1
|
Zwi-Dantsis L, Mohamed S, Massaro G, Moeendarbary E. Adeno-Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy. Viruses 2025; 17:239. [PMID: 40006994 PMCID: PMC11861813 DOI: 10.3390/v17020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Gene therapy offers promising potential as an efficacious and long-lasting therapeutic option for genetic conditions, by correcting defective mutations using engineered vectors to deliver genetic material to host cells. Among these vectors, adeno-associated viruses (AAVs) stand out for their efficiency, versatility, and safety, making them one of the leading platforms in gene therapy. The enormous potential of AAVs has been demonstrated through their use in over 225 clinical trials and the FDA's approval of six AAV-based gene therapy products, positioning these vectors at the forefront of the field. This review highlights the evolution and current applications of AAVs in gene therapy, focusing on their clinical successes, ongoing developments, and the manufacturing processes required for the rapid commercial growth anticipated in the AAV therapy market. It also discusses the broader implications of these advancements for future therapeutic strategies targeting more complex and multi-systemic conditions and biological processes such as aging. Finally, we explore some of the major challenges currently confronting the field.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Saira Mohamed
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Ortega MA, Boaru DL, De Leon-Oliva D, De Castro-Martinez P, Minaya-Bravo AM, Casanova-Martín C, Barrena-Blázquez S, Garcia-Montero C, Fraile-Martinez O, Lopez-Gonzalez L, Saez MA, Alvarez-Mon M, Diaz-Pedrero R. The Impact of Klotho in Cancer: From Development and Progression to Therapeutic Potential. Genes (Basel) 2025; 16:128. [PMID: 40004457 PMCID: PMC11854833 DOI: 10.3390/genes16020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Klotho, initially identified as an anti-aging gene, has been shown to play significant roles in cancer biology. Alongside α-Klotho, the β-Klotho and γ-Klotho isoforms have also been studied; these studies showed that Klotho functions as a potential tumor suppressor in many different cancers by inhibiting cancer cell proliferation, inducing apoptosis and modulating critical signaling pathways such as the Wnt/β-catenin and PI3K/Akt pathways. In cancers such as breast cancer, colorectal cancer, hepatocellular carcinoma, ovarian cancer, and renal cell carcinoma, reduced Klotho expression often correlates with a poor prognosis. In addition, Klotho's role in enhancing chemotherapy sensitivity and its epigenetic regulation further underscores its potential as a target for cancer treatments. This review details Klotho's multifaceted contributions to cancer suppression and its potential as a therapeutic target, enhancing the understanding of its significance in cancer treatment and prognoses.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
3
|
Ye W, Xia S, Xie T, Ye H, Yang Y, Sun Y, Cai J, Luo X, Zhou L, Song Y. Klotho accelerates the progression of polycystic ovary syndrome through promoting granulosa cell apoptosis and inflammation†. Biol Reprod 2024; 111:625-639. [PMID: 38874314 DOI: 10.1093/biolre/ioae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The morbidity of polycystic ovary syndrome (PCOS) is in highly increasing rate nowadays. PCOS not only affects the fertility in women, but also threatens the health of whole life. Hence, to find the prognostic risk factors is of great value. However, the effective predictors in clinical practice of PCOS are still in blackness. In this study, we found Klotho (KL) was increased in follicular fluid (FF) and primary luteinized granulosa cells (GCs) from PCOS patients with hyperandrogenism. Furthermore, we found follicular KL was negatively correlated with numbers of mature oocytes, and positively correlated with serum testosterone, LH, and LH/FSH levels menstrual cycle and number of total antral follicles in PCOS patients. In primary luteinized GCs, the increased KL was accompanied with upregulation of cell apoptosis and inflammation-related genes. In ovaries of PCOS mice and cultured human KGN cell line, KL was up-regulated and accompanied by apoptosis, inflammation, and mitochondrial dysfunction. Therefore, our findings suggest new mechanisms for granulosa cell injury and revealed to target inhibit KL maybe a new therapeutic strategy for treatment of PCOS.
Collapse
Affiliation(s)
- Wenting Ye
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyu Xia
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiyun Ye
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Sun
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Jing Cai
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Xiaoqing Luo
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital Dongguan, China
| |
Collapse
|
4
|
Dong J, Liu M, Xiang G, Yue L, Xu X, Xiang L. The association between serum soluble α-Klotho and thyroid profile among adults from NHANES 2007-2012. BMC Endocr Disord 2024; 24:161. [PMID: 39198803 PMCID: PMC11350967 DOI: 10.1186/s12902-024-01687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Thyroid hormone is the key endocrine regulator of growth, development, metabolism, and other bodily functions. α-Klotho has been involved in the aging process and acts as an endocrine factor involved in the regulation of various metabolic processes in humans. However, the relationship between α-Klotho and thyroid profile has not been uniformly recognize. OBJECTIVE To determine the relationship between α-Klotho and thyroid profile in adult individuals. METHODS Population data of 4614 adult individuals were obtained from the NHANES database during the period of 2007-2012. Weighted multivariable regression analysis was performed using a general linear model with serum α-Klotho as the independent variable and thyroid profile as the dependent variables, respectively. The generalized additive model was used for smoothing curve fitting and threshold effect analysis. RESULTS α-Klotho was associated with a slightly higher FT3, TT3 and TT4 level in unadjusted and adjusted regression models. However, a higher α-Klotho level was associated with a lower TSH level. After α-Klotho was grouped as quantiles with reference (Q1), α-Klotho still showed a statistically significant positive correlation with FT3 and TT3 levels in Q2, Q3 and Q4. In addition, α-Klotho was positively corrected with TT4, but negatively associated with TSH in Q4. CONCLUSIONS Serum soluble α-Klotho was positively associated with FT3, TT3 and TT4, but negatively correlated with TSH. The significant effect of α-Klotho on thyroid profile suggests its potential as a predictive marker of thyroid functions, indicating its possible involvement in the regulation of thyroid hormone secretion.
