1
|
Chen H, Zhang M, Deng Y. Long Noncoding RNAs in Taxane Resistance of Breast Cancer. Int J Mol Sci 2023; 24:12253. [PMID: 37569629 PMCID: PMC10418730 DOI: 10.3390/ijms241512253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer is a common cancer in women and a leading cause of mortality. With the early diagnosis and development of therapeutic drugs, the prognosis of breast cancer has markedly improved. Chemotherapy is one of the predominant strategies for the treatment of breast cancer. Taxanes, including paclitaxel and docetaxel, are widely used in the treatment of breast cancer and remarkably decrease the risk of death and recurrence. However, taxane resistance caused by multiple factors significantly impacts the effect of the drug and leads to poor prognosis. Long noncoding RNAs (lncRNAs) have been shown to play a significant role in critical cellular processes, and a number of studies have illustrated that lncRNAs play vital roles in taxane resistance. In this review, we systematically summarize the mechanisms of taxane resistance in breast cancer and the functions of lncRNAs in taxane resistance in breast cancer. The findings provide insight into the role of lncRNAs in taxane resistance and suggest that lncRNAs may be used to develop therapeutic targets to prevent or reverse taxane resistance in patients with breast cancer.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Yongchuan Deng
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| |
Collapse
|
2
|
Sun X, Zhao P, Lin J, Chen K, Shen J. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:390-415. [PMID: 37457134 PMCID: PMC10344729 DOI: 10.20517/cdr.2023.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Cancer is currently one of the most intractable diseases causing human death. Although the prognosis of tumor patients has been improved to a certain extent through various modern treatment methods, multidrug resistance (MDR) of tumor cells is still a major problem leading to clinical treatment failure. Chemotherapy resistance refers to the resistance of tumor cells and/or tissues to a drug, usually inherent or developed during treatment. Therefore, an urgent need to research the ideal drug delivery system to overcome the shortcoming of traditional chemotherapy. The rapid development of nanotechnology has brought us new enlightenments to solve this problem. The novel nanocarrier provides a considerably effective treatment to overcome the limitations of chemotherapy or other drugs resulting from systemic side effects such as resistance, high toxicity, lack of targeting, and off-target. Herein, we introduce several tumor MDR mechanisms and discuss novel nanoparticle technology applied to surmount cancer drug resistance. Nanomaterials contain liposomes, polymer conjugates, micelles, dendrimers, carbon-based, metal nanoparticles, and nucleotides which can be used to deliver chemotherapeutic drugs, photosensitizers, and small interfering RNA (siRNA). This review aims to elucidate the advantages of nanomedicine in overcoming cancer drug resistance and discuss the latest developments.
Collapse
Affiliation(s)
- Xiangyu Sun
- Medicines and Equipment Department, Beijing Chaoyang Emergency Medical Rescuing Center, Chaoyang District, Beijing 100026, China
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Meg Centre, Guangzhou 510006, Guangdong, China
| | - Jierou Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Meg Centre, Guangzhou 510006, Guangdong, China
| | - Kun Chen
- Beijing Chaoyang Emergency Medical Rescuing Center, Chaoyang District, Beijing 100026, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China
| |
Collapse
|
3
|
Hsiao CH, Huang HL, Chen YH, Chen ML, Lin YH. Enhanced antitumor effect of doxorubicin through active-targeted nanoparticles in doxorubicin-resistant triple-negative breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Jiao X, Zhang Q, Zhang Y, Shao J, Ding L, Tang C, Feng B. Synthesis and biological evaluation of new series of quinazoline derivatives as EGFR/HER2 dual-target inhibitors. Bioorg Med Chem Lett 2022; 67:128703. [PMID: 35364239 DOI: 10.1016/j.bmcl.2022.128703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
It is generally believed that EGFR/HER2 dual-target inhibitors may overcome the resistance of EGFR TKIs caused by HER2 overexpression. The structure-based synthesis and biological evaluation of quinazoline derivatives as EGFR/HER2 dual-target inhibitors has been studied in this paper. II-1, II-2, III-3, III-4 displayed comparable inhibitory potency against EGFR and HER2 and II-1 showed remarkable antiproliferative activities against NCI-H358/PC-9/Calu-3/NCI-H1781 (EGFR IC50 = 0.30 nM, HER2 IC50 = 6.07 nM, NCI-H358 GI50 = 23.30 nM, PC-9 GI50 = 1.95 nM, Calu-3 GI50 = 23.13 nM NCI-H1781 GI50 = 41.61 nM).
