1
|
Chauhan S, Mathur R, Jha AK. The Impact of microRNA SNPs on Breast Cancer: Potential Biomarkers for Disease Detection. Mol Biotechnol 2025; 67:845-861. [PMID: 38512426 DOI: 10.1007/s12033-024-01113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Breast cancer is considered a significant health concern worldwide, with genetic predisposition playing a critical role in its etiology. Single nucleotide polymorphisms (SNPs), particularly those within the 3' untranslated regions (3'UTRs) of target genes, are emerging as key factors in breast cancer susceptibility. Specifically, miRNAs have been recognized as possible novel approach for biomarkers discovery for both prognosis and diagnosis due to their direct association with cancer progression. Regional disparities in breast cancer incidence underscore the need for precise interventions, considering socio-cultural and economic factors. This review explores into the differential effects of SNP-miRNA interactions on breast cancer risk, emphasizing both risk-enhancing and protective associations across diverse populations. Furthermore, it explores the clinical implications of these findings, highlighting the potential of personalized approaches in breast cancer management. Additionally, it reviews the evolving therapeutic prospect of microRNAs (miRNAs), extending beyond cancer therapeutics to encompass various diseases, indicative of their versatility as therapeutic agents.
Collapse
Affiliation(s)
- Sakshi Chauhan
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Runjhun Mathur
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
- Dr APJ Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
2
|
Wang X, Zhao C, Yin N, Wang X, Shu Y, Wang J. Dual miRNAs Imaging Platform Based on HRCA-Cas12a by Replacing PAM with Bubble to Reduce False Positive. Anal Chem 2025; 97:3053-3062. [PMID: 39876777 DOI: 10.1021/acs.analchem.4c06162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Detection and imaging of dual miRNAs based on AND logic gates can improve the accuracy of the early diagnosis of disease. However, a single target may lead to false positive. Hence, this work rationally integrates hyperbranched rolling circle amplification (HRCA) with Cas12a by replacing the PAM sequence with a bubble to sensitively detect and image miRNA-10b and miRNA-21 based on the AND logic gate. When miRNA-10b and miRNA-21 are both present, the two padlocks are linked into circular DNA as a template for RCA. Long ssDNA products are generated under the catalysis of phi29 DNA polymerase, which are cis-cleaved by Cas12a and activated the trans-cleavage of Cas12a to generate fluorescent signals. Subsequently, the primer hybridizes with the products of cis-cleavage and is extended as the dsDNA substrate of Cas12a to produce more fluorescent signals. However, a single target produces significant fluorescent signals leading to false positive due to the presence of protospacer adjacent motif (PAM) on the padlock. After PAM is removed from the padlock, the primer and RCA products form bubbles to replace PAM, which activate Cas12a without affecting sensitivity and reduce false positive. The introduction of a primer enables the second utilization of phi29 and Cas12a, increasing the signal-to-noise ratio. HRCA and Cas12a exhibit optimal activity in the T4 ligase buffer, achieving one-pot detection of dual miRNAs. In addition, the HRCA-Cas12a method enables the intracellular visualization of dual miRNAs. It exhibits the ability to distinguish different types of cancer cells based on the expression level of miRNAs.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Nana Yin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xue Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Syed RU, Banu H, Alshammrani A, Alshammari MD, G SK, Kadimpati KK, Khalifa AAS, Aboshouk NAM, Almarir AM, Hussain A, Alahmed FK. MicroRNA-21 (miR-21) in breast cancer: From apoptosis dysregulation to therapeutic opportunities. Pathol Res Pract 2024; 262:155572. [PMID: 39226804 DOI: 10.1016/j.prp.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer, a pervasive and complex disease, continues to pose significant challenges in the field of oncology. Its heterogeneous nature and diverse molecular profiles necessitate a nuanced understanding of the underlying mechanisms driving tumorigenesis and progression. MicroRNA-21 (miR-21) has emerged as a crucial player in breast cancer development and progression by modulating apoptosis, a programmed cell death mechanism that eliminates aberrant cells. MiR-21 overexpression is a hallmark of breast cancer, and it is associated with poor prognosis and resistance to conventional therapies. This miRNA exerts its oncogenic effects by targeting various pro-apoptotic genes, including Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN). By suppressing these genes, miR-21 promotes breast cancer cell survival, proliferation, invasion, and metastasis. The identification of miR-21 as a critical regulator of apoptosis in breast cancer has opened new avenues for therapeutic intervention. This review investigates the intricate mechanisms through which miR-21 influences apoptosis, offering insights into the molecular pathways and signaling cascades involved. The dysregulation of apoptosis is a hallmark of cancer, and understanding the role of miR-21 in this context holds immense therapeutic potential. Additionally, the review highlights the clinical significance of miR-21 as a diagnostic and prognostic biomarker in breast cancer, underscoring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Alia Alshammrani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Satheesh Kumar G
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Poland
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | - Arshad Hussain
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Farah Khaled Alahmed
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| |
Collapse
|
4
|
Zhu F, Xu D. Predicting gene signature in breast cancer patients with multiple machine learning models. Discov Oncol 2024; 15:516. [PMID: 39352418 PMCID: PMC11445210 DOI: 10.1007/s12672-024-01386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS The aim of this study was to predict gene signatures in breast cancer patients using multiple machine learning models. METHODS In this study, we first collated and merged the datasets GSE54002 and GSE22820, obtaining a gene expression matrix comprising 16,820 genes (including 593 breast cancer (BC) samples and 26 normal control (NC) samples). Subsequently, we performed enrichment analyses using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO). RESULTS We identified 177 differentially expressed genes (DEGs), including 40 up-regulated and 137 down-regulated genes, through differential expression analysis. The GO enrichment results indicated that these genes are primarily involved in extracellular matrix organization, positive regulation of nervous system development, collagen-containing extracellular matrix, heparin binding, glycosaminoglycan binding, and Wnt protein binding, among others. KEGG enrichment analysis revealed that the DEGs were primarily associated with pathways such as focal adhesion, the PI3K-Akt signaling pathway, and human papillomavirus infection. DO enrichment analysis showed that the DEGs play a significant role in regulating diseases such as intestinal disorders, nephritis, and dermatitis. Further, through LASSO regression analysis and SVM-RFE algorithm analysis, we identified 9 key feature DEGs (CF-DEGs): ANGPTL7, TSHZ2, SDPR, CLCA4, PAMR1, MME, CXCL2, ADAMTS5, and KIT. Additionally, ROC curve analysis demonstrated that these CF-DEGs serve as a reliable diagnostic index. Finally, using the CIBERSORT algorithm, we analyzed the infiltration of immune cells and the associations between CF-DEGs and immune cell infiltration across all samples. CONCLUSIONS Our findings provide new insights into the molecular functions and metabolic pathways involved in breast cancer, potentially aiding in the discovery of new diagnostic and immunotherapeutic biomarkers.