Collapse
Affiliation(s)
- Jing Dong
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Min Liu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Ling Yue
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China.
| | - Lin Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuluo Road 627, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
5
|
Zhang X, Liu X, Li L, Zhang Y, Li Q, Geng H, Shi L, Wang B, Qiu Q, Yu T, Sang Y, Wang L, Xu W, Liang J. Serum klotho associated with thyroid hormone in adults: A population-based cross-sectional research. PLoS One 2024; 19:e0301484. [PMID: 38696398 PMCID: PMC11065232 DOI: 10.1371/journal.pone.0301484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/16/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND AND STUDY AIM The klotho protein, a multifunctional protein, has been shown to be associated with a wide range of endocrine diseases and has been linked to thyroid tumourigenesis. However, the relationship between serum klotho levels and thyroid hormones remains poorly understood. This study aimed to explore the correlation between serum klotho levels and thyroid hormones. METHODS Data was obtained from the NHANES cycles 2007-2008, 2009-2010, and 2011-2012. A total of 4674 participants were recruited for this study. Statistical analysis was using multiple linear regression analyses, and restricted cubic spline plots (RCS) to investigate the association between serum klotho levels and serum levels of thyroid hormones. RESULTS In the unadjusted covariate model, ln(klotho) significantly positively correlated with tT3, tT4, fT3, tT4/fT4, and tT3/fT3 (all P<0.01) and negatively correlated with TSH, tT4/tT3, and fT4/fT3 (all P<0.05). Furthermore, tT3, tT4, fT3and tT3/fT3 (P < 0.05) were still significant in the adjusted model. And it is worth noting that there is an approximately L-shaped nonlinear relationship between ln(klotho) and fT3,tT3 with a cut-off point of 6.697 (P-non-linear < 0.05). The stratification analysis showed gender and iodine level differences in the relationship between serum Klotho levels and thyroid hormones. CONCLUSION There is an L-shaped nonlinear relationship between ln(klotho) and fT3, tT3, suggesting that klotho could be involved in the physiological regulation of thyroid function.
Collapse
Affiliation(s)
- Xia Zhang
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Lin Li
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Zhang
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Li
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Houfa Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Li Shi
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Ben Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Qinqin Qiu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Tianpei Yu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Yiquan Sang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Liying Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Wei Xu
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Jun Liang
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| |
Collapse
|
6
|
Chen X, Li H. Bruceine D and Narclasine inhibit the proliferation of breast cancer cells and the prediction of potential drug targets. PLoS One 2024; 19:e0297203. [PMID: 38215156 PMCID: PMC10786365 DOI: 10.1371/journal.pone.0297203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/31/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common female malignancies. This study explored the underlying mechanism through which the two plant compounds (Brucaine D and Narclasine) inhibited the proliferation of breast cancer cells. OBJECTIVE The purpose of this study was to explore the effect of Brucaine D and Narclasine on breast cancer development and their potential drug targets. METHODS GSE85871 dataset containing 212 samples and the hallmark gene set "h.all.v2023.1.Hs.symbols.gmt" were downloaded from the Gene Expression Omnibus (GEO) database and the Molecular Signatures Database (MSigDB) database, respectively. Principal component analysis (PCA) was applied to classify clusters showing similar gene expression pattern. Single sample gene set enrichment analysis (ssGSEA) was used to calculate the hallmark score for different drug treatment groups. The expressions of genes related to angiogenesis, glycolysis and cell cycle were detected. Protein-protein interaction (PPI) network analysis was performed to study the interaction of the hub genes. Then, HERB database was employed to identify potential target genes for Narclasine and Bruceine D. Finally, in vitro experiments were conducted to validate partial drug-target pair. RESULTS PCA analysis showed that the significant changes in gene expression patterns took place in 6 drugs treatment groups (Narciclasine, Bruceine D, Japonicone A, 1beta-hydroxyalatolactone, Britanin, and four mixture drugs) in comparison to the remaining drug treatment groups. The ssGSEA pathway enrichment analysis demonstrated that Narciclasine and Bruceine treatments had similar enriched pathways, for instance, suppressed pathways related to angiogenesis, Glycolysis, and cell cycle, etc.. Further gene expression analysis confirmed that Narciclasine and Bruceine had a strong ability to inhibit these cell cycle genes, and that MYC, CHEK2, MELK, CDK4 and EZH2 were closely interacted with each other in the PPI analysis. Drug target prediction revealed that Androgen Receptor (AR) and Estrogen Receptor 1 (ESR1) were the targets for Bruceine D, and Cytochrome P450 3A4 enzyme (CYP3A4) was the target for Narciclasine. Cell experiments also confirmed the connections between Narciclasine and CYP3A4. CONCLUSION The present study uncovered that Narciclasine and Bruceine D could inhibit the growth of breast cancer and also predicted the potential targets for these two drugs, providing a new therapeutic direction for breast cancer patients.
Collapse
Affiliation(s)
- Xinhao Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hua Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Mota J, Lima AMM, Gomes JIS, Souza de Andrade M, Brito HO, Silva MMAL, Faustino-Rocha AI, Oliveira PA, Lopes FF, Gil da Costa RM. Klotho in Cancer: Potential Diagnostic and Prognostic Applications. Diagnostics (Basel) 2023; 13:3357. [PMID: 37958253 PMCID: PMC10650206 DOI: 10.3390/diagnostics13213357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Klotho proteins, αKlotho, βKlotho, and γKlotho, exert tumor-suppressive activities via the fibroblast growth factor receptors and multiple cell-signaling pathways. There is a growing interest in Klotho proteins as potential diagnostic and prognostic biomarkers for multiple diseases. However, recent advances regarding their roles and potential applications in cancer remain disperse and require an integrated analysis. The present review analyzed research articles published between 2012 and 2022 in the Cochrane and Scopus scientific databases to study the role of Klotho in cancer and their potential as tools for diagnosing specific cancer types, predicting tumor aggressiveness and prognosis. Twenty-six articles were selected, dealing with acute myeloid leukemia and with bladder, breast, colorectal, esophageal, gastric, hepatocellular, ovarian, pancreatic, prostatic, pulmonary, renal, and thyroid cancers. αKlotho was consistently associated with improved prognosis and may be useful in estimating patient survival. A single study reported the use of soluble αKlotho levels in blood serum as a tool to aid the diagnosis of esophageal cancer. γKlotho was associated with increased aggressiveness of bladder, breast, and prostate cancer, and βKlotho showed mixed results. Further clinical development of Klotho-based assays will require careful identification of specific tumor subtypes where Klotho proteins may be most valuable as diagnostic or prognostic tools.