Collapse
Affiliation(s)
- Xiaoyu Jiao
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Qing Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Yue Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Junlan Shao
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Lei Ding
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China.
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Modi A, Roy D, Sharma S, Vishnoi JR, Pareek P, Elhence P, Sharma P, Purohit P. ABC transporters in breast cancer: their roles in multidrug resistance and beyond. J Drug Target 2022; 30:927-947. [PMID: 35758271 DOI: 10.1080/1061186x.2022.2091578] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
ATP-binding cassette (ABC) transporters are membrane-spanning proteins involved in cholesterol homeostasis, transport of various molecules in and out of cells and organelles, oxidative stress, immune recognition, and drug efflux. They are long implicated in the development of multidrug resistance in cancer chemotherapy. Existing clinical and molecular evidence has also linked ABC transporters with cancer pathogenesis, prognostics, and therapy. In this review, we aim to provide a comprehensive update on all ABC transporters and their roles in drug resistance in breast cancer (BC). For solid tumours such as BC, various ABC transporters are highly expressed in less differentiated subtypes and metastases. ABCA1, ABCB1 and ABCG2 are key players in BC chemoresistance. Restraining these transporters has evolved as a possible mechanism to reverse this phenomenon. Further, ABCB1 and ABCC1 are important in BC prognosis. Newer therapeutic approaches have been developed to target all these molecules to dysregulate their effect, reduce cell viability, induce apoptosis, and increase drug sensitivity. In the future, targeted therapy for specific genetic variations and upstream or downstream molecules can help improve patient prognosis.
Collapse
Affiliation(s)
- Anupama Modi
- Department of Biochemistry, AIIMS, Jodhpur, India
| | - Dipayan Roy
- Department of Biochemistry, AIIMS, Jodhpur, India.,Indian Institute of Technology (IIT) Madras, Chennai, India
| | | | | | - Puneet Pareek
- Department of Radiation Oncology, AIIMS, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology and Laboratory Medicine, AIIMS, Jodhpur, India
| | | | | |
Collapse
|
6
|
Devan AR, Kumar AR, Nair B, Anto NP, Muraleedharan A, Mathew B, Kim H, Nath LR. Insights into an Immunotherapeutic Approach to Combat Multidrug Resistance in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2021; 14:656. [PMID: 34358082 PMCID: PMC8308499 DOI: 10.3390/ph14070656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most lethal cancers worldwide because of its high refractoriness and multi-drug resistance to existing chemotherapies, which leads to poor patient survival. Novel pharmacological strategies to tackle HCC are based on oral multi-kinase inhibitors like sorafenib; however, the clinical use of the drug is restricted due to the limited survival rate and significant side effects, suggesting the existence of a primary or/and acquired drug-resistance mechanism. Because of this hurdle, HCC patients are forced through incomplete therapy. Although multiple approaches have been employed in parallel to overcome multidrug resistance (MDR), the results are varying with insignificant outcomes. In the past decade, cancer immunotherapy has emerged as a breakthrough approach and has played a critical role in HCC treatment. The liver is the main immune organ of the lymphatic system. Researchers utilize immunotherapy because immune evasion is considered a major reason for rapid HCC progression. Moreover, the immune response can be augmented and sustained, thus preventing cancer relapse over the post-treatment period. In this review, we provide detailed insights into the immunotherapeutic approaches to combat MDR by focusing on HCC, together with challenges in clinical translation.