Collapse
Affiliation(s)
- Fangfang Zhu
- First Affiliated Hospital of Huzhou University, No.158, Guangchang Hou Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Dafang Xu
- First Affiliated Hospital of Huzhou University, No.158, Guangchang Hou Road, Huzhou, 313000, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Li R, Ji Y, Ye R, Tang G, Wang W, Chen C, Yang Q. Potential therapies for non-coding RNAs in breast cancer. Front Oncol 2024; 14:1452666. [PMID: 39372872 PMCID: PMC11449682 DOI: 10.3389/fonc.2024.1452666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Breast cancer (BC) is one of the frequent tumors that seriously endanger the physical and mental well-being in women with strong heterogeneity, and its pathogenesis involves multiple risk factors. Depending on the type of BC, hormonal therapy, targeted therapy, and immunotherapy are the current systemic treatment options along with conventional chemotherapy. Despite significant progress in understanding BC pathogenesis and therapeutic options, there is still a need to identify new therapeutic targets and develop more effective treatments. According to recent sequencing and profiling studies, non-coding (nc) RNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation, and similarly, the expression of many ncRNAs is altered in breast cancer cell lines and tissues. The ability of single ncRNAs to regulate the expression of multiple downstream gene targets and related pathways provides a theoretical basis for studying them for cancer therapeutic drug development and targeted delivery. Therefore, it is far-reaching to explore the role of ncRNAs in tumor development and their potential as therapeutic targets. Here, our review outlines the potential of two major ncRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) as diagnostic and prognostic biomarkers as well as targets for new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruyin Ye
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Wenrui Wang
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Changjie Chen
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Qingling Yang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
6
|
Hansen L, Nagdeve SN, Suganthan B, Ramasamy RP. An Electrochemical Nucleic Acid Biosensor for Triple-Negative Breast Cancer Biomarker Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5747. [PMID: 39275659 PMCID: PMC11397751 DOI: 10.3390/s24175747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, affecting younger women and women of minorities. The nomenclature "triple negative" is derived from the absence of the three most common breast cancer biomarkers: progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). It derives its name from testing negative for these three most common breast cancer biomarkers. Currently, TNBC is diagnosed at advanced stages, necessitating the need for a diagnostic tool or method to identify this malignancy at an early stage prior to metastasis. In this study, a novel electrochemical biosensor was developed, optimized, and evaluated for the detection of microRNA-10b (miRNA-10b), marking the first use of this biomarker for the early diagnosis of TNBC. The biosensor demonstrated the ability to detect concentrations as low as 10 pM. Furthermore, the biosensor was specific toward the target biomarker, distinguishing non-target miRNAs of similar size. The efficacy of the biosensor for TNBC early diagnosis was further validated using human serum samples.
Collapse
Affiliation(s)
- Lexi Hansen
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Sanket Naresh Nagdeve
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Baviththira Suganthan
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Chiglintseva D, Clarke DJ, Sen'kova A, Heyman T, Miroshnichenko S, Shan F, Vlassov V, Zenkova M, Patutina O, Bichenkova E. Engineering supramolecular dynamics of self-assembly and turnover of oncogenic microRNAs to drive their synergistic destruction in tumor models. Biomaterials 2024; 309:122604. [PMID: 38733658 DOI: 10.1016/j.biomaterials.2024.122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Rationally-engineered functional biomaterials offer the opportunity to interface with complex biology in a predictive, precise, yet dynamic way to reprogram their behaviour and correct shortcomings. Success here may lead to a desired therapeutic effect against life-threatening diseases, such as cancer. Here, we engineered "Crab"-like artificial ribonucleases through coupling of peptide and nucleic acid building blocks, capable of operating alongside and synergistically with intracellular enzymes (RNase H and AGO2) for potent destruction of oncogenic microRNAs. "Crab"-like configuration of two catalytic peptides ("pincers") flanking the recognition oligonucleotide was instrumental here in providing increased catalytic turnover, leading to ≈30-fold decrease in miRNA half-life as compared with that for "single-pincer" conjugates. Dynamic modeling of miRNA cleavage illustrated how such design enabled "Crabs" to drive catalytic turnover through simultaneous attacks at different locations of the RNA-DNA heteroduplex, presumably by producing smaller cleavage products and by providing toeholds for competitive displacement by intact miRNA strands. miRNA cleavage at the 5'-site, spreading further into double-stranded region, likely provided a synergy for RNase H1 through demolition of its loading region, thus facilitating enzyme turnover. Such synergy was critical for sustaining persistent disposal of continually-emerging oncogenic miRNAs. A single exposure to the best structural variant (Crab-p-21) prior to transplantation into mice suppressed their malignant properties and reduced primary tumor volume (by 85 %) in MCF-7 murine xenograft models.
Collapse
Affiliation(s)
- Daria Chiglintseva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Aleksandra Sen'kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Thomas Heyman
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Svetlana Miroshnichenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Fangzhou Shan
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Marina Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Olga Patutina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, 630090, Novosibirsk, Russia.
| | - Elena Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
8
|
Abdallah M, Aziz IH, Alsammarraie AZ. Assessment of miRNA-10b Expression Levels as a Potential Precursor to Metastasis in Localized and Locally Advanced/Metastatic Breast Cancer among Iraqi Patients. Int J Breast Cancer 2024; 2024:2408355. [PMID: 38450330 PMCID: PMC10917482 DOI: 10.1155/2024/2408355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 03/08/2024] Open
Abstract
Breast cancer (BC) stands as the most prevalent form of carcinoma among women, ranking as the second leading cause of cancer-related mortality in the female population. The objective of this study is to assess the expression of miR-10b and determine its diagnostic and prognostic significance in breast cancer patients across various disease stages. The investigation was carried out in Baghdad at the Oncology Teaching Hospital within Baghdad Medical City and the Oncology Unit at Al-Yarmouk Teaching Hospital. A total of 150 samples were included and divided into two groups: the blood group consisting of 90 samples (including control subjects, localized BC patients, and those with metastatic and locally advanced BC) and the tissue group comprising 60 samples (representing both benign and malignant BC cases). The study spanned from March 2022 to January 2023, with patients' ages ranging from 24 to 75 years. The primary focus of this investigation was to identify the gene expression of miRNA-10b in all sample types. This was achieved by measuring gene expression levels and normalizing them to the level of a housekeeping gene (U6), and quantification was carried out considering the ΔCt value and the fold change method (2-ΔΔCt). The results revealed an upregulated fold expression of miRNA-10b, particularly in locally advanced and metastatic BC, where the expression was significantly higher compared to the other groups, with a fold expression of 1.770 ± 0.1070. In localized breast cancer, the fold expression was 1.624 ± 0.064, and in malignant tissue, it measured 1.546 ± 0.06754, all relative to apparently healthy control subjects. In summary, our research provides compelling evidence supporting the classification of miRNA-10b as an oncogenic factor in BC. The central involvement of miRNA-10b in the tumorigenic processes of BC highlights its reference for developing novel targeted therapeutic interventions and detection biomarkers for BC treatment. Notably, elevated expression of miRNA-10b was observed in BC tissues, correlating with an unfavorable distant metastasis-free survival outcome.