Collapse
Affiliation(s)
- Jucileide Mota
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
| | - Alice Marques Moreira Lima
- Health Sciences Center, State University of the Tocantins Region of Maranhão (UEMASUL), Imperatriz 6591-480, Brazil
| | - Jhessica I. S. Gomes
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
| | - Marcelo Souza de Andrade
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
| | - Haissa O. Brito
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
- Morphology Department, Federal University of Maranhão, São Luís 65085-580, Brazil
| | | | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Fernanda F. Lopes
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
| | - Rui M. Gil da Costa
- Post-Graduate Programme in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65085-580, Brazil
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering (ALiCE), University of Porto, 4200-465 Porto, Portugal
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Health Research Network, Research Center of Portuguese Oncology Institute of Porto (CIIPOP/RISE@CIIPOP), 4200-072 Porto, Portugal
| |
Collapse
|
8
|
Sun J, Zhang P, Wang D, Zhu S, Ma X, Du Z, Zhang J, Yang S, Huang H, Jiang R, Tian Y, Li W, Kang X, Yan F, Sun G, Li D. Integrative analyses of the mRNA expression profile reveal the involvement of STC1 in chicken folliculogenesis. J Anim Sci 2023; 101:skad295. [PMID: 37656166 PMCID: PMC10503649 DOI: 10.1093/jas/skad295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023] Open
Abstract
Efficient ovarian follicle development, maturation, and ovulation are critical for egg production performance. Previous research has underscored the importance of messenger RNAs (mRNAs) in regulating development and folliculogenesis in chicken ovarians. However, the molecular mechanism is not fully understood, especially in the late period of the laying cycle. In the present study, ovarian tissues from 80-week-old Hy-Line Brown layers (three with high and three with low rates of egg laying) were collected for transcriptome sequencing. A total of 306 differentially expressed genes (DEGs) were identified in this study, at a false discovery rate (FDR)-corrected P-value < 0.05 and a log2|fold change| (log2|FC|) ≥1.5. Among these DEGs, stanniocalcin 1 (STC1) was mainly related to cellular processes, single-organism processes, biological regulation, metabolic processes, developmental processes, and reproductive processes. Then, we further investigated the regulation of STC1 during chicken follicle development and found that STC1 inhibited the proliferation and stimulated the apoptosis of follicular granulosa cells (GCs), and decreased the expression of progesterone (P4) and estradiol (E2). Collectively, these results suggest that STC1 plays an important role in chicken follicle development by decreasing GC proliferation and steroidogenesis and stimulating GC apoptosis. This study contributes to the understanding of the reproductive biology of laying hens in the late period of the laying cycle and further lays a foundation for the improvement of egg production in poultry breeding.
Collapse
Affiliation(s)
- Junwei Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Pengwei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Dongxue Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Shuaipeng Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangfei Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhenwei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jiechang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Shuangyuan Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Fengbin Yan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
9
|
Angiotensin II receptor type 1 blockade regulates Klotho expression to induce TSC2-deficient cell death. J Biol Chem 2022; 298:102580. [DOI: 10.1016/j.jbc.2022.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022] Open
|
10
|
Sengun S, Korkmaz H, Ciris M, Yüceer RO, Boyluboy SM, Kiran M. Diagnostic and prognostic value of Stanniocalcin 1 expression in papillary thyroid cancer. Endocrine 2022; 78:95-103. [PMID: 35788886 DOI: 10.1007/s12020-022-03126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate the potential role of immunohistochemical changes in stanniocalcin 1 (STC1) and stanniocalcin 2 (STC2) expressions in papillary thyroid cancer (PTC) tissues in the disease's diagnosis and to investigate their relationship with classical clinicopathological prognostic factors. METHODS The study included 100 patients with PTC. Normal thyroid tissue adjacent to the tumor was taken as the control group. Clinicopathological prognostic features at the time of diagnosis of patients were recorded. STC1 and STC2 expressions of tumor tissue and adjacent normal tissue were determined immunohistochemically. RESULTS The sensitivity of STC1 in the diagnosis of PTC was 93%, the specificity was 94%, positive predictive value (PPV) 93.9%, and negative predictive value (NPV) 93.1%. It was determined that the STC1 staining score in tumor tissue was positively correlated with the disease TNM stage score (r = 0.259, p = 0.009) and the increase in STC1 staining score were independent risk factors that increased the risk of lymph node metastasis (R2 = 0.398, p < 0.001). While 21% of the tumor tissues were stained with STC2, none of the normal thyroid tissues adjacent to the tumor tissue showed any staining with STC2. No correlation was found between STC2 immunohistochemical staining of tumor tissue and clinicopathological risk factors for the disease. CONCLUSION Increased STC1 expression in thyroid lesions may be helpful in diagnosing PTC. In addition, since increased STC1 expression in PTC tissues is associated with the risk of lymph node metastasis, it may be an efficient marker for predicting the prognosis of the disease.
Collapse
Affiliation(s)
- Sevinç Sengun
- Department of Internal Medicine, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| | - Hakan Korkmaz
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey.
| | - Metin Ciris
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| | - Ramazan Oguz Yüceer
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| | - Serife Mehtap Boyluboy
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| | - Mehmet Kiran
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, 32260, Cunur, Isparta, Turkey
| |
Collapse
|
11
|
Han Z, Wang H, Long J, Qiu Y, Xing XL. Establishing a prognostic model of ferroptosis- and immune-related signatures in kidney cancer: A study based on TCGA and ICGC databases. Front Oncol 2022; 12:931383. [PMID: 36091132 PMCID: PMC9459019 DOI: 10.3389/fonc.2022.931383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundKidney cancer (KC) is one of the most challenging cancers due to its delayed diagnosis and high metastasis rate. The 5-year survival rate of KC patients is less than 11.2%. Therefore, identifying suitable biomarkers to accurately predict KC outcomes is important and urgent.MethodsCorresponding data for KC patients were obtained from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) databases. Systems biology/bioinformatics/computational approaches were used to identify suitable biomarkers for predicting the outcome and immune landscapes of KC patients.ResultsWe found two ferroptosis- and immune-related differentially expressed genes (FI-DEGs) (Klotho (KL) and Sortilin 1 (SORT1)) independently correlated with the overall survival of KC patients. The area under the curve (AUC) values of the prognosis model using these two FI-DEGs exceeded 0.60 in the training, validation, and entire groups. The AUC value of the 1-year receiver operating characteristic (ROC) curve reached 0.70 in all the groups.ConclusionsOur present study indicated that KL and SORT1 could be prognostic biomarkers for KC patients. Whether this model can be used in clinical settings requires further validation.