Collapse
Affiliation(s)
- Aswathy R. Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Ayana R. Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; (N.P.A.); (A.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India;
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Lekshmi R. Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; (A.R.D.); (A.R.K.); (B.N.)
| |
Collapse
|
7
|
Al‐Zeheimi N, Adham SA. Modeling Neoadjuvant chemotherapy resistance in vitro increased NRP-1 and HER2 expression and converted MCF7 breast cancer subtype. Br J Pharmacol 2020; 177:2024-2041. [PMID: 31883395 PMCID: PMC7161552 DOI: 10.1111/bph.14966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with locally advanced breast cancer usually receive third-generation neoadjuvant chemotherapy (NAC). Although NAC treatment improved the overall survival, patients' response varies, some acquire resistance and others exhibit a conversion in their breast cancer molecular subtype. We aimed to identify the molecular changes involved in NAC resistance attempting to find new therapeutic targets in different breast cancer subtypes. EXPERIMENTAL APPROACH We modelled NAC treatments used in clinical practice and generated resistant cell lines in vitro. The resistant cells were generated by consecutive treatment with four cycles of doxorubicin (adriamycin)/cyclophosphamide (4xAC) followed by an additional four cycles of paclitaxel (4xAC + 4xPAC). KEY RESULTS Our data revealed distinct mechanisms of resistance depending on breast cancer subtype and drugs used. MDA-MB-231 cells resistant to 4xAC + 4xPAC activated neuropilin-1/TNC/integrin β3/FAK/NF-κBp65 axis and displayed a decrease in breast cancer resistance protein (BCRP/ABCB2). However, MCF7 cells resistant to 4xAC treatments induced HER2 expression, which converted MCF7 subtype from luminal A to luminal B HER2 type, up-regulated neuropilin-1, oestrogen receptor-α, and EGFR, and activated PI3K/Akt/NF-κBp65 axis. However, MCF7 cells resistant to 4xAC + 4xPAC exhibited down-regulation of the survival axis and up-regulated BCRP/ABCG2. Co-immunoprecipitation demonstrated a novel interaction between HER2 and neuropilin-1 driving the resistance features. CONCLUSIONS AND IMPLICATIONS The concurrent increase in neuropilin-1 and HER2 upon resistance and the inverse relationship between neuropilin-1 and BCRP/ABCG2 suggest that, in addition to HER2, neuropilin-1 status should be assessed in patients undergoing NAC, and as a potential drug target for refractory breast cancer.
Collapse
Affiliation(s)
- Noura Al‐Zeheimi
- Department of Biology, College of ScienceSultan Qaboos UniversityMuscatOman
| | - Sirin A. Adham
- Department of Biology, College of ScienceSultan Qaboos UniversityMuscatOman
| |
Collapse
|
8
|
Rampogu S, Lee G, Doneti R, Woo Lee K. Short communication for targeting natural compounds against HER2 kinase domain as potential anticancer drugs applying pharmacophore based molecular modelling approaches- part 2. Comput Biol Chem 2020; 87:107242. [PMID: 32417599 DOI: 10.1016/j.compbiolchem.2020.107242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
Abstract
Breast cancer is one of the common causes of death noticed in women globally. In order to find effective therapeutics, the current investigation has focussed on identifying candidate compounds for EGFR and HER2. Accordingly, the pharmacophore modelling approaches were adapted to identify two prospective compounds and were docked against the target 3RCD that is complexed with TAK-285 a known dual inhibitor. Focussing on the target 3RCD, our results have showed that the compounds have demonstrated a good binding affinity towards the target occupying the binding pocket. They have established key residue interactions with stable molecular dynamics simulation results. The Hit compounds have demonstrated a potential to penetrate the blood brain barrier thereby enriching their therapeutics towards breast cancer brain metastasis. Taken together, our findings propose two candidate compounds as EGFR/HER2 inhibitors that might serve as novel chemical spaces for designing and developing new inhibitors.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Gihwan Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Ravinder Doneti
- Department of Genetics, University College of Science, Osmania University, Hyderabad 500007, Telangana, India
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea; Department of Genetics, University College of Science, Osmania University, Hyderabad 500007, Telangana, India.