Collapse
Affiliation(s)
- Mays Abdallah
- Institute of Genetic Engineering and Biotechnology, University of Baghdad, Baghdad, Iraq
| | - Ismail H. Aziz
- Institute of Genetic Engineering and Biotechnology, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
9
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
Affiliation(s)
- María de los Ángeles Gastélum-López
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Cristina García Mata
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Jorge López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Av. Escorza No. 900, Centro, Chihuahua 31125, Chihuahua, Mexico;
| | - Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - César López-Camarillo
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico;
| | - Carlos Pérez-Plascencia
- National Cancer Institute, Av. San Fernando 22, Belisario Domínguez Sec. 16, Tlalpan, Mexico City 14080, Mexico;
- FES Iztacala, National Autonomous University of Mexico, Av. de los Barrios S/N, Los Reyes Ixtacala, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Adriana S Beltrán
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| |
Collapse
|
10
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
11
|
Song C, Liu C, Chen J, Ma Z, Tang S, Pan R, Suo X, Yan Z, Lee HK, Shen W. Self-Generation of Distinguishable Fluorescent Probes via a One-Pot Process for Multiple MicroRNA Detection by Liquid Chromatography. Anal Chem 2023; 95:4113-4121. [PMID: 36787427 DOI: 10.1021/acs.analchem.2c04941] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To address the challenge of signal production and separation for multiple microRNA (miRNA) detection, in this work, a "one-pot" process to self-generate distinguishable fluorescent probes was developed. Based on a long and short probe amplification strategy, the generated G-quadruplex fluorescent dye-free probes can be separated and detected by a high-performance liquid chromatography-fluorescence platform. The free hairpin probes enriched in guanine with different lengths and base sequences were designed and could be opened by the target miRNAs (miRNA-10b, miRNA-21, and miRNA-210). Cleaved G-quadruplex probes with fluorescent signal could be generated in a one-pot process after a duplex-specific nuclease-based cleavage, and the detection of multiple miRNAs could be realized in one run. No solid nanomaterials were applied in the assay, which avoided the blocking of the column. Moreover, without modification of expensive fluorescein, the experimental cost was greatly reduced. The one-pot reaction process also eliminated tedious preparation steps and suggested feasibility of automation. The limits of detection of miRNA-10b, miRNA-21, and miRNA-210 were 2.19, 2.20, and 2.75 fM, respectively. Notably, this method was successfully applied to multiplex detection of miRNAs in serum samples from breast cancer patients within 30 min.
Collapse
Affiliation(s)
- Chang Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Ziyu Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Ruirong Pan
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, P. R. China
| | - Xiaocen Suo
- Testing Center of Yangzhou University, Yangzhou 225000, Jiangsu Province, P. R. China
| | - Zuowei Yan
- ACD/Labs, (Advanced Chemistry Development, Inc.), Pudong 201210, Shanghai, P. R. China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| |
Collapse
|
12
|
Zhao JF, Zou FL, Zhu JF, Huang C, Bu FQ, Zhu ZM, Yuan RF. Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis. Front Pharmacol 2022; 13:1025618. [PMID: 36330100 PMCID: PMC9622975 DOI: 10.3389/fphar.2022.1025618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Nano drug delivery system (NDDS) can significantly improve the delivery and efficacy of drugs against pancreatic cancer (PC) in many ways. The purpose of this study is to explore the related research fields of NDDS for PC from the perspective of bibliometrics. Methods: Articles and reviews on NDDS for PC published between 2003 and 2022 were obtained from the Web of Science Core Collection. CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel were comprehensively used for bibliometric and visual analysis. Results: A total of 1329 papers on NDDS for PC were included. The number of papers showed an upward trend over the past 20 years. The United States contributed the most papers, followed by China, and India. Also, the United States had the highest number of total citations and H-index. The institution with the most papers was Chinese Acad Sci, which was also the most important in international institutional cooperation. Professors Couvreur P and Kazuoka K made great achievements in this field. JOURNAL OF CONTROLLED RELEASE published the most papers and was cited the most. The topics related to the tumor microenvironment such as "tumor microenvironment", "tumor penetration", "hypoxia", "exosome", and "autophagy", PC treatment-related topics such as "immunotherapy", "combination therapy", "alternating magnetic field/magnetic hyperthermia", and "ultrasound", and gene therapy dominated by "siRNA" and "miRNA" were the research hotspots in the field of NDDS for PC. Conclusion: This study systematically uncovered a holistic picture of the performance of NDDS for PC-related literature over the past 20 years. We provided scholars to understand key information in this field with the perspective of bibliometrics, which we believe may greatly facilitate future research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong-Fa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Wang L, Qiao C, Cao L, Cai S, Ma X, Song X, Jiang Q, Huang C, Wang J. Significance of HOXD transcription factors family in progression, migration and angiogenesis of cancer. Crit Rev Oncol Hematol 2022; 179:103809. [PMID: 36108961 DOI: 10.1016/j.critrevonc.2022.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022] Open
Abstract
The transcription factors (TFs) of the HOX family play significant roles during early embryonic development and cellular processes. They also play a key role in tumorigenesis as tumor oncogenes or suppressors. Furthermore, TFs of the HOXD geFIne cluster affect proliferation, migration, and invasion of tumors. Consequently, dysregulated activity of HOXD TFs has been linked to clinicopathological characteristics of cancer. HOXD TFs are regulated by non-coding RNAs and methylation of DNA on promoter and enhancer regions. In addition, HOXD genes modulate the biological function of cancer cells via the MEK and AKT signaling pathways, thus, making HOXD TFs, a suitable molecular marker for cancer prognosis and therapy. In this review, we summarized the roles of HOXD TFs in different cancers and highlighted its potential as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Chenyang Qiao
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Shuang Cai
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xinqiu Song
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, Shaanxi, PR China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China.
| | - Jinhai Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
14
|
Potential therapeutic applications of microRNAs in cancer diagnosis and treatment: Sharpening a double-edged sword? Eur J Pharmacol 2022; 932:175210. [PMID: 35981607 DOI: 10.1016/j.ejphar.2022.175210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer is a leading cause of increased morbidity and mortality worldwide despite advancements in diagnosis and treatment. Lack of early detection and diagnosis of different cancers and adverse effects and toxicity associated with conventional cancer treatments, such as chemotherapy and radiation, remains a problem. MicroRNAs can act as oncogenes or tumour suppressors in different types of cancers. Their distinct gene expression in various stages and types of cancerous cells make them attractive targets for cancer diagnosis and therapy. The growing research and clinical interests in gene therapy and nano-drug delivery systems have led to the development of potential miRNA-targeted treatments encompassing miRNA mimics, antagonists, and their use in cancer chemotherapy sensitization. In this review, we discuss the recent advancements in understanding the role of miRNAs in cancer development and their potential use as biomarkers in clinical diagnostics and as targets in chemotherapy of cancer.
Collapse
|
15
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O, Aghadavod E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27:65. [PMID: 35922753 PMCID: PMC9347108 DOI: 10.1186/s11658-022-00354-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood–brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Science, Neyshabur University of Medical Science, Neyshabur, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Designed miR-19a/b sponge induces apoptosis in lung cancer cells through the PI3K-PTEN-Akt pathway regulation. Mol Biol Rep 2022; 49:8485-8493. [PMID: 35767105 DOI: 10.1007/s11033-022-07670-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are one of the main factors in cancer development and can alter the activity of proto-oncogenic or tumor suppressor genes. The miR-17-92 cluster, which comprises miR-17, miR-18a, miR-19a/b, miR-20a, and miR-92a, has been identified as a biomarker in a variety of cancer types. Among them, miR-19a/b exerts an oncogenic effect by suppressing tumor suppressor genes, including PTEN and TP53INP1in numerous types of cancers, including NSCLC. An miRNA sponge is an mRNA with multiple repetitive sequences that prevents miRNAs from interacting with their targets, thereby inhibiting their action. METHODS AND RESULTS In this study, we designed an miR-19a/b sponge plasmid and transfected it into A549 lung cancer cell lines and analyzed its effects on PTEN and TP53INP1 gene expression as the main miR-19a/b target and apoptosis rate in these cell lines. CONCLUSIONS The findings revealed that miR-19a/b sponge significantly increased PTEN and TP53INP1 mRNA expression. The effect of the sponge on TP53INP1 was much greater than that on PTEN. This is because TP53INP1 is directly (sponge effect) and indirectly (AKT pathway is affected by the P53 gene) affected by this sponge. In addition, compared with the control group, the percentage of primary and secondary apoptosis increased significantly (P value < 0.0001).
