1
|
Ghasemi E, Mondanizadeh M, Almasi-Hashiani A, Mahboobi E. The significance of miR-124 in the diagnosis and prognosis of glioma: A systematic review. PLoS One 2024; 19:e0312250. [PMID: 39485747 PMCID: PMC11530070 DOI: 10.1371/journal.pone.0312250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
Glioma is a type of cancer that affects the central nervous system and necessitates a non-invasive diagnostic and prognostic assessment. MicroRNAs (miRNAs) play a crucial role in glioma and can provide valuable information about the prognosis of patients with this condition. MiR-124 is associated with molecules that play crucial roles in cellular processes, and any disruption in its expression can have a detrimental effect on cells, potentially leading to cancer. Therefore, miR-124 can be a valuable biomarker for diagnosis and prognosis in glioma. This review aims to highlight the role of miR-124 as a diagnostic and prognostic factor in glioma. To address this issue, we systemically reviewed and used various search strategies across three databases (PubMed, Web of Science and Scopus) and then yielded 3046 records from inception to September 2023. Records that did not meet our inclusion criteria were excluded. Following the screening process, our analysis included and summarized 13 eligible studies that not only measured miR-124 in serum, plasma, and tissue of glioma patients but also provided insights intomiR-124 as a prognostic and diagnostic biomarker. Thirteen studies were included for diagnostic accuracy, and five were considered for prognostic importance of miR-124. Based on our results, a single study showed an increase in miR-124 levels in exosomes obtained from patient serum, whereas the data from the 12 studies analyzed consistently pointed towards a reduction in miR-124 levels in various glioma samples. In conclusion, our findings suggest that miR-124 may be a useful diagnostic and prognostic biomarker in glioma. However, further investigations are required to draw more definitive conclusions.
Collapse
Affiliation(s)
- Elham Ghasemi
- Department of Biotechnology and Molecular Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Markazi, Islamic Republic of Iran
- Traditional and Complementary Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elyar Mahboobi
- Department of Biotechnology and Molecular Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Spinelli S, Barbieri F, Averna M, Florio T, Pedrazzi M, Tremonti BF, Capraro M, De Tullio R. Expression of calpastatin hcast 3-25 and activity of the calpain/calpastatin system in human glioblastoma stem cells: possible involvement of hcast 3-25 in cell differentiation. Front Mol Biosci 2024; 11:1359956. [PMID: 39139809 PMCID: PMC11319182 DOI: 10.3389/fmolb.2024.1359956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor, characterized by cell heterogeneity comprising stem cells (GSCs) responsible for aggressiveness. The calpain/calpastatin (calp/cast) proteolytic system is involved in critical physiological processes and cancer progression. In this work we showed the expression profile of hcast 3-25 (a Type III calpastatin variant devoid of inhibitory units) and the members of the system in several patient-derived GSCs exploring the relationship between hcast 3-25 and activation/activity of calpains. Each GSC shows a peculiar calp/cast mRNA and protein expression pattern, and hcast 3-25 is the least expressed. Differentiation promotes upregulation of all the calp/cast system components except hcast 3-25 mRNA, which increased or decreased depending on individual GSC culture. Transfection of hcast 3-25-V5 into two selected GSCs indicated that hcast 3-25 effectively associates with calpains, supporting the digestion of selected calpain targets. Hcast 3-25 possibly affects the stem state promoting a differentiated, less aggressive phenotype.
Collapse
Affiliation(s)
- Sonia Spinelli
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Nephrology, Genova, Italy
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Federica Barbieri
- Department of Internal Medicine (DIMI), Section of Pharmacology, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Monica Averna
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine (DIMI), Section of Pharmacology, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Beatrice F. Tremonti
- Department of Internal Medicine (DIMI), Section of Pharmacology, University of Genova, Genova, Italy
| | - Michela Capraro
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| | - Roberta De Tullio
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genova, Genova, Italy
| |
Collapse
|
3
|
Zhang WH, Jiang L, Li M, Liu J. MicroRNA‑124: an emerging therapeutic target in central nervous system disorders. Exp Brain Res 2023; 241:1215-1226. [PMID: 36961552 PMCID: PMC10129929 DOI: 10.1007/s00221-022-06524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 03/25/2023]
Abstract
The central nervous system (CNS) consists of neuron and non-neuron cells including neural stem/precursor cells (NSPCs), neuroblasts, glia cells (mainly astrocyte, oligodendroglia and microglia), which thereby form a precise and complicated network and exert diverse functions through interactions of numerous bioactive ingredients. MicroRNAs (miRNAs), with small size approximately ~ 21nt and as well-documented post-transcriptional key regulators of gene expression, are a cluster of evolutionarily conserved endogenous non-coding RNAs. More than 2000 different miRNAs has been discovered till now. MicroRNA-124(miR-124), the most brain-rich microRNA, has been validated to possess important functions in the central nervous system, including neural stem cell proliferation and differentiation, cell fate determination, neuron migration, synapse plasticity and cognition, cell apoptosis etc. According to recent studies, herein, we provide a review of this conversant miR-124 to further understand the potential functions and therapeutic and clinical value in brain diseases.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Lian Jiang
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Mei Li
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Jing Liu
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China.
