell lines. Then, cell proliferation, migration, and invasion were measured by cholecystokinin-8 assay and Transwell assay, respectively. The Cancer Genome Atlas dataset showed that PBK is highly expressed in HCC and signifies poor prognosis to patient with HCC. Results showed that expression of PBK in HCC cells was significantly higher than that in THLE2 cells, and it was further increased in OXA-resistant HCC cells. Silencing of PBK promoted the sensitivity of drug-resistant HCC cells to OXA. Overexpression of PBK relieved the apoptosis induced by OXA and promoted the migration and invasion of OXA-sensitive HCC cells. Thus, this study revealed that high PBK expression is correlated with OXA resistance in HCC cells, which may provide a promising therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Hongmin Cao
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Mei Yang
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Yufeng Yang
- Department of Pathology, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Jiayan Fang
- Oncology Department, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| | - Yejia Cui
- Department of Clinical Laboratory, SSL Central Hospital of Dongguan City, The Third People’s Hospital of Dongguan City, Dongguan 523326, China
| |
Collapse
|
12
|
Zhang C, Ma K, Li WY. Cinobufagin Suppresses The Characteristics Of Osteosarcoma Cancer Cells By Inhibiting The IL-6-OPN-STAT3 Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4075-4090. [PMID: 31824138 PMCID: PMC6900468 DOI: 10.2147/dddt.s224312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Background Current clinical treatments for osteosarcoma are limited by disease recurrence and primary or secondary chemoresistance. Cancer stem-like cells have been proposed to facilitate the initiation, progression, recurrence and chemoresistance of osteosarcoma. Furthermore, previous studies have reported that IL-6-STAT3 pathway is overexpressed in various types of cancer and contributes to cell proliferation, apoptosis, invasion/migration, chemoresistance and modulation of stemness features. Aim To examined the effect of cinobufagin on cancer progression and modulation of stemness features in osteosarcoma, and investigated the molecular mechanisms underlying such effects. Methods Human osteosarcoma cell lines U2OS/MG-63 were recruited in this study. Cell proliferation, migration, and invasion were determined by MTT assay, colony formation assay,wound healing assay, and cell invasion assay respectively. Its effect on stemness was assessed by flow cytometry and mammosphere formation. The protein expression levels of related proteins were detected by Western blot. The xenograft model, immunofluorescence staining and immunohistochemistry were used to determine the effect of cinobufagin on tumorigenicity in vivo experiment. Results We found that cinobufagin suppressed the viability of U2OS/MG-63 spheroids/parent cells in a time-and dose-dependent manner. Notably, cinobufagin had no effect on the viability of hFOB 1.19 cells. Moreover, cinobufagin induced apoptosis, increased the width of wounds, reduced invasive osteosarcoma spheroids/parent cell numbers and reduced EMT phenotype and OPN levels in U2OS/MG-63 spheroids as well as U2OS/MG-63 parent cells lines. Noticeablely, we found that OPN levels were higher in spheroids group than that in parent cells. In addition, cinobufagin ameliorated the proportion of CD133-positive cells, the size of spheroids and Nanog, Sox-2 and Oct3/4 protein levels. Our in vivo experiments showed that cinobufagin consistently reduced tumor volume,the expressions of OPN, Sox-2, Oct3/4, Nanog and p-STAT3 by the immuno histochemistry staining as well as CD133 expression in tumor tissues by immunofluorescence analysis. From a mechanistic point of view, cinobufagin was shown to inhibit IL-6-OPN-STAT3 signaling pathway. Exogenous IL-6/OE-OPN/overexpression STAT3 attenuated the induction of cinobufagin-mediated apoptosis and the suppression of stemness properties respectively. Conclusion Collectively, our data demonstrated that cinobufagin inhibited the viability and tumorigenesis capability of osteosarcoma cells by blocking IL-6- OPN-STAT3 signaling pathway. Cinobufagin may therefore represent a promising therapeutic agent for osteosarcoma management. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/a2KF0PMRBDo
Collapse
Affiliation(s)
- Chuan Zhang
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| | - Kun Ma
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| | - Wu-Yin Li
- Luoyang Orthopaedic-Traumatological Hospital and Henan Orthopaedic Hospital, Luoyang, Henan 471002, People's Republic of China
| |
Collapse
|
13
|