Collapse
|
18
|
Implication of microRNAs in Carcinogenesis with Emphasis on Hematological Malignancies and Clinical Translation. Int J Mol Sci 2022; 23:ijms23105838. [PMID: 35628648 PMCID: PMC9143361 DOI: 10.3390/ijms23105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs, that are involved in the multistep process of carcinogenesis, contributing to all established hallmarks of cancer. In this review, implications of miRNAs in hematological malignancies and their clinical utilization fields are discussed. As components of the complex regulatory network of gene expression, influenced by the tissue microenvironment and epigenetic modifiers, miRNAs are “micromanagers” of all physiological processes including the regulation of hematopoiesis and metabolic pathways. Dysregulated miRNA expression levels contribute to both the initiation and progression of acute leukemias, the metabolic reprogramming of malignantly transformed hematopoietic precursors, and to the development of chemoresistance. Since they are highly stable and can be easily quantified in body fluids and tissue specimens, miRNAs are promising biomarkers for the early detection of hematological malignancies. Besides novel opportunities for differential diagnosis, miRNAs can contribute to advanced chemoresistance prediction and prognostic stratification of acute leukemias. Synthetic oligonucleotides and delivery vehicles aim the therapeutic modulation of miRNA expression levels. However, major challenges such as efficient delivery to specific locations, differences of miRNA expression patterns between pediatric and adult hematological malignancies, and potential side effects of miRNA-based therapies should be considered.
Collapse
|
19
|
Noncoding RNAs as novel immunotherapeutic tools against cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:135-161. [PMID: 35305717 DOI: 10.1016/bs.apcsb.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunotherapy is implemented as an important treatment strategy in various malignancies. In cancer, immunotherapy is employed for successful killing of tumor cells with high specificity and greater efficacy, with minimum side effects. Despite various available strategies, cellular immunotherapy including innate (NK cells, macrophages, dendritic cells) and adaptive (B cells and T cells) immune cells plays a critical role in tumor microenvironment. Since past few years, many drugs targeting immune checkpoint proteins including CTLA-4 and PD-1/PD-L1 have been investigated as immunotherapy approach against cancer but complete effectiveness still remains a question, as diverse mechanisms involved in tumorigenesis may result in the development of cancer cell resistance. Number of evidences have highlighted the significant role of non-coding RNAs (ncRNAs) in regulating multiple stages of cancer initiation, progression & immunity. ncRNAs comprises 98% human transcriptome and are basically considered as dark genome. Among ncRNAs, miRNAs and lncRNAs have been extensively studied in regulating diverse processes of cancer tumorigenesis. Upregulation of oncogenic and downregulation of tumor suppressive miRNAs/lncRNAs has been reported to facilitate the cancer progression and invasiveness. This chapter summarizes how an interplay between ncRNAs and immune cells in cancer pathogenesis can be therapeutically targeted to improve current treatment regimen. Strategies should be employed to improve the efficacy and reduce off-target effects of ncRNA based immunotherapy. Henceforth, combination of ncRNAs and available immunotherapy can be argued to enhance the efficacy of existing immunotherapeutic approaches against cancer to improve patient's survival.
Collapse
|
20
|
Yardım-Akaydin S, Karahalil B, Nacak Baytas S. New therapy strategies in the management of breast cancer. Drug Discov Today 2022; 27:1755-1762. [PMID: 35337961 DOI: 10.1016/j.drudis.2022.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/13/2022] [Accepted: 03/20/2022] [Indexed: 12/19/2022]
Abstract
Breast cancer (BC), the second leading cause of cancer-related deaths after lung cancer, is the most common cancer type among women worldwide. BC comprises multiple subtypes based on molecular properties. Depending on the type of BC, hormone therapy, targeted therapy, and immunotherapy are the current systemic treatment options along with conventional chemotherapy. Several new molecular targets, miRNAs, and long non-coding RNAs (lncRNAs), have been discovered over the past few decades and are powerful potential therapeutic targets. Here, we review advanced therapeutics as new players in BC management.
Collapse
Affiliation(s)
- Sevgi Yardım-Akaydin
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, 06330-Ankara, Turkey
| | - Bensu Karahalil
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06330-Ankara, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330-Ankara, Turkey.
| |
Collapse
|
21
|
Qu J, Wang CC, Cai SB, Zhao WD, Cheng XL, Ming Z. Biased Random Walk With Restart on Multilayer Heterogeneous Networks for MiRNA-Disease Association Prediction. Front Genet 2021; 12:720327. [PMID: 34447416 PMCID: PMC8384471 DOI: 10.3389/fgene.2021.720327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Numerous experiments have proved that microRNAs (miRNAs) could be used as diagnostic biomarkers for many complex diseases. Thus, it is conceivable that predicting the unobserved associations between miRNAs and diseases is extremely significant for the medical field. Here, based on heterogeneous networks built on the information of known miRNA-disease associations, miRNA function similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases, we developed a computing model of biased random walk with restart on multilayer heterogeneous networks for miRNA-disease association prediction (BRWRMHMDA) through enforcing degree-based biased random walk with restart (BRWR). Assessment results reflected that an AUC of 0.8310 was gained in local leave-one-out cross-validation (LOOCV), which proved the calculation algorithm's good performance. Besides, we carried out BRWRMHMDA to prioritize candidate miRNAs for esophageal neoplasms based on HMDD v2.0. We further prioritize candidate miRNAs for breast neoplasms based on HMDD v1.0. The local LOOCV results and performance analysis of the case study all showed that the proposed model has good and stable performance.
Collapse
Affiliation(s)
- Jia Qu
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Chun-Chun Wang
- Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shu-Bin Cai
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Wen-Di Zhao
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Xiao-Long Cheng
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, China
| | - Zhong Ming
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Dwedar FI, Shams-Eldin RS, Nayer Mohamed S, Mohammed AF, Gomaa SH. Potential value of circulatory microRNA10b gene expression and its target E-cadherin as a prognostic and metastatic prediction marker for breast cancer. J Clin Lab Anal 2021; 35:e23887. [PMID: 34264524 PMCID: PMC8373345 DOI: 10.1002/jcla.23887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Background Breast cancer (BC) is the leading cause of cancer death in women worldwide. Most BC studies on candidate microRNAs were tissue specimen based. Recently, there has been a focus on the study of cell‐free circulating miRNAs as promising biomarkers in (BC) diagnosis and prognosis. Therefore, we aimed to investigate the circulating levels of miR‐10b and its target soluble E‐ cadherin as potentially easily accessible biomarkers for breast cancer. Methods Sixty‐one breast cancer patients and forty‐eight age‐ and sex‐matched healthy volunteers serving as a control group were enrolled in the present study. Serum samples were used to assess miRNA10b expression by TaqMan miRNA assay technique. In addition, soluble E‐cadherin expression level in serum was determined using ELISA technique. Result Circulating miR‐10b expression level and serum sE‐cadherin was significantly upregulated in patients with BC compared to controls. Moreover, serum miR‐10b displayed progressive up‐regulation in advanced stages with higher level in metastatic compared to non‐metastatic BC. Additionally, the combined use of both serum miR‐10b and sE‐cadherin revealed the highest sensitivity and specificity for detection of BC metastasis (92.9% and 97.9% respectively) with an area under curve (AUC) of 0.98, 95% CI (0.958–1.00). Conclusion Our data suggest that circulating miR‐10b could be utilized as a potential non‐invasive serum biomarker for diagnosis and prognosis of breast cancer with better performance to predict BC metastasis achieved on measuring it simultaneously with serum sE‐cadherin. Further studies with a large cohort of patients are warranted to validate the serum biomarker for breast cancer management.