- Department of Neonatology, Maternal and Child Health Hospital of Chaoyang District, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
4
|
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel) 2022; 14:3217. [PMID: 35804989 PMCID: PMC9265057 DOI: 10.3390/cancers14133217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that develops from neuroglial stem cells and represents a highly heterogeneous group of neoplasms. These tumors are predominantly correlated with a dismal prognosis and poor quality of life. In spite of major advances in developing novel and effective therapeutic strategies for patients with glioblastoma, multidrug resistance (MDR) is considered to be the major reason for treatment failure. Several mechanisms contribute to MDR in GBM, including upregulation of MDR transporters, alterations in the metabolism of drugs, dysregulation of apoptosis, defects in DNA repair, cancer stem cells, and epithelial-mesenchymal transition. MicroRNAs (miRNAs) are a large class of endogenous RNAs that participate in various cell events, including the mechanisms causing MDR in glioblastoma. In this review, we discuss the role of miRNAs in the regulation of the underlying mechanisms in MDR glioblastoma which will open up new avenues of inquiry for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Miao Z, Miao Z, Teng X, Xu S. Chlorpyrifos triggers epithelioma papulosum cyprini cell pyroptosis via miR-124-3p/CAPN1 axis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127318. [PMID: 34879549 DOI: 10.1016/j.jhazmat.2021.127318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphorus pesticide has caused water pollution, threatening aquatic organisms. MicroRNAs (miRNAs) highly conserved noncoding RNAs, that regulate various cell death processes, including pyroptosis. To investigate the effect of CPF exposure on epithelioma papulosum cyprini (EPC) cell pyroptosis and the role of the miR-124-3p/CAPN1 axis, we established miR-124 overexpression and inhibition EPC cell models of CPF exposure. The target of the miR-124-3p/CAPN1 axis was primarily confirmed by the double luciferase reporter assay. Pyroptosis was demonstrated to occur in CPF-exposed EPC cells and was accompanied by mitochondrial membrane potential depletion, ROS level elevation and pyroptotic indicator expression upregulation. PD150606 was supplied as a CAPN1 inhibitor, alleviating CPF-induced mitochondrial dysfunction, and alleviating the increased expression of NLRP3, CASP1, IL1β and GSDMD. In conclusion, CPF induces pyroptosis by regulating the miR-124-3p/CAPN1 axis. This study enriches the cytotoxicity study of CPF, and provides new theoretical fundamentals for exploration of miRNA and its target protein response to water contaminants.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
6
|
Yin Y, Liu Q, Shao Y, He X, Zhu Q, Lu S, Liu P. Regulatory mechanism of androgen receptor on NCAPD3 gene expression in prostate cancer. Prostate 2022; 82:26-40. [PMID: 34591337 DOI: 10.1002/pros.24245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Androgen receptor (AR) is an essential transcriptional factor that contributes to the development and progression of prostate cancer (PCa). NCAPD3 is a component of the condensin II complex and plays a critical role in cell mitosis by regulating chromosome condensation; however, the relationship between NCAPD3 and AR remains unknown. METHODS Transcriptome sequencing assay is carried out to analyze the expression of the NCAP family in clinic samples. Chromatin immunoprecipitation (ChIP) sequencing, ChIP assay, and dual-luciferase assay are used to identify the androgen-responsive element in NCAPD3 enhancer. Immunohistochemistry, quantitative reverse transcription-polymerase chain reaction, and western-blot assay are employed to check the expression of genes in PCa tissues and in PCa cells. Confocal immunofluorescence microscopy analysis is used for identifying the regulation of AR on NCAPD3-mediated chromosome condensation. Colony formation, cell cycle assay, wound healing assay, and transwell experiments are used to explore the regulation of AR on the functions of NCAPD3. In vivo experiment is employed to identify in vitro experimental results. RESULTS NCAPD3 is an androgen/AR axis-targeted gene and is involved in AR-induced PCa cell proliferation, migration, and invasion in vitro and in vivo. Androgen treatment and AR overexpression increase the expression of NCAPD3 in PCa cell lines. The canonical exist in the enhancer region of NCAPD3. Androgen/AR axis regulates NCAPD3-invovled chromosome condensation during cell mitosis. CONCLUSIONS Our report demonstrated that NCAPD3 is an androgen-responsive gene and upregulated by androgen/AR axis and involved in AR-promoted progression of PCa, suggesting a potential role of NCAPD3 in the PCa development.
Collapse
Affiliation(s)
- Yingying Yin
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qianmei Liu
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yingying Shao
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xinyuan He
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qingyi Zhu
- Department of Urology Surgery, Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan Lu
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ping Liu
- Department of Biochemistry,Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Hong S, You JY, Paek K, Park J, Kang SJ, Han EH, Choi N, Chung S, Rhee WJ, Kim JA. Inhibition of tumor progression and M2 microglial polarization by extracellular vesicle-mediated microRNA-124 in a 3D microfluidic glioblastoma microenvironment. Am J Cancer Res 2021; 11:9687-9704. [PMID: 34646393 PMCID: PMC8490520 DOI: 10.7150/thno.60851] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Glioblastoma (GBM) is one of the most aggressive types of brain cancer. GBM progression is closely associated with microglia activation; therefore, understanding the regulation of the crosstalk between human GBM and microglia may help develop effective therapeutic strategies. Elucidation of efficient delivery of microRNA (miRNA) via extracellular vesicles (EVs) and their intracellular communications is required for therapeutic applications in GBM treatment. Methods: We used human GBM cells (U373MG) and human microglia. MiRNA-124 was loaded into HEK293T-derived EVs (miR-124 EVs). Various anti-tumor effects (proliferation, metastasis, chemosensitivity, M1/M2 microglial polarization, and cytokine profile) were investigated in U373MG and microglia. Anti-tumor effect of miR-124 EVs was also investigated in five different patient-derived GBM cell lines (SNU-201, SNU-466, SNU-489, SNU-626, and SNU-1105). A three-dimensional (3D) microfluidic device was used to investigate the interactive microenvironment of the tumor and microglia. Results: MiR-124 EVs showed highly efficient anti-tumor effects both in GBM cells and microglia. The mRNA expression levels of tumor progression and M2 microglial polarization markers were decreased in response to miR-124 EVs. The events were closely related to signal transducer and activator of transcription (STAT) 3 signaling in both GBM and microglia. In 3D microfluidic experiments, both U373MG and microglia migrated to a lesser extent and showed less-elongated morphology in the presence of miR-124 EVs compared to the control. Analyses of changes in cytokine levels in the microfluidic GBM-microglia environment showed that the treatment with miR-124 EVs led to tumor suppression and anti-cancer immunity, thereby recruiting natural killer (NK) cells into the tumor. Conclusions: In this study, we demonstrated that EV-mediated miR-124 delivery exerted synergistic anti-tumor effects by suppressing the growth of human GBM cells and inhibiting M2 microglial polarization. These findings provide new insights toward a better understanding of the GBM microenvironment and provide substantial evidence for the development of potential therapeutic strategies using miRNA-loaded EVs.
Collapse
|
8
|
Tumor Suppressive Effects of miR-124 and Its Function in Neuronal Development. Int J Mol Sci 2021; 22:ijms22115919. [PMID: 34072894 PMCID: PMC8198231 DOI: 10.3390/ijms22115919] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
MicroRNA-124 (miR-124) is strongly expressed in neurons, and its expression increases as neurons mature. Through DNA methylation in the miR-124 promoter region and adsorption of miR-124 by non-coding RNAs, miR-124 expression is known to be reduced in many cancer cells, especially with high malignancy. Recently, numerous studies have focused on miR-124 due to its promising tumor-suppressive effects; however, the overview of their results is unclear. We surveyed the tumor-suppressive effect of miR-124 in glial cell lineage cancers, which are the most frequently reported cancer types involving miR-124, and in lung, colon, liver, stomach, and breast cancers, which are the top five causes of cancer death. Reportedly, miR-124 not only inhibits proliferation and accelerates apoptosis, but also comprehensively suppresses tumor malignant transformation. Moreover, we found that miR-124 exerts its anti-tumor effects by regulating a wide range of target genes, most notably STAT3 and EZH2. In addition, when compared to the original role of miR-124 in neuronal development, we found that the miR-124 target genes that contribute to neuronal maturation share similarities with genes that cause cancer cell metastasis and epithelial-mesenchymal transition. We believe that the two apparently unrelated fields, cancer and neuronal development, can bring new discoveries to each other through the study of miR-124.