Xu X, Jiang X, Chen L, Zhao Y, Huang Z, Zhou H, Shi M. MiR-181a Promotes Apoptosis and Reduces Cisplatin Resistance by Inhibiting Osteopontin in Cervical Cancer Cells. Cancer Biother Radiopharm 2019; 34:559-565. [PMID: 31436472 DOI: 10.1089/cbr.2019.2858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: In this study, the authors established a cervical cancer cisplatin (DDP) drug-resistant cell line to explore the role of miR-181a in the regulation of osteopontin (OPN) expression and the proliferation, apoptosis, as well as DDP resistance of cervical cancer cells. Materials and Methods: Dual luciferase reporter gene assay was performed to validate the targeted relationship between miR-181a and OPN. The DDP-resistant cell line CaSki/DDP was established to compare the expressions of miR-181a and OPN. The cell proliferation activity was detected by CCK-8 assay. CaSki/DDP cells were divided into miR-NC group and miR-181a mimic group followed by analysis of cell apoptosis by flow cytometry, and the cell proliferation by EdU staining. Results: There was a targeted relationship between miR-181a and OPN mRNA. MiR-181a expression was significantly lower, while OPN mRNA and protein levels were significantly higher in CaSki/DDP cells than that in CaSki cells. Compared with the miR-NC group, OPN mRNA and protein were significantly decreased, cell apoptosis was significantly increased, and cell proliferation ability was significantly attenuated in miR-181a mimic transfection group. Conclusions: The decrease of miR-181a expression and the upregulation of OPN expression are related to the DDP resistance of cervical cancer cells. Overexpression of miR-181a can inhibit the expression of OPN, induce cell apoptosis cells, restrain cell proliferation, and reduce DDP resistance in cervical cancer cells.
Collapse
Affiliation(s)
- Xiaofei Xu
- Department of Obstetrics and Gynecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Xiaofei Jiang
- Department of Gynecology, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou, Jiangsu, China
| | - Liping Chen
- Department of Cardiology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| | - Yu Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihua Huang
- Department of Obstetrics and Gynecology, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Huifang Zhou
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mingqing Shi
- Department of Obstetrics and Gynecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, Zhejiang, China
| |
Collapse
|
14
|
Santoro JC, Bastos ACSF, Gimba ERP, Emerenciano M. Reinforcing osteopontin as a marker of central nervous system relapse in paediatric B‐cell acute lymphoblastic leukaemia:
SPP1
splice variant 3 in the spotlight. Br J Haematol 2019; 186:e88-e91. [DOI: 10.1111/bjh.15917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Júlio C. Santoro
- Division of Clinical Research, Research Centre Instituto Nacional de Câncer‐INCA Rio de Janeiro RJBrazil
| | - Ana C. S. F. Bastos
- Program of Cellular and Molecular Oncobiology, Research Centre Instituto Nacional de Câncer‐INCA Rio de Janeiro RJBrazil
| | - Etel R. P. Gimba
- Program of Cellular and Molecular Oncobiology, Research Centre Instituto Nacional de Câncer‐INCA Rio de Janeiro RJBrazil
- Department of Natural Sciences Universidade Federal Fluminense Rio das Ostras RJ Brazil
| | - Mariana Emerenciano
- Division of Clinical Research, Research Centre Instituto Nacional de Câncer‐INCA Rio de Janeiro RJBrazil
| |
Collapse
|
15
|
Olive JF, Qin Y, DeCristo MJ, Laszewski T, Greathouse F, McAllister SS. Accounting for tumor heterogeneity when using CRISPR-Cas9 for cancer progression and drug sensitivity studies. PLoS One 2018; 13:e0198790. [PMID: 29897959 PMCID: PMC5999218 DOI: 10.1371/journal.pone.0198790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/28/2018] [Indexed: 12/18/2022] Open
Abstract
Gene editing protocols often require the use of a subcloning step to isolate successfully edited cells, the behavior of which is then compared to the aggregate parental population and/or other non-edited subclones. Here we demonstrate that the inherent functional heterogeneity present in many cell lines can render these populations inappropriate controls, resulting in erroneous interpretations of experimental findings. We describe a novel CRISPR/Cas9 protocol that incorporates a single-cell cloning step prior to gene editing, allowing for the generation of appropriately matched, functionally equivalent control and edited cell lines. As a proof of concept, we generated matched control and osteopontin-knockout Her2+ and Estrogen receptor-negative murine mammary carcinoma cell lines and demonstrated that the osteopontin-knockout cell lines exhibit the expected biological phenotypes, including unaffected primary tumor growth kinetics and reduced metastatic outgrowth in female FVB mice. Using these matched cell lines, we discovered that osteopontin-knockout mammary tumors were more sensitive than control tumors to chemotherapy in vivo. Our results demonstrate that heterogeneity must be considered during experimental design when utilizing gene editing protocols and provide a solution to account for it.