Collapse
Affiliation(s)
- Fatma Ibrahim Dwedar
- Department of Medical Biochemistry, Faculty of Medicine, Alexandra University, Alexandria, Egypt
| | - Reham Said Shams-Eldin
- Department of Medical Biochemistry, Faculty of Medicine, Alexandra University, Alexandria, Egypt
| | - Salwa Nayer Mohamed
- Department of Cancer management and Research, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ayman Farouk Mohammed
- Department of Clinical and Experimental Surgery, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Salwa Hamdi Gomaa
- Department of Chemical pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Tang LB, Ma SX, Chen ZH, Huang QY, Wu LY, Wang Y, Zhao RC, Xiong LX. Exosomal microRNAs: Pleiotropic Impacts on Breast Cancer Metastasis and Their Clinical Perspectives. BIOLOGY 2021; 10:biology10040307. [PMID: 33917233 PMCID: PMC8067993 DOI: 10.3390/biology10040307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 01/07/2023]
Abstract
As a major threat factor for female health, breast cancer (BC) has garnered a lot of attention for its malignancy and diverse molecules participating in its carcinogenesis process. Among these complex carcinogenesis processes, cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis are the major causes for the occurrence of metastasis and chemoresistance which account for cancer malignancy. MicroRNAs packaged and secreted in exosomes are termed "exosomal microRNAs (miRNAs)". Nowadays, more researches have uncovered the roles of exosomal miRNAs played in BC metastasis. In this review, we recapitulated the dual actions of exosomal miRNAs exerted in the aggressiveness of BC by influencing migration, invasion, and distant metastasis. Next, we presented how exosomal miRNAs modify angiogenesis and stemness maintenance. Clinically, several exosomal miRNAs can govern the transformation between drug sensitivity and chemoresistance. Since the balance of the number and type of exosomal miRNAs is disturbed in pathological conditions, they are able to serve as instructive biomarkers for BC diagnosis and prognosis. More efforts are needed to connect the theoretical studies and clinical traits together. This review provides an outline of the pleiotropic impacts of exosomal miRNAs on BC metastasis and their clinical implications, paving the way for future personalized drugs.
Collapse
Affiliation(s)
- Li-Bo Tang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Shu-Xin Ma
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Zhuo-Hui Chen
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Long-Yuan Wu
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yi Wang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
| | - Rui-Chen Zhao
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
24
|
Hu H, Zhou F, Wang B, Chang X, Dai T, Tian R, Wan Y, Wang X, Wang G. Autonomous operation of 3D DNA walkers in living cells for microRNA imaging. NANOSCALE 2021; 13:1863-1868. [PMID: 33438714 DOI: 10.1039/d0nr06651f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three dimensional (3D) DNA walkers hold great potential in serving as an ideal candidate for signal transduction and amplification in bio-assays. However, the autonomous operation of 3D DNA walkers inside living cells is still few and far between, which could be attributed to the lack of suitable driving forces and moderate efficiency in terms of the cellular uptake of such complex 3D DNA components. Herein, a newly updated autonomously operated and highly integrated 3D DNA walker on Au nanoparticles (Au NPs)/zeolitic imidazolate framework-8 (ZIF-8) was activated in a tumor microenviroment and its signal amplified assay capability in living cells was demonstrated using miRNA as a sensing model biomolecule. Specifically, we assembled a 3D DNA motor, including Zn2+-dependent DNAzyme and substrates on the AuNPs grafted on ZIF-8. After being delivered into a living cell, ZIF-8 was efficiently degraded in the tumor microenvironment (low pH value), locally releasing the Zn2+ and DNA motor. Then, a self-sufficient DNA motor autonomously performed the bio-analytical task of imaging miRNA-10b, with a low detection limit of 34 pM. Also, such self-sufficient 3D walkers allowed real-time imaging of MDA-MB-231 cells by intracellular operation. This method demonstrates the self-sufficient 3D DNA motor's bioanalytical application in living cells which may inspire various other biological applications including gene delivery, therapy, etc.
Collapse
Affiliation(s)
- Hui Hu
- Key Laboratory of Chem-Biosensing of Anhui Province; Key Laboratory of Functional Molecular Solids of Anhui Province; College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang L, Gao Y, Zhao X, Guo C, Wang X, Yang Y, Han C, Zhao L, Qin Y, Liu L, Huang C, Wang W. HOXD3 was negatively regulated by YY1 recruiting HDAC1 to suppress progression of hepatocellular carcinoma cells via ITGA2 pathway. Cell Prolif 2020; 53:e12835. [PMID: 32557953 PMCID: PMC7445403 DOI: 10.1111/cpr.12835] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives HOXD3 is associated with progression of multiple types of cancer. This study aimed to identify the association of YY1 with HOXD3‐ITGA2 axis in the progression of hepatocellular carcinoma. Materials and Methods Bioinformatics assay was used to identify the effect of YY1, HOXD3 and ITGA2 expression in HCC tissues. The function of YY1 and HOXD3 in HCCs was determined by qRT‐PCR, MTT, apoptosis, Western blotting, colony formation, immunohistochemistry, and wound‐healing and transwell invasion assays. The relationship between YY1 and HOXD3 or HOXD3 and ITGA2 was explored by RNA‐Seq, ChIP‐PCR, dual luciferase reports and Pearson's assays. The interactions between YY1 and HDAC1 were determined by immunofluorescence microscopy and Co‐IP. Results Herein, we showed that the expression of YY1, HOXD3 and ITGA2 associated with the histologic and pathologic stages of HCC. Moreover, YY1, recruiting HDAC1, can directly target HOXD3 to regulate progression of HCCs. The relationship between YY1 and HOXD3 was unknown until uncovered by our present investigation. Furthermore, HOXD3 bound to promoter region of ITGA2 and up‐regulated the expression, thus activating the ERK1/2 signalling and inducing HCCs proliferation, metastasis and migration in the vitro and vivo. Conclusions Therefore, HOXD3, a target of YY1, facilitates HCC progression via activation of the ERK1/2 signalling by promoting ITGA2. This finding provides a new whole way to HCC therapy by serving YY1‐HOXD3‐ITGA2 regulatory axis as a potential therapeutic target for HCC therapy.
Collapse
Affiliation(s)
- Lumin Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yi Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, China
| | - Xiaoge Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yang Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cong Han
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yannan Qin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Liying Liu
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Cardiovascular Research Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenjing Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Cui Y, Liang S, Zhang S, Zhang C, Zhao Y, Wu D, Wang J, Song R, Wang J, Yin D, Liu Y, Pan S, Liu X, Wang Y, Han J, Meng F, Zhang B, Guo H, Lu Z, Liu L. ABCA8 is regulated by miR-374b-5p and inhibits proliferation and metastasis of hepatocellular carcinoma through the ERK/ZEB1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:90. [PMID: 32430024 PMCID: PMC7236190 DOI: 10.1186/s13046-020-01591-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Background ATP binding cassette subfamily A member 8 (ABCA8) belongs to the ATP binding cassette (ABC) transporter superfamily. ABCA8 is a transmembrane transporter responsible for the transport of organics, such as cholesterol, and drug efflux. Some members of the ABC subfamily, such as ABCA1, may inhibit cancer development. However, the mechanism of ABCA8 in the process of cancer activation is still ambiguous. Methods The expression of ABCA8 in human hepatocellular carcinoma (HCC) tissues and cell lines was examined using qPCR, immunoblotting, and immunohistochemical staining. The effects of ABCA8 on the proliferation and metastasis of HCC were examined using in vitro and in vivo functional tests. A luciferase reporter assay was performed to explore the binding between microRNA-374b-5p (miR-374b-5p) and the ABCA8 3′-untranslated region (UTR). Results ABCA8 was frequently down-regulated in HCC and this down-regulation was negatively correlated with prognosis. The overexpression of ABCA8 inhibited growth and metastasis in HCC, whereas the knockdown of ABCA8 exerted the antithetical effects both in vivo and in vitro. ABCA8 was down-regulated by miR-374b-5p; this down-regulation can induce epithelial transformation to mesenchyme via the ERK/ZEB1 signaling pathway and promote HCC progression. Conclusion We exposed the prognostic value of ABCA8 in HCC, and illuminated a novel pathway in ABCA8-regulated inhibition of HCC tumorigenesis and metastasis. These findings may lead to a new targeted therapy for HCC through the regulation of ABCA8, and miR-374b-5p.