Collapse
|
9
|
Alharbi A, Zhang Y, Parrington J. Deciphering the Role of Ca 2+ Signalling in Cancer Metastasis: From the Bench to the Bedside. Cancers (Basel) 2021; 13:E179. [PMID: 33430230 PMCID: PMC7825727 DOI: 10.3390/cancers13020179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/03/2023] Open
Abstract
Metastatic cancer is one of the major causes of cancer-related mortalities. Metastasis is a complex, multi-process phenomenon, and a hallmark of cancer. Calcium (Ca2+) is a ubiquitous secondary messenger, and it has become evident that Ca2+ signalling plays a vital role in cancer. Ca2+ homeostasis is dysregulated in physiological processes related to tumour metastasis and progression-including cellular adhesion, epithelial-mesenchymal transition, cell migration, motility, and invasion. In this review, we looked at the role of intracellular and extracellular Ca2+ signalling pathways in processes that contribute to metastasis at the local level and also their effects on cancer metastasis globally, as well as at underlying molecular mechanisms and clinical applications. Spatiotemporal Ca2+ homeostasis, in terms of oscillations or waves, is crucial for hindering tumour progression and metastasis. They are a limited number of clinical trials investigating treating patients with advanced stages of various cancer types. Ca2+ signalling may serve as a novel hallmark of cancer due to the versatility of Ca2+ signals in cells, which suggests that the modulation of specific upstream/downstream targets may be a therapeutic approach to treat cancer, particularly in patients with metastatic cancers.
Collapse
Affiliation(s)
- Abeer Alharbi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| |
Collapse
|
10
|
Fu S, Wang Y, Li H, Chen L, Liu Q. Regulatory Networks of LncRNA MALAT-1 in Cancer. Cancer Manag Res 2020; 12:10181-10198. [PMID: 33116873 PMCID: PMC7575067 DOI: 10.2147/cmar.s276022] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022] Open
Abstract
Long noncoding (lnc)RNAs are a group of RNAs with a length greater than 200 nt that do not encode a protein but play an essential role in regulating the expression of target genes in normal biological contexts as well as pathologic processes including tumorigenesis. The lncRNA metastasis-associated lung adenocarcinoma transcript (MALAT)-1 has been widely studied in cancer. In this review, we describe the known functions of MALAT-1; its mechanisms of action; and associated signaling pathways and their clinical significance in different cancers. In most malignancies, including lung, colorectal, thyroid, and other cancers, MALAT-1 functions as an oncogene and is upregulated in tumors and tumor cell lines. MALAT-1 has a distinct mechanism of action in each cancer type and is thus at the center of large gene regulatory networks. Dysregulation of MALAT-1 affects cellular processes such as alternative splicing, epithelial–mesenchymal transition, apoptosis, and autophagy, which ultimately results in the abnormal cell proliferation, invasion, and migration that characterize cancers. In other malignancies, such as glioma and endometrial carcinoma, MALAT-1 functions as a tumor suppressor and thus forms additional regulatory networks. The current evidence indicates that MALAT-1 and its associated signaling pathways can serve as diagnostic or prognostic biomarker or therapeutic target in the treatment of many cancers.
Collapse
Affiliation(s)
- Shijian Fu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yanhong Wang
- Department of Laboratory Medicine, Yuebei People's Hospital of Shaoguan, The Affiliated Hospital of Shantou University, Shaoguan 512025, People's Republic of China
| | - Hang Li
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Leilei Chen
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing 100029, People's Republic of China
| | - Quanzhong Liu
- Department of Medical Genetics, Harbin Medical University, Harbin 150081, People's Republic of China
| |
Collapse
|
11
|
Rezaei O, Honarmand K, Nateghinia S, Taheri M, Ghafouri-Fard S. miRNA signature in glioblastoma: Potential biomarkers and therapeutic targets. Exp Mol Pathol 2020; 117:104550. [PMID: 33010295 DOI: 10.1016/j.yexmp.2020.104550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are transcripts with sizes of about 22 nucleotides, which are produced through a multistep process in the nucleus and cytoplasm. These transcripts modulate the expression of their target genes through binding with certain target regions, particularly 3' suntranslated regions. They are involved in the pathogenesis of several kinds of cancers, such as glioblastoma. Several miRNAs, including miR-10b, miR-21, miR-17-92-cluster, and miR-93, have been up-regulated in glioblastoma cell lines and clinical samples. On the other hand, expression of miR-7, miR-29b, miR-32, miR-34, miR-181 family members, and a number of other miRNAs have been decreased in this type of cancer. In the current review, we explain the role of miRNAs in the pathogenesis of glioblastoma through providing a summary of studies that reported dysregulation of these epigenetic effectors in this kind of brain cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
miR-124 Intensified Oxaliplatin-Based Chemotherapy by Targeting CAPN2 in Colorectal Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:320-331. [PMID: 32382656 PMCID: PMC7200624 DOI: 10.1016/j.omto.2020.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Our previous study demonstrated that miR-124 was downregulated in colorectal cancer (CRC) compared with normal mucosa, and the downregulated expression of miR-124 was an independent prognostic factor in CRC patients. However, the function of miR-124 in CRC patients treated with chemotherapy is currently unclear. The aim of this study was to determine the miR-124 expression and its regulative role in oxaliplatin (L-OHP)-based chemotherapy of CRC patients. We observed that low miR-124 expression was correlated with worse overall survival (OS) in the 220 patients who received postoperative chemotherapy of 5-fluorouracil [5-FU]+leucovorin+L-OHP (FOLFOX) or capecitabine+L-OHP (XELOX). miR-124 overexpression promoted L-OHP-induced, but not 5-FU-induced, cytotoxicity and apoptosis in HT29 and SW480 cells. CAPN2 was a direct target of miR-124, and its protein expression was reduced by forced expression of miR-124. miR-124 inhibited tumorigenesis and promoted OS of mice bearing xenograft tumors, especially upon L-OHP treatment. miR-124 also promoted L-OHP-induced apoptosis and restrained CAPN2 protein expression in xenograft tumors. Our results suggest that miR-124 could be considered as both a predictor of L-OHP-based chemotherapy for personalized treatment and a therapeutic target for CRC.
Collapse
|
13
|
Calpain Small Subunit 1 Protein in the Prognosis of Cancer Survivors and Its Clinicopathological Correlation. BIOMED RESEARCH INTERNATIONAL 2020; 2019:8053706. [PMID: 32083121 PMCID: PMC7012277 DOI: 10.1155/2019/8053706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/07/2019] [Indexed: 12/03/2022]
Abstract
Background/Aims. Calpain small subunit 1 (Capn4) is implicated in tumorigenesis and plays a key role in multiple tumors. This study aimed to fully illustrate the prognostic value of Capn4 protein in cancer patients.