Collapse
Affiliation(s)
- Zhijun Han
- Department of Urology, Department of Ultrasonography, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Hao Wang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- Department of Urology, The First Affiliated Hospital to Hengyang Medical School, South China University, Hengyang, China
| | - Jing Long
- Department of Urology, Department of Ultrasonography, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yanning Qiu
- First College for Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiao-Liang Xing
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- Department of Urology, The First Affiliated Hospital to Hengyang Medical School, South China University, Hengyang, China
- *Correspondence: Xiao-Liang Xing,
| |
Collapse
|
12
|
Wu Q, Jiang L, Wu J, Dong H, Zhao Y. Klotho Inhibits Proliferation in a RET Fusion Model of Papillary Thyroid Cancer by Regulating the Wnt/β-Catenin Pathway. Cancer Manag Res 2021; 13:4791-4802. [PMID: 34168498 PMCID: PMC8216664 DOI: 10.2147/cmar.s295086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose We aimed to investigate the mechanisms of action on Klotho that underlie cancer development in RET fusion models of human papillary thyroid cancer (PTC). Materials and Methods Normal Nthy-ori 3-1 thyroid cells and two PTC cell lines (BHP10-3 and TPC-1), which were used as RET fusion models of PTC, were used to study Klotho. Klotho expression was analyzed by Western blotting. Klotho overexpression cell lines were constructed using the two types of PTC cells. Cell proliferation and apoptosis were assessed. Western blotting was used to detect the expression of proteins in the Wnt/β-catenin pathway. In addition, an activator and an inhibitor of the Wnt/β-catenin pathway were used to confirm that Klotho regulates the pathway in PTC cells. Mice were used to analyze the in vivo effect of Klotho on tumor growth and the Wnt/β-catenin pathway. Results In BHP10-3 and TPC-1 cells, Klotho expression was low. After Klotho overexpression, the cell proliferation was significantly suppressed and apoptosis was significantly increased (p<0.05). Wnt1, β-catenin, and CyclinD1 expression were also significantly decreased after Klotho overexpression (p<0.05). Administration of the Wnt/β-catenin pathway activator attenuated the effect of Klotho overexpression (p<0.05). In vivo, the tumor growth was suppressed, and apoptosis of the cancer cells in the tumors were increased after Klotho overexpression. However, injection of the Wnt/β-catenin pathway activator attenuated the effects of Klotho overexpression. Conclusion Klotho inhibits cell proliferation in RET fusion models of PTC by inhibiting the Wnt/β-catenin pathway, providing a potential target for developing treatment for PTC.
Collapse
Affiliation(s)
- Qiong Wu
- Medical Examination Center, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of XuZhou Medical University, Huai'an, 223001, People's Republic of China
| | - Liang Jiang
- Department of Ear-Nose-Throat, Qingdao Women and Children's Hospital, Qingdao, 266000, People's Republic of China
| | - Jiang Wu
- Clinic Transfusion Room, Huai'an Second People's Hospital, The Affiliated Huaian Hospital of XuZhou Medical University, Huai'an, 223001, People's Republic of China
| | - HaiFang Dong
- Medical Examination Center, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of XuZhou Medical University, Huai'an, 223001, People's Republic of China
| | - Yaping Zhao
- Clinic Transfusion Room, Nanjing Gaochun People's Hospital, Nanjing, 211300, People's Republic of China
| |
Collapse
|
13
|
Zhang L, Zhu H, Teng X, Sheng X, Yu B. Modulation of miR-382-5p reduces apoptosis of myocardial cells after acute myocardial infarction. Autoimmunity 2021; 54:195-203. [PMID: 34042547 DOI: 10.1080/08916934.2021.1910812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a severe cardiovascular condition. Blocking the apoptosis of myocardial cells may mitigate AMI. Excessive expression of Stanniocalcin-1 (STC1) plays a protective role in the heart by inhibiting myocardial cell apoptosis. Here, we looked at the mechanism by which miR-382-5p regulates STC1 and affects myocardial cell apoptosis after AMI. METHODS An AMI mouse model with a descending anterior ligament coronary artery and an HL-1 cell model with reproducible hypoxia/reoxygenation (H/R) were established. For pathological changes in myocardial tissues, terminal deoxynucleotidyl transferase dUTP nick end labelling staining and haematoxylin and eosin staining were performed. STC1 mRNA and miR-382-5p levels were measured using quantitative real-time PCR. Protein levels of STC1 and apoptosis-related proteins were measured by western blotting. The 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay was used to detect cell viability, and a dual-luciferase reporter assay was carried out to verify potential targets of miR-382-5p. RESULTS The level of miR-382-5p was raised in myocardial tissues of AMI mice and H/R-induced HL-1 cells. Compared with the control group, the myocardial tissue cells in the AMI group were disordered, with evident necrosis of myocardial cells, apoptosis and inflammatory infiltration. Interference with miR-382-5p inhibited myocardial cell apoptosis after H/R, as well as inferior lactate dehydrogenase. Also, miR-382-5p adversely regulated STC1 and the expression of STC1 was increased after transfection with miR-382-5p antagomir. Furthermore, interference with miR-382-5p reduced myocardial cell apoptosis after H/R by increasing the expression level of STC1. CONCLUSION To summarise, our study showed an increase in miR-382-5p in myocardial tissues in the AMI mouse model. Interference with miR-382-5p reduced apoptosis of myocardial cells after AMI and the effect was achieved by increasing STC1 expression.
Collapse
Affiliation(s)
- Liqin Zhang
- Department of Laboratory, Jinhua People's Hospital, Jinhua, People's Republic of China
| | - Huajie Zhu
- Department of obstetrics and gynecology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xianlin Teng
- Department of Laboratory, Jinhua People's Hospital, Jinhua, People's Republic of China
| | - Xiaosheng Sheng
- Department of Cardiology, Jinhua People's Hospital, Jinhua, People's Republic of China
| | - Beiwei Yu
- Department of Laboratory, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
14
|
Ewendt F, Feger M, Föller M. Role of Fibroblast Growth Factor 23 (FGF23) and αKlotho in Cancer. Front Cell Dev Biol 2021; 8:601006. [PMID: 33520985 PMCID: PMC7841205 DOI: 10.3389/fcell.2020.601006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Together with fibroblast growth factors (FGFs) 19 and 21, FGF23 is an endocrine member of the family of FGFs. Mainly secreted by bone cells, FGF23 acts as a hormone on the kidney, stimulating phosphate excretion and suppressing formation of 1,25(OH)2D3, active vitamin D. These effects are dependent on transmembrane protein αKlotho, which enhances the binding affinity of FGF23 for FGF receptors (FGFR). Locally produced FGF23 in other tissues including liver or heart exerts further paracrine effects without involvement of αKlotho. Soluble Klotho (sKL) is an endocrine factor that is cleaved off of transmembrane Klotho or generated by alternative splicing and regulates membrane channels, transporters, and intracellular signaling including insulin growth factor 1 (IGF-1) and Wnt pathways, signaling cascades highly relevant for tumor progression. In mice, lack of FGF23 or αKlotho results in derangement of phosphate metabolism and a syndrome of rapid aging with abnormalities affecting most organs and a very short life span. Conversely, overexpression of anti-aging factor αKlotho results in a profound elongation of life span. Accumulating evidence suggests a major role of αKlotho as a tumor suppressor, at least in part by inhibiting IGF-1 and Wnt/β-catenin signaling. Hence, in many malignancies, higher αKlotho expression or activity is associated with a more favorable outcome. Moreover, also FGF23 and phosphate have been revealed to be factors relevant in cancer. FGF23 is particularly significant for those forms of cancer primarily affecting bone (e.g., multiple myeloma) or characterized by bone metastasis. This review summarizes the current knowledge of the significance of FGF23 and αKlotho for tumor cell signaling, biology, and clinically relevant parameters in different forms of cancer.