Collapse
Affiliation(s)
- Yifeng Cui
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shuhang Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Shugeng Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Congyi Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yunzheng Zhao
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Dehai Wu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Ruipeng Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Jizhou Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Xirui Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jihua Han
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Fanzheng Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Hongrui Guo
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang, China. .,Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
27
|
Zhang L, Chen Y, Bao C, Zhang X, Li H. Eukaryotic initiation Factor 4AIII facilitates hepatocellular carcinoma cell proliferation, migration, and epithelial-mesenchymal transition process via antagonistically binding to WD repeat domain 66 with miRNA-2113. J Cell Physiol 2020; 235:8199-8209. [PMID: 31975383 DOI: 10.1002/jcp.29475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the malignant cancers with high incidence and mortality rates worldwide. RNA-binding protein eukaryotic initiation Factor 4A-III (eIF4AIII) is a carcinogene in the biological process of tumors and microRNA (miRNA)-2113 has rarely been studied in cancers, not to mention in HCC. The regulation mechanism between eIF4AIII and miR-2113 involved in HCC is yet to be explored. The purpose of this research is to probe the function role and associated underlying mechanism of eIF4AIII participated in HCC. The results revealed that eIF4AIII was overexpressed in HCC. Lost-of-function assays found that eIF4AIII knockdown, WD (Trp-Asp [tryptophan and asparaginic acid]) repeat domain 66 (WDR66) silence or miR-2113 promotion repressed cell proliferation, migration, and epithelial-mesenchymal transition (EMT) process in HCC. Furthermore, eIF4AIII could interact with WDR66 and further stabilize WDR66 messenger RNA. In addition, WDR66 was a target gene of miR-2113. Besides, WDR66 was antagonistically regulated by eIF4AIII and miR-2113. Rescue assays verified that eIF4AIII promoted HCC cell proliferation, migration, and EMT process via antagonistically binding to WDR66 with miR-2113. Taken together, these findings indicated an important role and a novel mechanism of eIF4AIII in HCC, providing an optional therapy for HCC patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangzong Chen
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunchun Bao
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuxing Zhang
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiying Li
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
28
|
Rahman MM, Brane AC, Tollefsbol TO. MicroRNAs and Epigenetics Strategies to Reverse Breast Cancer. Cells 2019; 8:cells8101214. [PMID: 31597272 PMCID: PMC6829616 DOI: 10.3390/cells8101214] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a sporadic disease with genetic and epigenetic components. Genomic instability in breast cancer leads to mutations, copy number variations, and genetic rearrangements, while epigenetic remodeling involves alteration by DNA methylation, histone modification and microRNAs (miRNAs) of gene expression profiles. The accrued scientific findings strongly suggest epigenetic dysregulation in breast cancer pathogenesis though genomic instability is central to breast cancer hallmarks. Being reversible and plastic, epigenetic processes appear more amenable toward therapeutic intervention than the more unidirectional genetic alterations. In this review, we discuss the epigenetic reprogramming associated with breast cancer such as shuffling of DNA methylation, histone acetylation, histone methylation, and miRNAs expression profiles. As part of this, we illustrate how epigenetic instability orchestrates the attainment of cancer hallmarks which stimulate the neoplastic transformation-tumorigenesis-malignancy cascades. As reversibility of epigenetic controls is a promising feature to optimize for devising novel therapeutic approaches, we also focus on the strategies for restoring the epistate that favor improved disease outcome and therapeutic intervention.
Collapse
Affiliation(s)
- Mohammad Mijanur Rahman
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Andrew C Brane
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
29
|
Miroshnichenko S, Patutina O. Enhanced Inhibition of Tumorigenesis Using Combinations of miRNA-Targeted Therapeutics. Front Pharmacol 2019; 10:488. [PMID: 31156429 PMCID: PMC6531850 DOI: 10.3389/fphar.2019.00488] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
The search for effective strategies to inhibit tumorigenesis remains one of the most relevant scientific challenges. Among the most promising approaches is the direct modulation of the function of short non-coding RNAs, particularly miRNAs. These molecules are propitious targets for anticancer therapy, since they perform key regulatory roles in a variety of signaling cascades related to cell proliferation, apoptosis, migration, and invasion. The development of pathological states is often associated with deregulation of miRNA expression. The present review describes in detail the strategies aimed at modulating miRNA activity that invoke antisense oligonucleotide construction, such as small RNA zippers, miRNases (miRNA-targeted artificial ribonucleases), miRNA sponges, miRNA masks, anti-miRNA oligonucleotides, and synthetic miRNA mimics. The broad impact of developed miRNA-based therapeutics on the various events of tumorigenesis is also discussed. Above all, the focus of this review is to evaluate the results of the combined application of different miRNA-based agents and chemotherapeutic drugs for the inhibition of tumor development. Many studies indicate a considerable increase in the efficacy of anticancer therapy as a result of additive or synergistic effects of simultaneously applied therapies. Different drug combinations, such as a cocktail of antisense oligonucleotides or multipotent miRNA sponges directed at several oncogenic microRNAs belonging to the same/different miRNA families, a mixture of anti-miRNA oligonucleotides and cytostatic drugs, and a combination of synthetic miRNA mimics, have a more complex and profound effect on the various events of tumorigenesis as compared with treatment with a single miRNA-based agent or chemotherapeutic drug. These data provide strong evidence that the simultaneous application of several distinct strategies aimed at suppressing different cellular processes linked to tumorigenesis is a promising approach for cancer therapy.
Collapse
Affiliation(s)
- Svetlana Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Olga Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
30
|
Ors-Kumoglu G, Gulce-Iz S, Biray-Avci C. Therapeutic microRNAs in human cancer. Cytotechnology 2019; 71:411-425. [PMID: 30600466 DOI: 10.1007/s10616-018-0291-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are RNA molecules at about 22 nucleotide in length that are non-coding, which regulate gene expression in the post-transcriptional level by performing degradation or blocks translation of the target mRNA. It is known that they play roles in mechanisms such as metabolic regulation, embryogenesis, organogenesis, differentiation and growth control by providing post-transcriptional regulation of gene expression. With these properties, miRNAs play important roles in the regulation of biological processes such as proliferation, differentiation, apoptosis, drug resistance mechanisms in eukaryotic cells. In addition, there are miRNAs that can be used for cancer therapy. Tumor cells and tumor microenvironment have different miRNA expression profiles. Some miRNAs are known to play a role in the onset and progression of the tumor. miRNAs with oncogenic or tumor suppressive activity specific to different cancer types are still being investigated. This review summarizes the role of miRNAs in tumorigenesis, therapeutic strategies in human cancer and current studies.