Collapse
|
14
|
Deng D, Luo K, Liu H, Nie X, Xue L, Wang R, Xu Y, Cui J, Shao N, Zhi F. p62 acts as an oncogene and is targeted by miR-124-3p in glioma. Cancer Cell Int 2019; 19:280. [PMID: 31708690 PMCID: PMC6836386 DOI: 10.1186/s12935-019-1004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Background Glioma is the most common central nervous system (CNS) tumour. p62, an important autophagy adaptor, plays a crucial role in cancer. However, the role of p62 in the progression of glioma is poorly characterized. Methods We examined the expression of p62 in glioma tissues and cell lines. Then we investigated the function of p62 in vitro, and clarified the mechanism underlying the regulation of p62 expression. Results We revealed that p62 was upregulated at both the mRNA and protein levels in human glioma tissues irrelevant to isocitrate dehydrogenase (IDH) status. Then, we found that overexpression of p62 promoted glioma progression by promoting proliferation, migration, glycolysis, temozolomide (TMZ) resistance and nuclear factor κB (NF-κB) signalling pathway, and repressing autophagic flux and reactive oxygen species (ROS) in vitro. In accordance with p62 overexpression, knockdown of p62 exerted anti-tumour effects in glioma cells. Subsequently, we demonstrated that miR-124-3p directly targeted the 3′-UTR of p62 mRNA, leading to the downregulation of p62. Finally, we found that p62 function could be partially reversed by miR-124-3p overexpression. Conclusions Our results demonstrate that p62 can be targeted by miR-124-3p and acts as an oncogene in glioma, suggesting the potential value of p62 as a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Danni Deng
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| | - Kaiming Luo
- 2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China.,3Department of Endocrinology, The First People's Hospital of Changzhou, Changzhou, Jiangsu China
| | - Hongmei Liu
- 4School of Biological Science and Medical Engineering, Beihang University, #37 Xueyuan Road, Beijing, China
| | - Xichen Nie
- 5MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, #135 Xingangxi Road, Guangzhou, China
| | - Lian Xue
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| | - Rong Wang
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| | - Yuan Xu
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| | - Jun Cui
- 5MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, #135 Xingangxi Road, Guangzhou, China
| | - Naiyuan Shao
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China
| | - Feng Zhi
- 1Department of Neurosurgery, The First People's Hospital of Changzhou, #185 Juqian Road, Changzhou, Jiangsu China.,2Modern Medical Research Center, The Third Affiliated Hospital of Soochow University, #185 Juqian Road, Changzhou, Jiangsu China
| |
Collapse
|
15
|
Nie JH, Li TX, Zhang XQ, Liu J. Roles of Non-Coding RNAs in Normal Human Brain Development, Brain Tumor, and Neuropsychiatric Disorders. Noncoding RNA 2019; 5:ncrna5020036. [PMID: 31052326 PMCID: PMC6637390 DOI: 10.3390/ncrna5020036] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
One of modern biology’s great surprises is that the human genome encodes only ~20,000 protein-coding genes, which represents less than 2% of the total genome sequence, and the majority of them are transcribed into non-coding RNAs (ncRNAs). Increasing evidence has shown that ncRNAs, including miRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play important roles in regulating a wide range of biological processes of the human brain. They not only regulate the pathogenesis of brain tumors, but also the development of neuropsychiatric diseases. This review provides an integrated overview of the roles of ncRNAs in normal human brain function, brain tumor development, and neuropsychiatric disease. We discussed the functions and molecular mechanisms of miRNAs, lncRNAs, and circRNAs in normal brain function and glioma, respectively, including those in exosome vesicles that can act as a molecular information carrier. We also discussed the regulatory roles of ncRNAs in the development of neuropsychiatric diseases. Lastly, we summarized the currently available platforms and tools that can be used for ncRNA identification and functional exploration in human diseases. This study will provide comprehensive insights for the roles of ncRNAs in human brain function and disease.
Collapse
Affiliation(s)
- Jun-Hua Nie
- School of Medicine, South China University of Technology (SCUT), Guangzhou 510006, China.
| | - Tian-Xiang Li
- School of Medicine, South China University of Technology (SCUT), Guangzhou 510006, China.
| | - Xiao-Qin Zhang
- School of Medicine, South China University of Technology (SCUT), Guangzhou 510006, China.
| | - Jia Liu
- School of Medicine, South China University of Technology (SCUT), Guangzhou 510006, China.
| |
Collapse
|
16
|
Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019; 30:1011-1026. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calpains (CAPNs) are a family of calcium-activated cysteine proteases. The ubiquitous isoforms CAPN1 and CAPN2 have been involved in the maintenance of vascular integrity, but uncontrolled CAPN activation plays a role in the pathogenesis of vascular diseases. Recent Advances: It is well accepted that chronic and acute overproduction of reactive oxygen species (ROS) is associated with the development of vascular diseases. There is increasing evidence that ROS can also affect the CAPN activity, suggesting CAPN as a potential link between oxidative stress and vascular disease. CRITICAL ISSUES The physiopathological relevance of ROS in regulating the CAPN activity is not fully understood but seems to involve direct effects on CAPNs, redox modifications of CAPN substrates, as well as indirect effect on CAPNs via changes in Ca2+ levels. Finally, CAPNs can also stimulate ROS production; however, data showing in which context ROS are the causes or the consequences of CAPN activation are missing. FUTURE DIRECTIONS Detailed characterization of the molecular mechanisms underlying the regulation of the different members of the CAPN system by specific ROS would help understanding the pathophysiological role of CAPN in the modulation of the vascular function. Moreover, given that CAPNs have been found in different cellular compartments such as mitochondria and nucleus as well as in the extracellular space, identification of new CAPN targets as well as their functional consequences would add new insights in the function of these enigmatic proteases.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Cao R, Ke M, Wu Q, Tian Q, Liu L, Dai Z, Lu S, Liu P. AZGP1 is androgen responsive and involved in AR‐induced prostate cancer cell proliferation and metastasis. J Cell Physiol 2019; 234:17444-17458. [DOI: 10.1002/jcp.28366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Runyi Cao
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Min Ke
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Qingxin Wu
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Qian Tian
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Li Liu
- Department of Science and Technology, Central Laboratory Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu People’s Republic of China
| | - Zao Dai
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Shan Lu
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| | - Ping Liu
- Department of Biochemistry, Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology College of Life Sciences, Nanjing Normal University Nanjing Jiangsu People’s Republic of China
| |
Collapse
|
18
|
Capn4 expression is modulated by microRNA-520b and exerts an oncogenic role in prostate cancer cells by promoting Wnt/β-catenin signaling. Biomed Pharmacother 2018; 108:467-475. [DOI: 10.1016/j.biopha.2018.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
|
19
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
20
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
21
|
Zhaohui W, Yingli N, Hongli L, Haijing W, Xiaohua Z, Chao F, Liugeng W, Hui Z, Feng T, Linfeng Y, Hong J. Amentoflavone induces apoptosis and suppresses glycolysis in glioma cells by targeting miR-124-3p. Neurosci Lett 2018; 686:1-9. [PMID: 30153494 DOI: 10.1016/j.neulet.2018.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Malignant glioma is the most common type of brain tumor with poor clinical outcome and survival. Therefore, it is imperative to develop novel therapeutic agents for managing glioma. The aim of this study was to investigate the role of amentoflavone (AF), an active flavonoid component in Selaginella tamariscina Spring, in glioma cells and the underlying mechanism of its action. Our results showed that miR-124-3p expression was significantly down-regulated in glioma tissues relative to normal brain tissues. AF decreased cell viability and triggered apoptosis in both glioma cell lines in a dose-dependent manner. AF induced apoptosis and inhibited glycolysis in the glioma cells by upregulating miR-124-3p. Furthermore, AF upregulated miR-124-3p by repressing DNMT1 through Sp1, which in turn was caused by the activation of ROS/AMPK signaling pathway by AF. In conclusion, AF could induce apoptosis and inhibited glycolysis in glioma cells via miR-124-3p. Our findings provide preliminary experimental data that support further investigation on the therapeutic efficacy of AF in glioma.