Collapse
Affiliation(s)
- Franz Ewendt
- Department of Nutritional Physiology, Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
15
|
Xie T, Ye W, Liu J, Zhou L, Song Y. The Emerging Key Role of Klotho in the Hypothalamus-Pituitary-Ovarian Axis. Reprod Sci 2020; 28:322-331. [PMID: 32783104 DOI: 10.1007/s43032-020-00277-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
The hypothalamus-pituitary-ovary axis is the most important system for regulating female reproductive endocrine function. Its dysfunction would lead to the abnormal secretion of gonadotropin-releasing hormone, follicle-stimulating hormone, or luteinizing hormone, and eventually result in the occurrence of reproductive disease, such as congenital hypogonadotropic hypogonadism, polycystic ovary syndrome, and premature ovarian failure. Recently, an anti-aging gene, Klotho, has gained broad attention in female reproductive diseases. Reports have shown that Klotho is closely correlated to the hypothalamus-pituitary-ovary axis and plays a key role in the development and progression of reproductive diseases. With this issue, we generally review the physiological and pathological role of Klotho in the hypothalamus-pituitary-ovary axis. We also review the underlying mechanisms of Klotho in promoting and preventing female reproductive diseases, which involve the dysfunction of the fibroblast growth factor-Klotho endocrine system, the abnormal signaling regulation of Wnt-β-catenin and insulin-like growth factor-1, the accumulation of oxidative stress, and the inhibition of autophagy, eventually affecting the genesis, development, ovulation, or atresia of follicles. The present review would provide new insights and potential therapeutic target strategies for clinical strategies.
Collapse
Affiliation(s)
- Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China
| | - Wenting Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China
| | - Jing Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Yali Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China.
| |
Collapse
|
16
|
Yang L, Wu Y, He H, Hu F, Li M, Mo L, Xiao Y, Wang X, Xie B. Delivery of BR2‐SOX17 fusion protein can inhibit cell survival, proliferation, and invasion in gastric cancer cells through regulating Klotho gene expression. Cell Biol Int 2020; 44:2011-2020. [PMID: 32544287 DOI: 10.1002/cbin.11407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Lixia Yang
- Department of Cancer The First Affiliated Hospital of Changsha Medical School Changsha Hunan China
| | - Yue Wu
- Department of Cancer The First Affiliated Hospital of Changsha Medical School Changsha Hunan China
| | - Heli He
- Department of Cancer The First Affiliated Hospital of Changsha Medical School Changsha Hunan China
| | - Fan Hu
- Department One of Anorectal Surgery The Second Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan China
| | - Mei Li
- Department One of Anorectal Surgery The Second Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan China
| | - Li Mo
- Department One of Anorectal Surgery The Second Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan China
| | - You Xiao
- Department One of Anorectal Surgery The Second Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan China
| | - Xiaoyan Wang
- Department One of Anorectal Surgery The Second Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan China
| | - Biao Xie
- Department of Cancer The First Affiliated Hospital of Changsha Medical School Changsha Hunan China
- Department One of Anorectal Surgery The Second Affiliated Hospital of Hunan University of Chinese Medicine Changsha Hunan China
| |
Collapse
|
17
|
Sachdeva A, Gouge J, Kontovounisios C, Nikolaou S, Ashworth A, Lim K, Chong I. Klotho and the Treatment of Human Malignancies. Cancers (Basel) 2020; 12:cancers12061665. [PMID: 32585905 PMCID: PMC7352559 DOI: 10.3390/cancers12061665] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
Klotho was first discovered as an anti-ageing protein linked to a number of age-related disease processes, including cardiovascular, renal, musculoskeletal, and neurodegenerative conditions. Emerging research has also demonstrated a potential therapeutic role for Klotho in cancer biology, which is perhaps unsurprising given that cancer and ageing share similar molecular hallmarks. In addition to functioning as a tumour suppressor in numerous solid tumours and haematological malignancies, Klotho represents a candidate therapeutic target for patients with these diseases, the majority of whom have limited treatment options. Here, we examine contemporary evidence evaluating the anti-neoplastic effects of Klotho and describe the modulation of downstream oncogenic signalling pathways, including Wnt/β-catenin, FGF, IGF1, PIK3K/AKT, TGFβ, and the Unfolded Protein Response. We also discuss possible approaches to developing therapeutic Klotho and consider technological advances that may facilitate the delivery of Klotho through gene therapy.
Collapse
Affiliation(s)
- Aishani Sachdeva
- The Royal Marsden NHS Foundation Trust, London SW6 6JJ, UK; (A.S.); (C.K.)
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, London SW10 9NH, UK;
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK;
| | - Christos Kontovounisios
- The Royal Marsden NHS Foundation Trust, London SW6 6JJ, UK; (A.S.); (C.K.)
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, London SW10 9NH, UK;
| | - Stella Nikolaou
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, London SW10 9NH, UK;
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Kenneth Lim
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA;
| | - Irene Chong
- The Royal Marsden NHS Foundation Trust, London SW6 6JJ, UK; (A.S.); (C.K.)
- The Institute of Cancer Research, London SW3 6JB, UK
- Correspondence:
| |
Collapse
|
18
|
Zhao F, Yang G, Feng M, Cao Z, Liu Y, Qiu J, You L, Zheng L, Zhang T, Zhao Y. Expression, function and clinical application of stanniocalcin-1 in cancer. J Cell Mol Med 2020; 24:7686-7696. [PMID: 32468698 PMCID: PMC7348177 DOI: 10.1111/jcmm.15348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/10/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein stanniocalcin-1 functions as a regulatory endocrine hormone that maintains the balance of calcium and phosphorus in bony fish and as a paracrine/autocrine factor involved in many physiological/pathological processes in humans, including carcinogenesis. In this review, we provide an overview of (a) the possible mechanisms through which STC1 affects the malignant properties of cancer, (b) transcriptional and post-transcriptional regulation pathways of STC1 and (c) the potential clinical relevance of STC1 as a cancer biomarker and even a therapeutic target in the future. Exploring the role of STC1 in cancer development may provide a better understanding of the tumorigenesis process in humans and may facilitate finding an effective therapeutic method against cancer.