Collapse
Affiliation(s)
- Gizem Ors-Kumoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| | - Sultan Gulce-Iz
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.,Biomedical Technologies Graduate Programme, Institute of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
31
|
Cai KT, Feng CX, Zhao JC, He RQ, Ma J, Zhong JC. Upregulated miR‑203a‑3p and its potential molecular mechanism in breast cancer: A study based on bioinformatics analyses and a comprehensive meta‑analysis. Mol Med Rep 2018; 18:4994-5008. [PMID: 30320391 PMCID: PMC6236224 DOI: 10.3892/mmr.2018.9543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) has been identified as the leading malignancy in women worldwide. However, the potential molecular mechanism of microRNA (miR)‑203a‑3p in BC remains to be elucidated. The present study evaluated the expression of miR‑203a‑3p in BC and adjacent normal tissue in several publically available datasets. The distinguishability of precursor miR‑203a and miR‑203a‑3p in BC tissue and adjacent breast tissue was assessed using receiver operating characteristic (ROC) and summarized ROC (sROC) approaches. In addition, gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes pathway analysis and protein‑protein interaction analysis were performed to determine the potential molecular mechanism of miR‑203a‑3p in BC. It was identified that the expression of precursor miR‑203a was markedly upregulated in 1,077 BC tissue samples compared to 104 adjacent breast tissue samples from The Cancer Genome Atlas. Additionally, an increasing trend in miR‑203a‑3p expression was observed in 756 BC tissue samples compared with 76 adjacent breast tissue samples from the University of California Santa Cruz Xena project. In addition, a comprehensive meta‑analysis suggested that the expression of miR‑203a‑3p was markedly increased in 2,444 BC tissue samples compared with 559 adjacent breast tissue samples. The area under the curve of the ROC and sROC revealed that miR‑203a‑3p expression was able to distinguish between BC tissue and adjacent breast tissue. However, miR‑203a‑3p exhibited no prognostic value in BC. The results of GO enrichment demonstrated that the miR‑203a target genes were associated with 'plasma membrane integrity', 'cell surface receptor linked signal and transduction' and '3',5'‑cyclic nucleotide phosphodiesterase activity'. 'Purine metabolism' was identified as the pathway with the most enrichment of miR‑203a‑3p target genes in BC. The present study also identified insulin‑like growth factor receptor (IGF1) as a hub gene associated with miR‑203a in BC. In summary, miR‑203a‑3p may enhance the development and oncogenesis of BC, and IGF1 was defined as a hub gene of miR‑203a‑3p in BC.
Collapse
Affiliation(s)
- Kai-Teng Cai
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Cai-Xia Feng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Che Zhao
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
32
|
Zhang X, Zhou Y, Gu YE. Tanshinone IIA induces apoptosis of ovarian cancer cells in vitro and in vivo through attenuation of PI3K/AKT/JNK signaling pathways. Oncol Lett 2018; 17:1896-1902. [PMID: 30675253 DOI: 10.3892/ol.2018.9744] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/18/2018] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological tumors and is the second most common cause of gynecological cancer-associated mortality worldwide. Tanshinone IIA (Tan-IIA) possesses anticancer activities through inducing the apoptosis of tumor cells. The purpose of the present study was to analyze the ability of Tan-IIA to induce apoptosis of human ovarian cancer cells in vitro and in vivo, and to examine the potential mechanism underlying its activity. Western blot analysis, immunohistochemistry and flow cytometry were used to analyze the therapeutic effects of Tan-IIA on ovarian cancer. It was demonstrated that Tan-IIA significantly inhibited the growth and aggressiveness of human ovarian cancer cells. Tan-IIA significantly increased the apoptosis of human ovarian cancer cells through cleavage activation of caspases-3, caspase-8 and caspases-9. In addition, Tan-IIA treatment decreased the expression of mitochondrial-protective B-cell lymphoma 2-like protein 2 (Bcl-w) and myeloid cell leukemia-1 long (Mcl-1L) in ovarian cancer cells. Tan-IIA also reduced the expression of phosphoinositide 3-kinase (PI3K), AKT and c-Jun N-terminal kinase (JNK) in human ovarian cancer cells. A specific PI3K inhibitor (LY294002) enhanced the Tan-IIA-inhibited expression of AKT and JNK. The overexpression of PI3K negated the Tan-IIA-inhibited expression of AKT and JNK, and eliminated the Tan-IIA-induced apoptosis of human ovarian cancer cells. Additionally, the in vivo assay showed that Tan-IIA treatment inhibited the growth of ovarian cancer through increasing the apoptosis of tumor cells. In conclusion, these findings suggested that the induction of apoptosis by Tan-IIA involves the PI3K/AKT/JNK signaling pathways in ovarian cancer.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Chinese Integrative Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yong Zhou
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying-Er Gu
- Department of Chinese Integrative Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
33
|
Sheedy P, Medarova Z. The fundamental role of miR-10b in metastatic cancer. Am J Cancer Res 2018; 8:1674-1688. [PMID: 30323962 PMCID: PMC6176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023] Open
Abstract
Small, non-coding strands of RNA have been identified as a significant player in the pathology of cancer. One of the first miRNAs to be shown as having aberrant expression in cancer was miR-10b. Since the inaugural study on miR-10b, its role as a metastasis promoting factor has been extensively validated. To date, more than 100 studies have been completed on miR-10b and metastasis across 18 cancer types. This immense set of information holds possibilities for novel methods to improve the lives of many. This review outlines what is currently understood of miR-10b's clinical significance, its molecular regulation, and the possible diagnostic and therapeutic methods leveraging miR-10b as a fundamental target in metastatic cancer. Such methods would move us closer to developing a truly individualized therapeutic strategy against cancer and will likely provide unique information about cancer staging, disease outcome, metastatic potential, and ultimately survival.
Collapse
Affiliation(s)
- Patrick Sheedy
- Department of Health Sciences, CaNCURE Program, Northeastern UniversityBoston, MA 02115, USA
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA 02129, USA
| |
Collapse
|
34
|
Chen L, Liu B, Yan C. DPFMDA: Distributed and privatized framework for miRNA-Disease association prediction. Pattern Recognit Lett 2018. [DOI: 10.1016/j.patrec.2017.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Chai Z, Fan H, Li Y, Song L, Jin X, Yu J, Li Y, Ma C, Zhou R. miR-1908 as a novel prognosis marker of glioma via promoting malignant phenotype and modulating SPRY4/RAF1 axis. Oncol Rep 2017; 38:2717-2726. [PMID: 29048686 PMCID: PMC5780024 DOI: 10.3892/or.2017.6003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to be involved in the development of glioma. However, study on miRNAs in glioma is limited. The present study aimed to identify miRNAs which can act as potential novel prognostic markers for glioma and analyze its possible mechanism. We show that miR-1908 correlates with shorter survival time of glioma patients via promoting cell proliferation, invasion, anti-apoptosis and regulating SPRY4/RAF1 axis. Analysis of GEO and TCGA database found that miR-1908 was significantly upregulated in glioma tissues, and strongly associated with shorter survival time of glioma patients. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that miR-1908 is mainly involved in regulating cell proliferation, invasion and apoptosis. To further confirm the above results, in vitro, glioma U251 cells were transfected with miR-1908 mimics or inhibitor, and upregulated miR-1908 promoted U251 cell proliferation, and enhanced the ability of invasion by Transwell assay. In addition, upregulated miR-1908 also enhanced anti-apoptosis ability of U251 cells through decreasing pro-apoptosis protein Bax expression. Since miRNAs regulate numerous biological processes by targeting broad set of messenger RNAs, validated target genes of miR-1908 in glioma were analyzed by TargetScan and miRTarBase databases. Among them SPRY4 was significantly decreased in glioma tissues and associated with short survival time, which was selected as the key target gene of miR-1908. Moreover, protein-protein interaction (PPI) showed that SPRY4 could interacted with pro-oncogene RAF1 and negatively correlated with RAF1 expression. Consistent with above analysis, in vitro, western blot analysis identified that miR-1908 upregulated significantly decreased SPRY4 expression and increased RAF1 expression. Hence, miR-1908 was correlated with poor prognosis of glioma via promoting cell proliferation, invasion, anti-apoptosis and regulating SPRF4/RAF1 axis. Our results elucidated the tumor promoting role of miR-1908 and established miR-1908 as a potential novel prognostic marker for glioma.