Collapse
Affiliation(s)
- Wang Zhaohui
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| | - Niu Yingli
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Lin Hongli
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wang Haijing
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhang Xiaohua
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fang Chao
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wu Liugeng
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhang Hui
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tian Feng
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yang Linfeng
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiang Hong
- The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
22
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
23
|
Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. Int J Mol Sci 2018; 19:ijms19041115. [PMID: 29642503 PMCID: PMC5979613 DOI: 10.3390/ijms19041115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are among cancers with the poorest prognosis, indicated by their association with tumors of high-level morbidity and mortality. Gliomas, the most common primary CNS tumors that arise from neuroglial stem or progenitor cells, have estimated annual incidence of 6.6 per 100,000 individuals in the USA, and 3.5 per 100,000 individuals in Taiwan. Tumor invasion and metastasis are the major contributors to the deaths in cancer patients. Therapeutic goals including cancer stem cells (CSC), phenotypic shifts, EZH2/AXL/TGF-β axis activation, miRNAs and exosomes are relevant to GBM metastasis to develop novel targeted therapeutics for GBM and other brain cancers. Herein, we highlight tumor metastasis in our understanding of gliomas, and illustrate novel exosome therapeutic approaches in glioma, thereby paving the way towards innovative therapies in neuro-oncology.
Collapse
|
24
|
Ye X, Wei W, Zhang Z, He C, Yang R, Zhang J, Wu Z, Huang Q, Jiang Q. Identification of microRNAs associated with glioma diagnosis and prognosis. Oncotarget 2018; 8:26394-26403. [PMID: 28060761 PMCID: PMC5432266 DOI: 10.18632/oncotarget.14445] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022] Open
Abstract
The sensitivity and specificity of microRNAs (miRNAs) for diagnosing glioma are controversial. We therefore performed a meta-analysis to systematically identify glioma-associated miRNAs. We initially screened five miRNA microarray datasets to evaluate the differential expression of miRNAs between glioma and normal tissues. We next compared the expression of the miRNAs in different organs and tissues to assess the sensitivity and specificity of the differentially expressed miRNAs in the diagnosis of glioma. Finally, pathway analysis was performed using GeneGO. We identified 27 candidate miRNAs associated with glioma initiation, progression, and patient prognosis. Sensitivity and specificity analysis indicated miR-15a, miR-16, miR-21, miR-23a, and miR-9 were up-regulated, while miR-124 was down-regulated in glioma. Ten signaling pathways showed the strongest association with glioma development and progression: the p53 pathway feedback loops 2, Interleukin signaling pathway, Toll receptor signaling pathway, Parkinson's disease, Notch signaling pathway, Cadherin signaling pathway, Apoptosis signaling pathway, VEGF signaling pathway, Alzheimer disease-amyloid secretase pathway, and the FGF signaling pathway. Our results indicate that the integration of miRNA, gene, and protein expression data can yield valuable biomarkers for glioma diagnosis and treatment. Indeed, six of the miRNAs identified in this study may be useful diagnostic and prognostic biomarkers in glioma.
Collapse
Affiliation(s)
- Xinyun Ye
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Wenjin Wei
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Zhengyu Zhang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Chunming He
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Ruijin Yang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Jinshi Zhang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Zhiwu Wu
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| | - Qiuhua Jiang
- Department of Neurosurgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, China
| |
Collapse
|
25
|
Koch K, Hartmann R, Schröter F, Suwala AK, Maciaczyk D, Krüger AC, Willbold D, Kahlert UD, Maciaczyk J. Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells. Oncotarget 2018; 7:73414-73431. [PMID: 27705917 PMCID: PMC5341988 DOI: 10.18632/oncotarget.12337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor with very limited therapeutic options. Standard multimodal treatments, including surgical resection and combined radio-chemotherapy do not target the most aggressive subtype of glioma cells, brain tumor stem cells (BTSCs). BTSCs are thought to be responsible for tumor initiation, progression, and relapse. Furthermore, they have been associated with the expression of mesenchymal features as a result of epithelial-mesenchymal transition (EMT) thereby inducing tumor dissemination and chemo resistance. Using high resolution proton nuclear magnetic resonance spectroscopy (1H NMR) on GBM cell cultures we provide evidence that the expression of well-known EMT activators of the ZEB, TWIST and SNAI families and EMT target genes N-cadherin and VIMENTIN is associated with aberrant choline metabolism. The cholinic phenotype is characterized by high intracellular levels of phosphocholine and total choline derivatives and was associated with malignancy in various cancers. Both genetic and pharmacological inhibition of the cardinal choline metabolism regulator choline kinase alpha (CHKα) significantly reduces the cell viability, invasiveness, clonogenicity, and expression of EMT associated genes in GBM cells. Moreover, in some cell lines synergetic cytotoxic effects were observed when combining the standard of care chemotherapeutic temozolomide with the CHKα inhibitor V-11-0711. Taken together, specific inhibition of the enzymatic activity of CHKα is a powerful strategy to suppress EMT which opens the possibility to target chemo-resistant BTSCs through impairing their mesenchymal transdifferentiation. Moreover, the newly identified EMT-oncometabolic network may be helpful to monitor the invasive properties of glioblastomas and the success of anti-EMT therapy.
Collapse
Affiliation(s)
- Katharina Koch
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Rudolf Hartmann
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Juelich, Juelich, Germany
| | - Friederike Schröter
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Abigail Kora Suwala
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Donata Maciaczyk
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany
| | | | - Dieter Willbold
- Institute of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Juelich, Juelich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ulf Dietrich Kahlert
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany.,Neurosurgery and Pediatric Neurosurgery, Medical University Lublin, Lublin, Poland
| | - Jaroslaw Maciaczyk
- Neurosurgery Department, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
26
|
Li J, Xu J, Yan X, Jin K, Li W, Zhang R. Suppression of Capn4 by microRNA-1271 impedes the proliferation and invasion of colorectal cancer cells. Biomed Pharmacother 2018; 99:162-168. [PMID: 29331762 DOI: 10.1016/j.biopha.2017.12.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/14/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has suggested that calpain small subunit 1 (Capn4) plays an important role in the development and progression of malignant tumors. However, little is known about the role of Capn4 in colorectal cancer (CRC). In this study, we aimed to investigate the potential role of Capn4 in CRC and the regulation of Capn4 by microRNAs (miRNAs). Here, we found that Capn4 expression was highly up-regulated in CRC cell lines. Knockdown of Capn4 by siRNA significantly inhibited the proliferation and invasion of CRC cell lines. Furthermore, knockdown of Capn4 suppressed Wnt signaling in CRC cells. Interestingly, Capn4 was found to be a target gene of miR-1271, a tumor suppressive miRNA. The results showed that miR-1271 negatively regulated Capn4 expression in CRC cells. An inverse correlation between miR-1271 and Capn4 was also shown in CRC clinical tissues. Moreover, the overexpression of miR-1271 suppressed the proliferation, invasion and Wnt signaling of CRC cells. Importantly, we found that the restoration of Capn4 expression significantly reversed the antitumor effects of miR-1271 in CRC cells. Overall, these results suggest that miR-1271 inhibits the proliferation and invasion of CRC cells by down-regulating Capn4. Our study suggests that Capn4 and miR-1271 may serve as potential therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Jibin Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Xiaofei Yan
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Keer Jin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Wenya Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China.