| |
Collapse
|
9
|
Zhang J, Song J, Liang X, Yin Y, Zuo T, Chen D, Shen Q. Hyaluronic acid-modified cationic nanoparticles overcome enzyme CYP1B1-mediated breast cancer multidrug resistance. Nanomedicine (Lond) 2019; 14:447-464. [PMID: 30694105 DOI: 10.2217/nnm-2018-0244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: Enzyme CYP1B1 (CYP1B1) is usually overexpressed in multidrug resistance (MDR) breast cancer cells, which could metabolically inactivate docetaxel (DTX). Materials & methods: The cationic core–shell nanoparticles (hyaluronic acid/polyethyleneimine nanoparticles [HA/PEI NPs]) modified with hyaluronic acid (HA) were developed and coloaded with DTX and α-napthtoflavone (ANF, a CYP1B1 inhibitor) to overcome MDR in breast cancer induced by CYP1B1. Physicochemical characterization, MDR reversing effect in vitro and pharmacokinetics in vivo of HA/PEI NPs were evaluated. Results: The HA/PEI NPs exhibited spherical morphology with size of (193.6 ± 3.1) nm. The HA/PEI NPs could reverse MDR effectively by downregulating the expression of CYP1B1. The HA/PEI NPs improved the bioavailability of DTX. Conclusion: The HA/PEI NPs might be a promising strategy to overcome CYP1B1-mediated breast cancer MDR.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jia Song
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiao Liang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunzhi Yin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tiantian Zuo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
10
|
Yamaji K, Morita J, Watanabe T, Gunjigake K, Nakatomi M, Shiga M, Ono K, Moriyama K, Kawamoto T. Maldevelopment of the submandibular gland in a mouse model of apert syndrome. Dev Dyn 2018; 247:1175-1185. [DOI: 10.1002/dvdy.24673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kojiro Yamaji
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Jumpei Morita
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Tsukasa Watanabe
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Kaori Gunjigake
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Momotoshi Shiga
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Kentaro Ono
- Division of Physiology, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| | - Keiji Moriyama
- Division of Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Faculty of Dentistry; Kyushu Dental University; Fukuoka Japan
| |
Collapse
|
11
|
Li W, Wang Y, Tan S, Rao Q, Zhu T, Huang G, Li Z, Liu G. Overexpression of Epidermal Growth Factor Receptor (EGFR) and HER-2 in Bladder Carcinoma and Its Association with Patients' Clinical Features. Med Sci Monit 2018; 24:7178-7185. [PMID: 30296252 PMCID: PMC6190725 DOI: 10.12659/msm.911640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The aim of this study was to determine the expression of EGFR/HER-2 and investigate their association with patients' clinical features in bladder transitional cell carcinoma (BTCC). MATERIAL AND METHODS Immunohistochemistry was utilized in our study to explore the expression of EGFR/HER-2 of 56 human bladder cancer samples and 10 normal bladder samples. RESULTS EGFR and HER-2 expressions were both significantly higher in bladder transitional cell carcinoma (BTCC) than that in non-cancer bladder samples; the EGFR positivity rate was 55.4% among BTCC samples and 37.5% for HER-2a. A statistically significant correlation was also present between the increasing EGFR or HER-2 expression levels and the clinical stages, pathologic grades, and tumor recurrence. The expression level of EGFR increased along with higher clinical stages and pathologic grades of BTCC, and the obviously increased expression of HER-2 was statistically associated with clinical stages and tumor recurrence. In addition, the expression level of HER-2 increased along with the higher clinical stage of BTCC. EGFR expression and HER-2 levels were positively associated in BTCC samples. CONCLUSIONS Our findings demonstrate that high EGFR and HER-2 expressions are dramatically increased in the BTCC tissues and are closely related to the clinical stages, pathologic grades, and tumor recurrence. Therefore, the evaluation of EGFR and HER-2 expression in BTCC may contribute to identifying patients who are at increased risk of disease progression and recurrence.