Collapse
Affiliation(s)
- Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Costa BP, Schein V, Zhao R, Santos AS, Kliemann LM, Nunes FB, Cardoso JCR, Félix RC, Canário AVM, Brum IS, Branchini G. Stanniocalcin-1 protein expression profile and mechanisms in proliferation and cell death pathways in prostate cancer. Mol Cell Endocrinol 2020; 502:110659. [PMID: 31816356 DOI: 10.1016/j.mce.2019.110659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Prostate cancer (PCa) is one of the most prevalent male tumours. Stanniocalcin-1 (STC1) is a glycoprotein and, although the role of STC1 in human cancer is poorly understood, it is suggested to be involved in the development and progression of different neoplasms. This study investigated the protein expression profile of STC1 in PCa and benign prostatic hyperplasia (BPH) samples and STC1 signalling during cell proliferation and cell death in vitro using cell lines. We found higher levels of STC1 in PCa when compared to BPH tissue and that STC1 inhibited forskolin stimulation of cAMP in PC-3 cells. A monoclonal antibody against STC1 was effective in reducing cell proliferation, in promoting cell cycle arrest, and in increasing apoptosis in the same cells. Since STC1 acts as a regulator of prostatic tissue signalling, we suggest that this protein is a novel candidate biomarker for prostate tumour clinical progression and a potential therapeutic target.
Collapse
Affiliation(s)
- Bruna Pasqualotto Costa
- Programa de Pós-Graduação em Patologia, Universidade Federal do Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Vanessa Schein
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Zhao
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | | - Lucia Maria Kliemann
- Departamento de Patologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Bordignon Nunes
- Programa de Pós-Graduação em Patologia, Universidade Federal do Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - J C R Cardoso
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Rute Castelo Félix
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - A V M Canário
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Ilma Simoni Brum
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gisele Branchini
- Programa de Pós-Graduação em Patologia, Universidade Federal do Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
20
|
Li Y, Xiao HJ, Xue F. Overexpression of klotho suppresses growth and pulmonary metastasis of osteosarcoma in vivo. Genet Mol Biol 2020; 43:e20190229. [PMID: 32614356 PMCID: PMC7263425 DOI: 10.1590/1678-4685-gmb-2019-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/14/2020] [Indexed: 12/28/2022] Open
Abstract
Klotho is originally discovered as an anti-aging gene and knock-out of klotho accelerates aging in mice. Subsequent studies support the anti-carcinogenesis role of klotho in a variety of human malignancies. The present study investigated the role of klotho on growth and metastasis of osteosarcoma cells. The osteosarcoma cells were transduced with lentivirus particles encoding klotho or scramble control. The reconstructed osteosarcoma cells were injected into the femoral medullary cavity of nude mice to establish a xenograft animal model. The anti-tumor properties of klotho were evaluated in terms of tumor growth, apoptosis, glycogen production, and pulmonary metastasis. Lentivirus-mediated overexpression of klotho significantly decreased tumor volume and weight in osteosarcoma mice. Determination of PCNA and Ki67 expression revealed that overexpression of klotho inhibited cell proliferation in tumor tissues obtained from osteosarcoma xenografts. PAS staining also showed that overexpression of klotho significantly decreased the production of glycogen in osteosarcoma. Moreover, TUNEL positive cells were significantly increased after lentivirus-mediated overexpression of klotho. Furthermore, lentivirus-mediated upregulation of klotho reduced the number of pulmonary metastatic lesions in mice compared to control mice. These findings demonstrated that elevated klotho could inhibit osteosarcoma cell growth and pulmonary metastasis in vivo, suggesting that klotho may be a valuable therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Ying Li
- Shanghai Fengxian District Central Hospital, Department of Orthopedics, Shanghai, China
| | - Hai-jun Xiao
- Shanghai Fengxian District Central Hospital, Department of Orthopedics, Shanghai, China
| | - Feng Xue
- Shanghai Fengxian District Central Hospital, Department of Orthopedics, Shanghai, China
| |
Collapse
|
21
|
Brominska B, Gabryel P, Jarmołowska-Jurczyszyn D, Janicka-Jedyńska M, Kluk A, Trojanowski M, Brajer-Luftmann B, Woliński K, Czepczyński R, Gut P, Bromiński G, Majewski P, Dyszkiewicz W, Ruchała M. Klotho expression and nodal involvement as predictive factors for large cell lung carcinoma. Arch Med Sci 2019; 15:1010-1016. [PMID: 31360195 PMCID: PMC6657266 DOI: 10.5114/aoms.2018.75889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/22/2017] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Klotho has been recently described as a carcinogenesis suppressor. Large cell neuroendocrine lung carcinoma (LCNEC) is a rare, highly malignant neoplasm. In the light of increasing incidence of neuroendocrine tumours, biomarkers predicting survival are needed. We consider that Klotho might be one. MATERIAL AND METHODS We analysed records of all patients diagnosed with LCNEC, atypical carcinoid and typical carcinoid operated on in our institution between 2007 and 2015. Initially, we found 134 cases. Forty-six specimens were unattainable and thus excluded from research. All patients diagnosed with LCNEC according to the WHO classification were included in the study. Immunohistochemical staining for Klotho was performed. We retrospectively reviewed patient charts and analysed multiple variables. RESULTS Positive staining for Klotho was present in 36 tissue specimens, while 12 patients were Klotho-negative. Survival length was significantly higher in Klotho-positive cases (p = 0.024), while advanced nodal status (N1 and N2) represented a marker of poor outcome (p = 0.011). In multivariate analysis, both Klotho presence (p = 0.015; HR = 0.37; 95% CI: 0.17-0.86) and nodal involvement (p = 0.007; HR = 3.04; 95% CI: 1.37-6.82) were independent prognostic factors. Tumour vessel invasion and visceral pleura infiltration were not associated with worse treatment results. Klotho presence predicted a favourable prognosis in these groups (p = 0.018; p = 0.007). CONCLUSIONS Our results suggest that Klotho might be a positive factor for predicting survival in LCNEC and nodal involvement a negative one. Thus, these two markers may assist in the selection of subjects with unfavourable prognosis and to personalise therapy regimens.