| |
Collapse
|
27
|
Shi B, Wang Y, Yin F. MALAT1/miR-124/Capn4 axis regulates proliferation, invasion and EMT in nasopharyngeal carcinoma cells. Cancer Biol Ther 2017; 18:792-800. [PMID: 28857668 DOI: 10.1080/15384047.2017.1373214] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Long non-coding RNA MALAT1 (Metastasis-associated lung Adenocarcinoma transcript-1) has been demonstrated to play a critical role in the regulation of cancer progression and metastasis. However, little is known about MALAT1 in nasopharyngeal carcinoma (NPC) pathogenesis and progression. METHODS Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of MALAT1, miR-124 and Capn4 mRNA in NPC cell lines. The protein level of Capn4 was examined by western blot analysis. Cell proliferation was detected by MTT assay, trypan blue exclusion method and colony formation analysis. Cell invasion was determined by transwell chamber assay. Expression of EMT-related proteins was detected by western blot. The potential targets of MALAT1 and miR-124 were verified by target prediction and luciferase reporter assay. RESULTS MALAT1 and Capn4 were upregulated while miR-124 expression was downregulated in NPC cell lines. MALAT1 knockdown inhibited proliferation, invasion and EMT of NPC cells. Moreover, MALAT1 improved Capn4 expression by sponging miR-124. MALAT1 upregulation abated miR-124-induced repression on NPC cell proliferation, invasion and EMT. Furthermore, Capn4 overexpression reversed the inhibitory effect of MALAT1 silencing on proliferation, invasion and EMT of NPC cells. CONCLUSION MALAT1 promoted proliferation, invasion and EMT of NPC cells through de-repressing Capn4 by sponging miR-124. The present study revealed a novel MALAT1/miR-124/Capn4 regulatory axis in NPC, contributing to a better understanding of the NPC pathogenesis and providing a promising therapeutic target for NPC therapy.
Collapse
Affiliation(s)
- Baoyuan Shi
- a Department of Otorhinolaryngology , Huaihe Hospital of Henan University , Henan , Kaifeng , China
| | - Yandan Wang
- a Department of Otorhinolaryngology , Huaihe Hospital of Henan University , Henan , Kaifeng , China
| | - Fengfang Yin
- b Department of Otorhinolaryngology , the First Affiliated Hospital of Henan University , Henan , Kaifeng , China
| |
Collapse
|
28
|
Hu H, Wang G, Li C. miR-124 suppresses proliferation and invasion of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway by targeting Capn4. Onco Targets Ther 2017; 10:2711-2720. [PMID: 28579809 PMCID: PMC5449109 DOI: 10.2147/ott.s135563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Recent studies have demonstrated that microRNA 124 (miR-124) acts as a tumor suppressor in nasopharyngeal carcinoma (NPC); however, the exact molecular mechanism by which miR-124 exerts tumor suppression has not been well elucidated. Materials and methods We performed quantitative real-time PCR (qRT-PCR) to measure the expression of metastasis associated lung adenocarcinoma transcript 1, miR-124, and calpain small subunit 1 (Capn4) mRNAs in NPC cell lines. We also performed western blot analysis to detect the levels of Capn4. Furthermore, we performed MTT assay and transwell invasion assay to determine the proliferation and invasion ability of two NPC cell lines, namely, HONE1 and CNE2 cells, respectively. The verification of targets of miR-124 was performed using prediction softwares and luciferase reporter analysis. Results According to our results, the expression of Capn4 was found to be elevated, whereas the expression of miR-124 was lowered in NPC cell lines compared with normal nasopharyngeal cells. When we preformed overexpression of miR-124, it suppressed the proliferation and invasion of NPC cells. Moreover, miR-124 suppressed the expression of Capn4 by targeting Capn4 in HONE1 and CNE2 cells. When we preformed overexpression of Capn4, it reversed the inhibitory effect of miR-124 on the proliferation and invasion of NPC cells. Furthermore, miR-124–Capn4 axis decreased the levels of β-catenin, cyclin D1, and c-Myc, the components of the Wnt/β-catenin signaling pathway. Conclusion The suppression of proliferation and invasion of NPC cells by miR-124 were achieved by the regulation of Wnt/β-catenin signaling pathway by targeting Capn4. The results of this study revealed a novel miR-124–Capn4 regulatory axis in NPC cell lines, providing a better understanding of the pathogenesis of NPC and a promising therapeutic target for patients with NPC.
Collapse
Affiliation(s)
- Haili Hu
- Department of Otorhinolaryngology, Huaihe Hospital of Henan University
| | - Guanghui Wang
- Department of Otorhinolaryngology, Huaihe Hospital of Henan University
| | - Congying Li
- Department of Otorhinolaryngology, School of Medicine, Kaifeng University, Kaifeng, People's Republic of China
| |
Collapse
|
29
|
Shi B, Wang LF, Meng WS, Chen L, Meng ZL. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction. Int J Oncol 2017; 50:2123-2135. [DOI: 10.3892/ijo.2017.3970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/09/2017] [Indexed: 11/05/2022] Open
|
30
|
Liu Y, Han L, Bai Y, Du W, Yang B. Down-regulation of MicroRNA-133 predicts poor overall survival and regulates the growth and invasive abilities in glioma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:206-210. [PMID: 28376685 DOI: 10.1080/21691401.2017.1304551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
miRNAs were reported as oncogene or tumour suppressors in various cancers and played important roles in tumour development and progression. Dysregulated miR-133 has been reported in several cancers, however, the expression and biological function of miR-133 in glioma remained unclear. In this study, we found that miR-133 expression level was significantly decreased in glioma tissues and cell lines by RT-qPCR. Then miR-133 mimics were used to evaluate the effects of miR-133 on cell proliferation and invasion in vitro. We found that overexpressed miR-133 could significantly suppress cell growth, and invasion in U87 cells. Additionally, we found that forkhead box C1 (FOXC1) was overexpressed in glioma tissue and it was directly regulated by miR-133. Overall, this study is the first proof to demonstrate that miR-133 function as tumour suppressor in glioma and inhibit cell proliferation and invasioned by directly targeting FOXC1, implying miR-133 as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Yu Liu
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Lili Han
- b Cancer Hospital of Henan Province, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , China.,c The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , China
| | - Yahui Bai
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Wei Du
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Bo Yang
- a The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
31
|
Qiao W, Guo B, Zhou H, Xu W, Chen Y, Liang Y, Dong B. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun 2017; 486:43-48. [DOI: 10.1016/j.bbrc.2017.02.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
|
32
|
Tian F, Chen J, Zheng S, Li D, Zhao X, Jiang P, Li J, Wang S. miR-124 targets GATA6 to suppress cholangiocarcinoma cell invasion and metastasis. BMC Cancer 2017; 17:175. [PMID: 28270130 PMCID: PMC5339982 DOI: 10.1186/s12885-017-3166-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