Collapse
Affiliation(s)
- Zhi Chai
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Huijie Fan
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Yanyan Li
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Lijuan Song
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Xiaoming Jin
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Yanhua Li
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Cungen Ma
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Ran Zhou
- Basic Medical College/2011 Collaborative Innovation Center/Neurobiology Research Center, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
36
|
Zhao M, Ang L, Huang J, Wang J. MicroRNAs regulate the epithelial-mesenchymal transition and influence breast cancer invasion and metastasis. Tumour Biol 2017; 39:1010428317691682. [PMID: 28222665 DOI: 10.1177/1010428317691682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs are small RNA molecules that play a major role in the post-transcriptional regulation of genes and influence the development, differentiation, proliferation, and apoptosis of cells and the development and progression of tumors. The epithelial-mesenchymal transition is a process by which epithelial cells morphologically transform into cells with a mesenchymal phenotype. The epithelial-mesenchymal transition plays a highly important role in tumor invasion and metastasis. Increasing evidence indicates that microRNAs are tightly associated with epithelial-mesenchymal transition regulation in tumor cells. In breast cancer, various microRNA molecules have been identified as epithelial-mesenchymal transition inducers or inhibitors, which, through different mechanisms and signaling pathways, participate in the regulation of breast cancer invasion and metastasis among various biological behaviors. The epithelial-mesenchymal transition-related microRNAs in breast cancer provide valuable molecules for researching cell invasion and metastasis, and they also provide candidate targets that may be significant for the targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Lin Ang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Jin Huang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Jin Wang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| |
Collapse
|
37
|
Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, Bryce RA, Vlassov VV, Zenkova MA. miRNases: Novel peptide-oligonucleotide bioconjugates that silence miR-21 in lymphosarcoma cells. Biomaterials 2017; 122:163-178. [PMID: 28126663 DOI: 10.1016/j.biomaterials.2017.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are active regulators in malignant growth and constitute potential targets for anticancer therapy. Consequently, considerable effort has focused on identifying effective ways to modulate aberrant miRNA expression. Here we introduce and assess a novel type of chemically engineered biomaterial capable of cleaving specific miRNA sequences, i.e. miRNA-specific artificial ribonucleases (hereafter 'miRNase'). The miRNase template presented here consists of the catalytic peptide Acetyl-[(LeuArg)2Gly]2 covalently attached to a miRNA-targeting oligonucleotide, which can be linear or hairpin. The peptide C-terminus is conjugated to an aminohexyl linker located at either the 3'- or 5'-end of the oligonucleotide. The cleavage efficacy, structural aspects of cleavage and biological relevance of a set of these designed miRNases was assayed with respect to highly oncogenic miR-21. Several miRNases demonstrated effective site-selective cleavage of miR-21 exclusively at G-X bonds. One of the most efficient miRNase was shown to specifically inhibit miR-21 in lymphosarcoma cells and lead to a reduction in their proliferative activity. This report provides the first experimental evidence that metallo-independent peptide-oligonucleotide chemical ribonucleases are able to effectively and selectively down-regulate oncogenic miRNA in tumour cells, thus suggesting their potential in development of novel therapeutics aimed at overcoming overexpression of disease-related miRNAs.
Collapse
Affiliation(s)
- Olga A Patutina
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Svetlana K Miroshnichenko
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Nadezhda L Mironova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Linda T Trivoluzzi
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kepa K Burusco
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Richard A Bryce
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - Marina A Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
38
|
Yang B, Li SZ, Ma L, Liu HL, Liu J, Shao JJ. Expression and mechanism of action of miR-196a in epithelial ovarian cancer. ASIAN PAC J TROP MED 2016; 9:1105-1110. [PMID: 27890373 DOI: 10.1016/j.apjtm.2016.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/17/2016] [Accepted: 09/16/2016] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To explore the expression, biological function and possible mechanism of action of microRNA molecular-196a (miR-196a) in epithelial ovarian cancer. METHODS RT-PCR was used to detect the expression quantities of epithelial ovarian tissue, benign ovarian tissue, normal ovary epithelial tissue, ovarian cancer cell lines and miR-196a in normal ovarian epithelial cells to analyze the relationship between the expression of miR-196a and the clinical pathologic parameters of ovarian cancer. Among those cell lines, the cell line of which miR-196a expressed the most or least was selected and transfected the ovarian cancer cell line by using negative control plasma and miR-196a inhibitor. After transfection, RT-PCR was used to test the expression quantity of miR-196a, Transwell chamber method was applied to determine the migration and invasion abilities of ovarian carcinoma cells and Western blot was employed to detect the expression of HOXA10 protein. RESULTS The relative expression quantities of miR-196a in ovarian cancer tissue and benign ovarian tissue were significantly higher than that in normal ovarian epithelial tissue, and the expression quantity of miR-196a in ovarian cancer tissue was distinctively higher than that in benign ovarian tissue (P < 0.05). Among 78 cases of epithelial ovarian cancer, the expression quantities of miR-196a in patients with low differentiation were all significantly higher than those in patients with high differentiation (P < 0.05). The expression of miR-196a showed no significant relation with age, clinical stage and whether CA125 was positive or not in patients (P > 0.05). Compared with normal ovarian epithelial cell line IOSE80, the expression quantities of miR-196a of all ovarian cancer cell lines increased obviously and differences were statistically significant (P < 0.05). Among them, the expression of miR-196a of ovarian cancer cell line SKOV3 was the highest, while it decreased significantly (4.678 ± 0.785 vs. 2.131 ± 0.345, t = 2.938, P < 0.05) after the ovarian cancer cell line SKOV3 was transfected by miR-196a inhibitor. The results of Transwell chamber method showed that the migration and invasion abilities of ovarian cancer cells SKOV3 were declined significantly after the expression of miR-196a was down-regulated and the difference showed statistical significance (P < 0.05). The results of Western blot revealed that the relative expression of HOXA10 decreased distinctly after the expression of miR-196a was down-regulated and also the difference showed statistical significance (P < 0.05). CONCLUSIONS The miR-196a might serve as a cancer-promoting gene to promote the migration and invasion of epithelial ovarian cancer by downstream target gene HOXA10.
Collapse
Affiliation(s)
- Bo Yang
- Department of Female Tumor, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China.
| | - Sheng-Ze Li
- Department of Female Tumor, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Ling Ma
- Department of Female Tumor, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Hong-Li Liu
- Department of Female Tumor, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Jian Liu
- Department of Female Tumor, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Jun-Jun Shao
- Department of Female Tumor, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| |
Collapse
|