Collapse
Affiliation(s)
- Wei Li
- Department of Surgery, The Second Hospital, University of South China, Hengyang, Hunan, China (mainland)
| | - Youquan Wang
- Department of Surgery, The Second Hospital, University of South China, Hengyang, Hunan, China (mainland)
| | - Shubo Tan
- Department of Surgery, The Second Hospital, University of South China, Hengyang, Hunan, China (mainland)
| | - Qishuo Rao
- Department of Surgery, The Second Hospital, University of South China, Hengyang, Hunan, China (mainland)
| | - Tian Zhu
- Department of Surgery, The Second Hospital, University of South China, Hengyang, Hunan, China (mainland)
| | - Guo Huang
- Department of Surgery, The Second Hospital, University of South China, Hengyang, Hunan, China (mainland)
| | - Zhuo Li
- Department of Urology, Hunan Provincial People's Hospital, Changsha, Hunan, China (mainland)
| | - Guowen Liu
- Department of Surgery, The Second Hospital, University of South China, Hengyang, Hunan, China (mainland)
| |
Collapse
|
12
|
Majumder A, Ray S, Banerji A. Epidermal growth factor receptor-mediated regulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 in MCF-7 breast cancer cells. Mol Cell Biochem 2018; 452:111-121. [DOI: 10.1007/s11010-018-3417-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/28/2018] [Indexed: 01/11/2023]
|
13
|
He Y, Peng L, Huang Y, Liu C, Zheng S, Wu K. Blood cadmium levels associated with short distant metastasis-free survival time in invasive breast cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28055-28064. [PMID: 28994009 DOI: 10.1007/s11356-017-0412-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/03/2017] [Indexed: 02/05/2023]
Abstract
Distant metastasis is strongly associated with poor prognosis of breast cancer. Cadmium (Cd) exposure was previously found associated with breast cancer incidence. We explored the associations of blood cadmium levels (BCLs) and clinicopathologic characteristics with invasive breast cancer distant metastasis. Blood samples were collected and analyzed for BCLs by graphite-furnace atomic absorption spectrometry. Clinicopathologic characteristics, including basic clinical information and tumor characteristics, were obtained from medical records. Breast cancer distant metastasis-free survival (DMFS) time was calculated at follow-up. The associations of BCLs and clinicopathologic characteristics with DMFS time were examined by Kaplan-Meier method and Cox regression analysis, and associations between BCLs and tumor characteristics were also explored. Blood Cd level was positively associated with distant metastasis, clinical stage, BMI, and age. On univariate analysis, older age at diagnosis, family history of breast cancer, high N classification and clinical stage, positivity for human epidermal growth factor receptor 2, and high BCLs were associated with short DMFS time. On multivariate analysis model, older age at diagnosis, family history of breast cancer, high N classification, and BCLs were predictors for breast cancer distant metastasis. BCLs were a risk factor for short DMFS time of invasive breast cancer. BCLs and some clinicopathologic factors affect breast cancer distant metastasis, which needs further epidemiological and experimental studies to confirm.
Collapse
Affiliation(s)
- Yuanfang He
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, Guangdong, 515041, China
| | - Lin Peng
- Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yanhong Huang
- Mental Health Center, Shantou University Medical College, North Taishan Road, Shantou, Guangdong Province, 515065, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, Guangdong, 515041, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, Guangdong, 515041, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Rd., Shantou, Guangdong, 515041, China.