Background Our previous study showed that GATA6 plays important roles in cholangiocarcinoma (CCA) cell invasion and metastasis. However, the regulation mechanism of GATA6 in CCA is not clear. In this study, we studied the potential function of miR-124 in CCA and the mechanism of GATA6 regulation. Methods The expression levels of miR-124 and GATA6 in cancerous tissues from 57 CCA patients was detected by RT-PCR and IHC. The impact of miR-124 on GATA6 expression in CCA cells was evaluated using cell transfection, xenotransplantation into nude mice and a luciferase reporter assay. Results miR-124 was decreased in 57 cancerous tissue samples compared with 38 matched paracancerous samples. The miR-124 level was inversely associated with lymph node involvement and distant metastasis. miR-124 significantly inhibited invasion and migration of CCA cells in vitro. Furthermore, miR-124 inhibited CCA cell metastasis in nude mice. miR-124 inhibited the luciferase activity of reporter genes containing the wild-type GATA6 3′-UTR, which was abrogated by mutation of the binding site. The protein levels of GATA6 were negatively regulated by miR-124. miR-124 expression was inversely associated with GATA6 in 57 cancerous samples. The miR-124-induced suppression of CCA invasion was abrogated by remedial expression of GATA6. GATA6 expression was decreased by miR-124 overexpression in liver masses from nude mice. Conclusions Our data suggested that miR-124 decreases GATA6 expression by targeting its 3′-UTR, which in turn inhibits CCA invasion and metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3166-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feng Tian
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No. 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jian Chen
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No. 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shuguo Zheng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No. 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dajiang Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No. 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xin Zhao
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No. 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Peng Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No. 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jianwei Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No. 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Shuguang Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, No. 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
33
|
Iser IC, Pereira MB, Lenz G, Wink MR. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation. Med Res Rev 2017; 37:271-313. [PMID: 27617697 DOI: 10.1002/med.21408] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/31/2016] [Accepted: 08/09/2016] [Indexed: 01/03/2025]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer due to its highly invasive nature that impedes the surgical removal of all tumor cells, making relapse inevitable. However, the mechanisms used by glioma cells to invade the surrounding tissue are still unclear. In this context, epithelial-to-mesenchymal transition (EMT) has emerged as a key regulator of this invasive state and although the real relevance of this program in malignant glioma is still controversial, it has been strongly associated with GBM malignancy. EMT is a very complex process regulated by several families of transcriptional factors through many signaling pathways that form a network that allows cancer cells to acquire invasive properties and penetrate the neighboring stroma, resulting in the formation of an advantageous microenvironment for cancer progression and metastasis. In this systematic review, we focus on the molecular mechanisms of EMT including EMT-factors, drug resistance, miRNA, and new therapeutic strategies. In addition, we address controversial questions about mesenchymal shift in GBMs with a bioinformatics analysis to show that in terms of epithelial and mesenchymal phenotype, the majority of GBMs samples analyzed have a profile more mesenchymal than epithelial. If induced, this phenotype can be shifted toward an even more mesenchymal phenotype in an EMT-like process in glioma cells. A better understanding of the molecular regulation of the EMT during tumor spreading will help to provide potential therapeutic interventions to target this program when treating GBM.
Collapse
Affiliation(s)
- Isabele C Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Mariana B Pereira
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guido Lenz
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Wang E, Wang D, Li B, Ma H, Wang C, Guan L, Zhang H, Yi L, Li S. Capn4 promotes epithelial-mesenchymal transition in human melanoma cells through activation of the Wnt/β-catenin pathway. Oncol Rep 2016; 37:379-387. [PMID: 27878263 DOI: 10.3892/or.2016.5247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/01/2016] [Indexed: 11/06/2022] Open
Abstract
Melanoma, as one of the most highly metastatic types of cancer, is resistant to current treatment methods, including popular targeted molecular therapy. Consequently, it is essential to develop a deeper understanding of the mechanisms involved in melanoma progression so that alternative treatments may be identified. To date, accumulating evidence supports the use of calpains, including calpain small subunit 1 (also known as Capn4 or CAPNS1), which affect cancer progression through many pathways, such as epithelial‑mesenchymal transition (EMT), the Wnt/β-catenin (β-catenin) and the nuclear factor κB (NF-κB) signaling pathways. The EMT pathway is well known as one of the most important events in tumor metastasis. The present study observed cross-talk among the EMT, β-catenin and NF-κB pathways. To identify the underlying mechanisms of Capn4 activity in melanoma cells, we determined Capn4 expression by gene chip and immunohistochemistral analyses in melanoma tissues and cells in vitro. The extent of apoptosis as determined by TUNEL assay, DAPI staining, and cleaved-caspase-3 assay was increased in human melanoma cells in which Capn4 expression had been knocked down when compared with untreated cells. Transwell assays and xenograft tumorigenicity studies were also performed to assess the effects of Capn4 on migration and invasion in vitro and tumor growth in vivo, respectively. The levels of β-catenin, vimentin, E-cadherin and N-cadherin were altered in human melanoma cells as determined by western blot analysis assay. Our study demonstrated that Capn4 is an underlying target for melanoma treatment.
Collapse
Affiliation(s)
- Enwen Wang
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Donglin Wang
- Department of Medical Oncology, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Bing Li
- Department of Ear-Nose-Throat, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Huiwen Ma
- Department of Medical Oncology, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Chunmei Wang
- Department of Medical Oncology, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Lili Guan
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haiwei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Lin Yi
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Hospital and Institute and Cancer Center, Chongqing 400030, P.R. China
| | - Shaolin Li
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
35
|
Wang X, Li Y, Dai Y, Liu Q, Ning S, Liu J, Shen Z, Zhu D, Jiang F, Zhang J, Li Z. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep 2016; 6:36796. [PMID: 27824145 PMCID: PMC5099878 DOI: 10.1038/srep36796] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric carcinoma (GC) is the second leading cause of cancer-related mortality worldwide. The efficacy of standard chemotherapy for GC, such as cisplatin (CDDP), is dissatisfactory partly due to the toxic/side-effects. Sulforaphane (SFN), which exhibits effective anti-cancer functions, is a phytochemical converted from cruciferous plants. Our present study aimed to identify whether SFN could enhance the anti-cancer effects of low-dose CDDP and to determine the underlying mechanisms. Herein, co-exposure of SFN and CDDP significantly inhibited the viabilities of gastric cancer cells. For the molecular mechanisms, CDDP alone increased the cancer stem cell (CSC)-like properties in gastric cancer cells via activating the interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signaling. However, SFN could activate the microRNA-124 (miR-124), which directly targets the 3'-untranslated regions (UTR) of the IL-6R and STAT3. Moreover, knockdown of miR-124 eliminated the effects of SFN on CSC-like properties in GC cells, and in turn enhanced the anti-cancer effects of low-dose CDDP. These findings not only suggested a mechanism whereby SFN enhanced the anti-cancer functions of CDDP, but also helped to regard SFN as a potential chemotherapeutic factor in gastric cancer.