Collapse
Affiliation(s)
- Jessica F. Olive
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yuanbo Qin
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Molly J. DeCristo
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tyler Laszewski
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Frances Greathouse
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Sandra S. McAllister
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Chiu TJ, Lu HI, Chen CH, Huang WT, Wang YM, Lin WC, Li SH. Osteopontin Expression Is Associated with the Poor Prognosis in Patients with Locally Advanced Esophageal Squamous Cell Carcinoma Receiving Preoperative Chemoradiotherapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9098215. [PMID: 29854808 PMCID: PMC5952509 DOI: 10.1155/2018/9098215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/28/2018] [Accepted: 03/20/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND The osteopontin has been involved in therapeutic resistance in a variety of cancers. But, the significance of osteopontin expression on the prognosis of patients with locally advanced esophageal squamous cell carcinoma (ESCC) receiving chemoradiotherapy is unclear. METHODS In 80 patients with locally advanced ESCC receiving preoperative chemoradiotherapy between 1999 and 2012, osteopontin expression was evaluated by immunohistochemistry and correlated with treatment outcome. The functional role of osteopontin in ESCC cell lines was determined by osteopontin-mediated siRNA. RESULTS Osteopontin expression and clinical T4 classification were significantly associated with poor pathological complete response. Univariate analyses demonstrated that osteopontin overexpression and clinical T classification, T4, were significantly associated with worse overall survival and disease-free survival. In multivariate comparison, osteopontin overexpression and clinical T classification, T4, represented the independent adverse prognosticator. In ESCC cell lines, endogenous osteopontin depletion by osteopontin-mediated siRNA increased sensitivity to cisplatin. Osteopontin expression is independently correlated with the response of chemoradiotherapy and prognosis of patients with locally advanced ESCC receiving preoperative chemoradiotherapy. CONCLUSIONS Our results suggest that osteopontin may be a potential therapeutic target for patients with ESCC treated with preoperative chemoradiotherapy.
Collapse
Affiliation(s)
- Tai-Jan Chiu
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-I Lu
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Han Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Applied Chemistry and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Yin X, Tang B, Li JH, Wang Y, Zhang L, Xie XY, Zhang BH, Qiu SJ, Wu WZ, Ren ZG. ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:166. [PMID: 29169374 PMCID: PMC5701377 DOI: 10.1186/s13046-017-0637-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
Background Drug resistance is one of the major concerns in the treatment of hepatocellular carcinoma (HCC). The aim of the present study was to determine whether aberrant high expression of the inhibitor of differentiation 1(ID1) confers oxaliplatin-resistance to HCC by activating the pentose phosphate pathway (PPP). Methods Aberrant high expression of ID1 was detected in two oxaliplatin-resistant cell lines MHCC97H–OXA(97H–OXA) and Hep3B–OXA(3B–OXA). The lentiviral shRNA or control shRNA was introduced into the two oxaliplatin-resistant cell lines. The effects of ID1 on cell proliferation, apoptosis and chemoresistance were evaluated in vitro and vivo. The molecular signaling mechanism underlying the induction of HCC proliferation and oxaliplatin resistance by ID1 was explored. The prognostic value of ID1/G6PD signaling in HCC patients was assessed using the Cancer Genome Atlas (TCGA) database. Results ID1 was upregulated in oxaliplaitin-resistant HCC cells and promoted HCC cell proliferation and oxaliplatin resistance. Silencing ID1 expression in oxaliplaitin-resistant HCC cell lines inhibited cell proliferation and sensitized oxaliplaitin-resistant cells to death. ID1 knockdown significantly decreased the expression of glucose-6-phosphate dehydrogenase (G6PD), a key enzyme of the PPP. Silencing ID1 expression blocked the activation of G6PD, decreased the production of PPP NADPH, and augmented reactive oxygen and species (ROS), thus inducing cell apoptosis. Study of the molecular mechanism showed that ID1 induced G6PD promoter transcription and activated PPP through Wnt/β-catenin/c-MYC signaling. In addition, ID1/G6PD signaling predicted unfavorable prognosis of HCC patients on the basis of TCGA. Conclusions Our study provided the first evidence that ID1 conferred oxaliplatin resistance in HCC by activating the PPP. This newly defined pathway may have important implications in the research and development of new more effective anti-cancer drugs. Electronic supplementary material The online version of this article (10.1186/s13046-017-0637-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Yin