Collapse
Affiliation(s)
- Barbara Brominska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Gabryel
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Andrzej Kluk
- Department of Clinical Pathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Trojanowski
- Department of Epidemiology and Cancer Prevention, Greater Poland Cancer Center, Poznan, Poland
| | - Beata Brajer-Luftmann
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kosma Woliński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Gut
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Gabriel Bromiński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Przemysław Majewski
- Department of Clinical Pathology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
22
|
Zhu Y, Cao X, Zhang X, Chen Q, Wen L, Wang P. DNA methylation-mediated Klotho silencing is an independent prognostic biomarker of head and neck squamous carcinoma. Cancer Manag Res 2019; 11:1383-1390. [PMID: 30863149 PMCID: PMC6388988 DOI: 10.2147/cmar.s188415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To study the prognostic value of klotho (KL) and its promoter DNA methylation in head and neck squamous cell carcinoma (HNSCC) and to assess their associations with the autophagy gene LC3 and the RNA transferase gene NSUN2. Materials and methods Upper quartile normalized RNA-seq V2 RSEM values of KL mRNA and beta value for KL methylation were retrieved from The Cancer Genome Atlas HNSCC dataset. Kaplan–Meier survival curves were used to assess the associations of KL expression and methylation with patient survival; multivariate Cox proportional hazards regression models were used to estimate the HRs and their 95% CIs. Results There is a negative relationship between KL gene expression and its promoter DNA methylation in HNSCC. KL gene expression was positively correlated with overall survival, while KL methylation was inversely correlated with the overall survival of HNSCC patients. Furthermore, KL methylation was significantly associated with gender (P=0.012), tumor grade (P=0.0009) and tumor site (P<0.0001). Finally, HNSCC patients with high KL gene expression or low KL DNA methylation had high LC3 but low NSUN2. Conclusion KL methylation silenced its gene expression in HNSCC. Low KL expression and high KL methylation can be potential biomarkers for worse prognosis in HNSCC. As the downstream targets, LC3 and NSUN2 could be responsible for the KL expression in HNSCC.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xuehong Cao
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, Fujian Province 361102, China
| | - Xiaomeng Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Quan Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Lei Wen
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, Fujian Province 361102, China
| | - Ping Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,
| |
Collapse
|
23
|
Mao S, Wang X, Wu L, Zang D, Shi W. Association between klotho expression and malignancies risk and progression: A meta-analysis. Clin Chim Acta 2018; 484:14-20. [PMID: 29775618 DOI: 10.1016/j.cca.2018.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND We assessed the association between tissue klotho protein expression and the risk and progression of malignancies. METHODS We searched the electronic databases for the studies regarding the relationship between tissue klotho protein expression and risk/progression of malignancies through January 2018. We calculated the pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) to evaluate the impact of tissue klotho protein expression on malignancies. A fixed-effect model, or in the presence of heterogeneity, random- effect model was applied to calculate the combined ORs. RESULTS Eighteen studies were recruited in our pooled-analysis. Overall malignancies including liver cancer, pancreatic ductal adenocarcinoma (PDAC), ovarian cancer, esophageal squamous cell carcinoma (ESCC), neuroendocrine cancer, oral cancer and bladder cancer demonstrated significantly lower ORs than those in controls (p < 0.05). Malignancies with tissue klotho protein expression showed a pooled hazard ratio (95% CI 0.784-2.479). Malignancies with tissue klotho protein expression showed a similar OR (95% CI 0.732-1.335) of male/total to cases without tissue klotho protein expression. Malignancies with tissue klotho protein expression showed a markedly lower OR (95% CI 0.454-0.941) of metastasis compared with those without tissue klotho protein expression. Malignancies with tissue klotho protein expression showed a markedly higher OR (95% CI 1.041-1.800) of stage I-II/III-IVcompared with those without tissue klotho protein expression. Malignancies with tissue klotho protein expression showed a similar OR (95% CI 0.948-3.407) of differentiation to cases without tissue klotho protein expression. Sensitivity analysis did not change the overall results significantly. No marked publication bias was noted. CONCLUSIONS Tissue klotho protein expression was associated with a lower risk and progression of malignancies. Klotho may be a protective factor against malignancies risk/progression.
Collapse
Affiliation(s)
- Song Mao
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200023, PR China
| | - Xiaopeng Wang
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200023, PR China
| | - Liangxia Wu
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200023, PR China
| | - Dou Zang
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200023, PR China
| | - Wenjing Shi
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200023, PR China.
| |
Collapse
|
24
|
STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells. Oncotarget 2018; 8:46249-46261. [PMID: 28545028 PMCID: PMC5542264 DOI: 10.18632/oncotarget.17641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/11/2017] [Indexed: 01/15/2023] Open
Abstract
Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer.
Collapse
|
25
|
Motylewska E, Stępień T, Borkowska M, Kuzdak K, Siejka A, Komorowski J, Stępień H, Ławnicka H. Alteration in the serum concentrations of FGF19, FGFR4 and βKlotho in patients with thyroid cancer. Cytokine 2018; 105:32-36. [PMID: 29438906 DOI: 10.1016/j.cyto.2018.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION βKlotho (βKL) is known to act as co-receptor for fibroblast growth factor receptor 4 (FGFR4) which is the main cognate receptor for fibroblast growth factor 19 (FGF19). Dysregulation of this FGF19/FGFR4/βKL signaling axis has been implicated in the pathogenesis of several cancers. However, its role in the pathogenesis of thyroid cancer has not been determined. MATERIALS AND METHODS The aim of this study was to assess FGF19, FGFR4 and βKL concentrations in a group of 36 patients with papillary thyroid cancer (PTC), 11 patients with follicular thyroid cancer (FTC), 9 patients with anaplastic thyroid cancer (ATC) and a group of 19 subjects with multinodular nontoxic goiter (MNG). The control group consisted of 20 healthy volunteers. Serum FGF19, FGFR4 and βKL concentrations were measured using specific ELISA methods. RESULTS Significantly lower concentrations of βKL and higher concentrations of FGF19 were found in patients with PTC, FTC and ATC as compared with MNG group and controls. An elevation of FGFR4 serum concentration was observed in all thyroid cancer groups in comparison to MNG group and controls; however, in FTC group it was statistically insignificant. A positive correlation was found between βKL and FGFR4 concentrations in PTC patients. The levels of βKL, FGF19 and FGFR4 did not differ significantly between MNG group and healthy controls. CONCLUSIONS Our results indicate that a disrupted FGF19/FGFR4/βKL signaling pathway may play a role in the development of thyroid cancers. However, further studies are needed to elucidate the molecular mechanism of the neoplastic transition of thyroid epithelial cells.