Collapse
Affiliation(s)
- Xingxing Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Li
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Dai
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Qinqiang Liu
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Shilong Ning
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiao Liu
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhaoxia Shen
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongmei Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Fei Jiang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianping Zhang
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Zhong Li
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
36
|
MicroRNA-124 inhibits proliferation, invasion, migration and epithelial-mesenchymal transition of cervical carcinoma cells by targeting astrocyte-elevated gene-1. Oncol Rep 2016; 36:2321-8. [DOI: 10.3892/or.2016.5025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/01/2016] [Indexed: 11/05/2022] Open
|
37
|
Deng D, Wang L, Chen Y, Li B, Xue L, Shao N, Wang Q, Xia X, Yang Y, Zhi F. MicroRNA-124-3p regulates cell proliferation, invasion, apoptosis, and bioenergetics by targeting PIM1 in astrocytoma. Cancer Sci 2016; 107:899-907. [PMID: 27088547 PMCID: PMC4946703 DOI: 10.1111/cas.12946] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/22/2016] [Accepted: 04/09/2016] [Indexed: 12/12/2022] Open
Abstract
The PIM1 protein is an important regulator of cell proliferation, the cell cycle, apoptosis, and metabolism in various human cancers. MicroRNAs (miRNAs) are powerful post‐transcriptional gene regulators that function through translational repression or transcript destabilization. Therefore, we aimed to identify whether a close relationship exists between PIM1 and miRNAs. PIM1 protein levels and mRNA levels were significantly upregulated in astrocytoma tissues, indicating the oncogenic role of PIM1 in astrocytoma. Further bioinformatics analysis indicated that miR‐124‐3p targeted the 3′‐UTR of PIM1. We also observed an inverse correlation between the miR‐124‐3p levels and PIM1 protein or mRNA levels in astrocytoma samples. Next, we experimentally confirmed that miR‐124‐3p directly recognizes the 3′‐UTR of the PIM1 transcript and regulates PIM1 expression at both the protein and mRNA levels. Furthermore, we examined the biological consequences of miR‐124‐3p targeting PIM1 in vitro. We showed that the repression of PIM1 in astrocytoma cancer cells by miR‐124‐3p suppressed proliferation, invasion, and aerobic glycolysis and promoted apoptosis. We observed that the restoration or inhibition of PIM1 activity resulted in effects that were similar to those induced by miR‐124‐3p inhibitors or mimics in cancer cells. Finally, overexpression of PIM1 rescued the inhibitory effects of miR‐124‐3p. In summary, these findings aid in understanding the tumor‐suppressive role of miR‐124‐3p in astrocytoma pathogenesis through the inhibition of PIM1 translation.
Collapse
Affiliation(s)
- Danni Deng
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lei Wang
- Xuzhou Central Hospital, Affiliated Hospital of Southeast University, Xuzhou, China
| | - Yao Chen
- Biopharm Industry Service Center, Changzhou Center for Biotech Development, Changzhou, China
| | - Bowen Li
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lian Xue
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Naiyuan Shao
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qiang Wang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiwei Xia
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yilin Yang
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Feng Zhi
- Modern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
38
|
Correa BR, de Araujo PR, Qiao M, Burns SC, Chen C, Schlegel R, Agarwal S, Galante PAF, Penalva LOF. Functional genomics analyses of RNA-binding proteins reveal the splicing regulator SNRPB as an oncogenic candidate in glioblastoma. Genome Biol 2016; 17:125. [PMID: 27287018 PMCID: PMC4901439 DOI: 10.1186/s13059-016-0990-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/24/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and aggressive type of brain tumor. Currently, GBM has an extremely poor outcome and there is no effective treatment. In this context, genomic and transcriptomic analyses have become important tools to identify new avenues for therapies. RNA-binding proteins (RBPs) are master regulators of co- and post-transcriptional events; however, their role in GBM remains poorly understood. To further our knowledge of novel regulatory pathways that could contribute to gliomagenesis, we have conducted a systematic study of RBPs in GBM. RESULTS By measuring expression levels of 1542 human RBPs in GBM samples and glioma stem cell samples, we identified 58 consistently upregulated RBPs. Survival analysis revealed that increased expression of 21 RBPs was also associated with a poor prognosis. To assess the functional impact of those RBPs, we modulated their expression in GBM cell lines and performed viability, proliferation, and apoptosis assays. Combined results revealed a prominent oncogenic candidate, SNRPB, which encodes core spliceosome machinery components. To reveal the impact of SNRPB on splicing and gene expression, we performed its knockdown in a GBM cell line followed by RNA sequencing. We found that the affected genes were involved in RNA processing, DNA repair, and chromatin remodeling. Additionally, genes and pathways already associated with gliomagenesis, as well as a set of general cancer genes, also presented with splicing and expression alterations. CONCLUSIONS Our study provides new insights into how RBPs, and specifically SNRPB, regulate gene expression and directly impact GBM development.
Collapse
Affiliation(s)
- Bruna R Correa
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
- Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA
| | | | - Mei Qiao
- Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA
| | - Suzanne C Burns
- Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA
| | - Chen Chen
- Georgetown University Medical Center, Washington, DC, USA
| | | | - Seema Agarwal
- Georgetown University Medical Center, Washington, DC, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil.
| | - Luiz O F Penalva
- Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, USA.
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX, USA.
| |
Collapse
|
39
|
Di J, Cao H, Tang J, Lu Z, Gao K, Zhu Z, Zheng J. Rap2B promotes cell proliferation, migration and invasion in prostate cancer. Med Oncol 2016; 33:58. [PMID: 27154636 DOI: 10.1007/s12032-016-0771-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Rap2B, a member of the Ras family of small GTP-binding proteins, reportedly presents a high level of expression in various human tumors and plays a significant role in the development of tumor. However, the function of Rap2B in prostate cancer (PCa) remains unclear. We elucidated the stimulative role of Rap2B in PCa cell proliferation, migration and invasion by means of the CCK-8 cell proliferation assay, cell cycle analysis and transwell migration assay. Western blot analysis uncovered that elevated Rap2B leads to increased phosphorylation levels of FAK, suggesting that FAK-dependent pathway might be responsible for the effect of Rap2B on PCa cells migration and invasion. Inversely, FAK-specific inhibitor (PF-573228) can abort Rap2B-induced FAK phosphorylation. In vivo experiment confirmed that Rap2B positively regulated PCa growth and metastasis, as well as the expression of phosphorylated FAK. Collectively, these findings shed light on Rap2B as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Jiehui Di
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Huan Cao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Juangjuan Tang
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Zhesi Zhu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, People's Republic of China.
| |
Collapse
|
40
|
Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016; 49:5-32. [PMID: 27175518 PMCID: PMC4902075 DOI: 10.3892/ijo.2016.3503] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects.
Collapse
|