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Bei Tang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Jing-Huan Li
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Yan Wang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Lan Zhang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Xiao-Ying Xie
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Bo-Heng Zhang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Shuang-Jian Qiu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wei-Zhong Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zheng-Gang Ren
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
18
|
Hoseini SS, Cheung NKV. Immunotherapy of hepatocellular carcinoma using chimeric antigen receptors and bispecific antibodies. Cancer Lett 2017; 399:44-52. [PMID: 28428075 DOI: 10.1016/j.canlet.2017.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/05/2017] [Accepted: 04/09/2017] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide with an overall survival rate of less than 15% in developed countries. Despite attempts at new therapeutic strategies, the majority of patients succumb to this cancer. Buttressed by the highly successful clinical impact in melanoma, immunotherapy is gaining momentum as the next treatment modality for many human cancers. Chimeric antigen receptors (CAR) contain the antigen binding moieties of a monoclonal antibody and the co-stimulatory and signaling domains associated with effector receptor signaling. Bispecific antibodies (BsAb) combine the binding specificities of two different monoclonal antibodies, one activating a receptor on a killer effector cell, while the other engaging a tumor-associated antigen to initiate tumor cytotoxicity. In this review, we survey the HCC targets for which CARs and bispecific antibodies have been generated. The pros and cons of these targets for T-cell and Natural Killer cell based immunotherapy will be discussed.
Collapse
Affiliation(s)
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, United States.
| |
Collapse
|
19
|
Haga Y, Kanda T, Nakamura M, Nakamoto S, Sasaki R, Takahashi K, Wu S, Yokosuka O. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines. PLoS One 2017; 12:e0174153. [PMID: 28323861 PMCID: PMC5360329 DOI: 10.1371/journal.pone.0174153] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/03/2017] [Indexed: 02/07/2023] Open
Abstract
Background Despite recent advances in treatment strategies, it is still difficult to cure patients with hepatocellular carcinoma (HCC). Sorafenib is the only approved multiple kinase inhibitor for systemic chemotherapy in patients with advanced HCC. The majority of advanced HCC patients are resistant to sorafenib. The mechanisms of sorafenib resistance are still unknown. Methods The expression of molecules involved in the mitogen-activated protein kinase (MAPK) signaling pathway in human hepatoma cell lines was examined in the presence or absence of sorafenib. Apoptosis of human hepatoma cells treated with sorafenib was investigated, and the expression of Jun proto-oncogene (c-Jun) was measured. Results The expression and phosphorylation of c-Jun were enhanced in human hepatoma cell lines after treatment with sorafenib. Inhibiting c-Jun enhanced sorafenib-induced apoptosis. The overexpression of c-Jun impaired sorafenib-induced apoptosis. The expression of osteopontin, one of the established AP-1 target genes, was enhanced after treatment with sorafenib in human hepatoma cell lines. Conclusions The protein c-Jun plays a role in sorafenib resistance in human hepatoma cell lines. The modulation and phosphorylation of c-Jun could be a new therapeutic option for enhancing responsiveness to sorafenib. Modulating c-Jun may be useful for certain HCC patients with sorafenib resistance.
Collapse
Affiliation(s)
- Yuki Haga
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
- * E-mail:
| | - Masato Nakamura
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
- Department of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Reina Sasaki
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Koji Takahashi
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|