Collapse
Affiliation(s)
- Ewelina Motylewska
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Sterlinga 3, 91-425 Lodz, Poland.
| | - Tomasz Stępień
- Clinic of Endocrinological and General Surgery, Chair of Endocrinology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
| | - Magdalena Borkowska
- Clinic of Endocrinological and General Surgery, Chair of Endocrinology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
| | - Krzysztof Kuzdak
- Clinic of Endocrinological and General Surgery, Chair of Endocrinology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
| | - Agnieszka Siejka
- Clinic of Endocrinology, Chair of Endocrinology, Medical University of Lodz, Sterlinga 3, 91-425 Lodz, Poland
| | - Jan Komorowski
- Clinic of Endocrinology, Chair of Endocrinology, Medical University of Lodz, Sterlinga 3, 91-425 Lodz, Poland
| | - Henryk Stępień
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Sterlinga 3, 91-425 Lodz, Poland
| | - Hanna Ławnicka
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Sterlinga 3, 91-425 Lodz, Poland
| |
Collapse
|
26
|
Mencke R, Olauson H, Hillebrands JL. Effects of Klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2017; 121:85-100. [PMID: 28709936 DOI: 10.1016/j.addr.2017.07.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
Klotho is a membrane-bound protein predominantly expressed in the kidney, where it acts as a permissive co-receptor for Fibroblast Growth Factor 23. In its shed form, Klotho exerts anti-fibrotic effects in several tissues. Klotho-deficient mice spontaneously develop fibrosis and Klotho deficiency exacerbates the disease progression in fibrotic animal models. Furthermore, Klotho overexpression or supplementation protects against fibrosis in various models of renal and cardiac fibrotic disease. These effects are mediated at least partially by the direct inhibitory effects of soluble Klotho on TGFβ1 signaling, Wnt signaling, and FGF2 signaling. Soluble Klotho, as present in the circulation, appears to be the primary mediator of anti-fibrotic effects. Similarly, through inhibition of the TGFβ1, Wnt, FGF2, and IGF1 signaling pathways, Klotho also inhibits tumorigenesis. The Klotho promoter gene is generally hypermethylated in cancer, and overexpression or supplementation of Klotho has been found to inhibit tumor growth in various animal models. This review focuses on the protective effects of soluble Klotho in inhibiting renal fibrosis and fibrosis in distant organs secondary to renal Klotho deficiency. We also discuss the structure-function relationships of Klotho domains and biological effects in the context of potential targeted treatment strategies.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hannes Olauson
- Department of Clinical Science, Intervention and Technology (Division of Renal Medicine), Karolinska Institutet, Stockholm, Sweden
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
27
|
Olauson H, Mencke R, Hillebrands JL, Larsson TE. Tissue expression and source of circulating αKlotho. Bone 2017; 100:19-35. [PMID: 28323144 DOI: 10.1016/j.bone.2017.03.043] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
αKlotho (Klotho), a type I transmembrane protein and a coreceptor for Fibroblast Growth Factor-23, was initially thought to be expressed only in a limited number of tissues, most importantly the kidney, parathyroid gland and choroid plexus. Emerging data may suggest a more ubiquitous Klotho expression pattern which has prompted reevaluation of the restricted Klotho paradigm. Herein we systematically review the evidence for Klotho expression in various tissues and cell types in humans and other mammals, and discuss potential reasons behind existing conflicting data. Based on current literature and tissue expression atlases, we propose a classification of tissues into high, intermediate and low/absent Klotho expression. The functional relevance of Klotho in organs with low expression levels remain uncertain and there is currently limited data on a role for membrane-bound Klotho outside the kidney. Finally, we review the evidence for the tissue source of soluble Klotho, and conclude that the kidney is likely to be the principal source of circulating Klotho in physiology.
Collapse
Affiliation(s)
- Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Rik Mencke
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Zandberga E, Zayakin P, Ābols A, Pūpola D, Trapencieris P, Linē A. Depletion of carbonic anhydrase IX abrogates hypoxia-induced overexpression of stanniocalcin-1 in triple negative breast cancer cells. Cancer Biol Ther 2017; 18:596-605. [PMID: 28665755 DOI: 10.1080/15384047.2017.1345390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) is a pH-regulating enzyme that plays a key role in maintaining an alkaline intracellular pH under hypoxic conditions. It is overexpressed in a variety of solid cancers, including breast cancer (BC), and has been implicated in the migration, invasion and stemness of breast cancer cells. Therefore, CAIX recently emerged as a novel therapeutic target for the treatment of BC. To gain an insight into the mechanism of action of CAIX inhibitors, we investigated the impact of CAIX knock-down on the transcriptional response to hypoxia in 2 BC cell lines - MCF7 and MDA-MB-231, by performing a global gene expression analysis. This showed that CAIX knock-down had a relatively minor effect on the global transcriptional response to hypoxia, however it blocked hypoxia-induced upregulation of stanniocalcin-1 (STC1), a secreted glycoprotein that has been shown to promote tumor progression and metastasis in BC. Kaplan-Meier survival analysis showed that high STC1 expression is significantly associated with poor survival in patients with basal-type breast cancer but not luminal A and HER2+ subtypes. Moreover, the association was particularly high in a subgroup of basal-type BC patients with TP53 mutations thus revealing a putative cooperation of STC1 with mutated TP53 in generating highly aggressive BC subgroup. Taken together, these findings show that CAIX inhibitors at least partially act through blocking STC1 induction in BC cells and reveal a subgroup of BC patients, who potentially would benefit most from the treatment with CAIX inhibitors.
Collapse
Affiliation(s)
- Elīna Zandberga
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Pawel Zayakin
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Artūrs Ābols
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Dārta Pūpola
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | | | - Aija Linē
- a Latvian Biomedical Research and Study Centre , Riga , Latvia.,c Faculty of Biology, University of Latvia , Riga , Latvia
| |
Collapse
|
29
|
Zhou X, Zhang Y, Li Y, Xu Y, Zhang L, Li Y, Wang X. Klotho suppresses tumor progression via inhibiting IGF-1R signaling in T‑cell lymphoma. Oncol Rep 2017; 38:967-974. [PMID: 28656297 DOI: 10.3892/or.2017.5744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/27/2017] [Indexed: 11/05/2022] Open
Abstract
Klotho is a transmembrane protein and acts as an upstream modulator of insulin-like growth factor-1 receptor (IGF-1R) signaling, which was indicated to be involved in the pathogenesis of solid cancer and hematological malignancies, including T‑cell lymphoma. Although Klotho was recently identified as a tumor suppressor in several types of human malignancies, the potential role of Klotho in T‑cell lymphoma has not been reported. In the present study, we investigated the expression level and the molecular events of Klotho in T‑cell lymphoma. Significantly lower expression of Klotho was observed in T‑cell lymphoma patient samples compared to normal lymph nodes. Functional analysis after Klotho overexpression revealed significantly inhibited tumor cell viability in T‑cell lymphoma. Moreover, apoptosis of T‑cell lymphoma cells were induced after transfected with Klotho-overexpressing vectors. Forced expression of Klotho resulted in decline of activation of IGF-1R signaling, accompanied by decreased phosphorylation of its downstream targets, including AKT and ERK1/2. These data indicated that Klotho acts as a tumor suppressor via inhibiting IGF-1R signaling, thus suppressing the viability and promoting apoptosis in T‑cell lymphoma. Taken together, Klotho may serve as a potential target for the therapeutic intervention of T‑cell lymphoma.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yangyang Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lingyan Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|