| |
Collapse
|
14
|
Bissinger O, Kolk A, Drecoll E, Straub M, Lutz C, Wolff KD, Götz C. EGFR and Cortactin: Markers for potential double target therapy in oral squamous cell carcinoma. Exp Ther Med 2017; 14:4620-4626. [PMID: 29201160 PMCID: PMC5704320 DOI: 10.3892/etm.2017.5120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Survival periods of patients following surgical therapy of oral squamous cell carcinoma (OSCC) have previously been demonstrated to decrease over recent decades. Epidermal growth factor receptor (EGFR) and Cortactin are molecular markers that are important in tumour progression and development, and interact within the EGF pathway. Although EGFR antibody therapy exists, sufficient efforts for increased survival are still lacking due to the present limited response rates. The aim of the present study was to examine the association between EGFR and Cortactin expression on survival rates of OSCC patients and to determine whether EGFR and Cortactin expression levels are associated with advanced tumor sizes and lymphnode-metastases. In total, 222 OSCC patients were included in the study. EGFR and Cortactin expression in tumor tissue was evaluated by immunohistochemistry. Cox regression was used for survival analysis. Categories were tested for associations by using cross tabs (Chi-square test). Groups were compared by the non-parametric Mann Whitney U-test. Probabilities of less than 0.05 were considered significant and significant expression of Cortactin was observed in Advanced Union Internationale Contre le Cancer stage (P=0.032), including advanced tumour stage (P=0.021) and lymph node metastasis (P=0.049). High Cortactin expression was significantly associated with poorer survival rates (P=0.037). Further Cortactin expression was not associated with extracapsular spread, however EGFR exhibited a significant association (P=0.034). Neither EGFR nor Cortactin expression was correlated to grading. EGFR and Cortactin co-expression was demonstrated to be significantly associated with poorer survival rates in OSCC patients, suggesting that identification of predictive biomarkers for adjuvant therapies are of primary concern in OSCC. In particular, efficient dual-target therapy may act as an appropriate therapy to improve survival time for patients at advanced OSCC tumor stages.
Collapse
Affiliation(s)
- Oliver Bissinger
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Enken Drecoll
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Melanie Straub
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Christina Lutz
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Carolin Götz
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| |
Collapse
|
15
|
Zhang Y, Wang CY, Duan YJ, Huo XK, Meng Q, Liu ZH, Sun HJ, Ma XD, Liu KX. Afatinib Decreases P-Glycoprotein Expression to Promote Adriamycin Toxicity of A549T Cells. J Cell Biochem 2017; 119:414-423. [PMID: 28590019 DOI: 10.1002/jcb.26194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/06/2017] [Indexed: 12/26/2022]
Abstract
We investigated the reversal effect of afatinib (AFT) on activity of adriamycin (ADR) in A549T cells and clarified the related molecular mechanisms. A549T cells overexpressing P-glycoprotein (P-gp) were resistant to anticancer drug ADR. AFT significantly increased the antitumor activity of ADR in A549T cells. AFT increased the intracellular concentration of ADR by inhibiting the function and expression of P-gp at mRNA and protein levels in A549T cells. Additionally, the reversal effect of AFT on P-gp mediated multidrug resistance (MDR) might be related to the inhibition of PI3K/Akt pathway. Cotreatment with AFT and ADR could enhance ADR-induced apoptosis and autophagy in A549T cells. Meanwhile, the co-treatment significantly induced cell apoptosis and autophagy accompanied by increased expression of cleaved caspase-3, PARP, LC3B-II, and beclin 1. Apoptosis inhibitors had no significant effect on cell activity, while autophagy inhibitors decreased cell viability, suggesting that autophagy may be a self protective mechanism of cell survival in the absence of chemotherapy drugs. Interestingly, when combined with AFT and ADR, inhibition of apoptosis and/or autophagy could enhance cell viability. These results indicated that in addition to inhibit P-gp, ADR-induced apoptosis, and autophagy promoted by AFT contributed to the antiproliferation effect of combined AFT and ADR on A549T cells. These findings provide evidence that AFT combined ADR may achieve a better therapeutic effect to lung cancer in clinic. J. Cell. Biochem. 119: 414-423, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chang-Yuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Ying-Jie Duan
- General Hospital of Fuxin Mining (Group) Co., Ltd, Fuxin, China
| | - Xiao-Kui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Zhi-Hao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Hui-Jun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Xiao-Dong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Ke-Xin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|