1
|
Xu L, Wang B, Gang Z, Han Z, Wang A, Liu Q, Liu H, Wei S, Lin Z, Xie C, Hu L. Ubiquitin-conjugating enzyme E2S decreases the sensitivity of glioblastoma cells to temozolomide by upregulating PGAM1 via the interaction with OTUB2. Int J Biol Macromol 2025; 302:140583. [PMID: 39904430 DOI: 10.1016/j.ijbiomac.2025.140583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive cancer with limited therapeutic options. Investigating the mechanisms underlying temozolomide (TMZ) resistance and enhancing its sensitivity remain critical for improving GBM treatment outcomes. Ubiquitin-conjugating enzyme E2S (UBE2S) has been implicated in various cancers; however, its role in TMZ resistance in GBM remains unclear. METHODS After UBE2S knockdown, cell viability, apoptosis, and DNA damage were measured in TMZ-treated GBM cells. Immunoprecipitation coupled with mass spectrometry was employed to identify a protein complex involving UBE2S and phosphoglycerate mutase 1 (PGAM1). Co-immunoprecipitation and ubiquitination assays were conducted to examine the interactions among UBE2S, PGAM1, and Otubain-2 (OTUB2). In vivo, a GBM mouse model was used to evaluate the impact of UBE2S knockdown on TMZ efficacy. RESULTS UBE2S was found to be overexpressed in GBM cells, where it interacts with PGAM1 and OTUB2 to inhibit PGAM1 degradation via K48-linked deubiquitylation. This interaction increased PGAM1 protein levels, promoting DNA repair and reducing apoptosis, thereby decreasing the sensitivity of GBM cells to TMZ. CONCLUSION UBE2S plays a critical role in TMZ resistance by stabilizing PGAM1 protein levels through its interaction with OTUB2. Targeting UBE2S represents a promising therapeutic strategy to enhance TMZ efficacy and overcome chemotherapy resistance in GBM.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Baoju Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Zhenbo Gang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Aowen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China
| | - Shilong Wei
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| | - Chuncheng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| | - Li Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
2
|
Fongsodsri K, Tiyasatkulkovit W, Chaisri U, Reamtong O, Adisakwattana P, Supasai S, Kanjanapruthipong T, Sukphopetch P, Aramwit P, Ampawong S. Sericin promotes chondrogenic proliferation and differentiation via glycolysis and Smad2/3 TGF-β signaling inductions and alleviates inflammation in three-dimensional models. Sci Rep 2024; 14:11553. [PMID: 38773312 PMCID: PMC11109159 DOI: 10.1038/s41598-024-62516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-β signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1β, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-β signaling pathways, and exhibiting anti-inflammatory properties.
Collapse
Affiliation(s)
- Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | | | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Suangsuda Supasai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
4
|
Yousaf N, Alharthy RD, Kamal I, Saleem M, Muddassar M. Identification of human phosphoglycerate mutase 1 (PGAM1) inhibitors using hybrid virtual screening approaches. PeerJ 2023; 11:e14936. [PMID: 37051414 PMCID: PMC10084823 DOI: 10.7717/peerj.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/31/2023] [Indexed: 04/14/2023] Open
Abstract
PGAM1 plays a critical role in cancer cell metabolism through glycolysis and different biosynthesis pathways to promote cancer. It is generally known as a crucial target for treating pancreatic ductal adenocarcinoma, the deadliest known malignancy worldwide. In recent years different studies have been reported that strived to find inhibitory agents to target PGAM1, however, no validated inhibitor has been reported so far, and only a small number of different inhibitors have been reported with limited potency at the molecular level. Our in silico studies aimed to identify potential new PGAM1 inhibitors that could bind at the allosteric sites. At first, shape and feature-based models were generated and optimized by performing receiver operating characteristic (ROC) based enrichment studies. The best query model was then employed for performing shape, color, and electrostatics complementarity-based virtual screening of the ChemDiv database. The top two hundred and thirteen hits with greater than 1.2 TanimotoCombo score were selected and then subjected to structure-based molecular docking studies. The hits yielded better docking scores than reported compounds, were selected for subsequent structural similarity-based clustering analysis to select the best hits from each cluster. Molecular dynamics simulations and binding free energy calculations were performed to validate their plausible binding modes and their binding affinities with the PGAM1 enzyme. The results showed that these compounds were binding in the reported allosteric site of the enzyme and can serve as a good starting point to design better active selective scaffolds against PGAM1enzyme.
Collapse
Affiliation(s)
- Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rima D. Alharthy
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Iqra Kamal
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
5
|
Yang GJ, Tao F, Zhong HJ, Yang C, Chen J. Targeting PGAM1 in cancer: An emerging therapeutic opportunity. Eur J Med Chem 2022; 244:114798. [DOI: 10.1016/j.ejmech.2022.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
|
6
|
Wei C, Xie J, Yuan X, Luo Y, Xiao Y, Liao W, Jiang Z. Phosphoglycerate mutase 1 that is essential for glycolysis may act as a novel metabolic target for predicating poor prognosis for patients with gastric cancer. J Clin Lab Anal 2022; 36:e24718. [PMID: 36181311 DOI: 10.1002/jcla.24718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND To identify a novel marker for gastric cancer, we examined the usefulness of phosphoglycerate mutase 1 (PGAM1) as a potential diagnostic marker using isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics and evaluated its clinical significance. METHODS Proteins from a discovery group of four paired gastric cancer tissues and adjacent gastric tissues were labeled with iTRAQ reagents and then identified and quantified using LC-MS/MS. The expression of PGAM1 was further validated in 139 gastric cancer patients using immunohistochemistry. Furthermore, the correlation of PGAM1 expression with clinical parameters was analyzed. Gene set enrichment analysis (GSEA) was performed to identify gene sets that were activated in PGAM1-overexpressing patients with gastric cancer. RESULTS PGAM1 was significantly overexpressed in most cancers but particularly so in gastric cancer, with a sensitivity of 82.01% (95% confidence interval [CI]: 75.5%-88.5%) and specificity of 79.13% (95% CI: 72.3%-86%). Its expression was significantly associated with histological grade II and III tumors (p = 0.033), lymph node metastasis (p = 0.031), and TNM III-IV staging (p = 0.025). The area under the receiver operating characteristic (ROC) curve for the detection of PGAM1 overexpression in gastric cancer was 0.718 (p < 0.01). Furthermore, GSEA revealed that several important pathways such as glycolysis pathway and immune pathways were significantly enriched in patients with gastric cancer with PGAM1 overexpression. CONCLUSIONS This study provided a sensitive method for detecting PGAM1, which may serve as a novel indicator for poor prognosis of gastric cancer, as well as a potent drug target for gastric cancer.
Collapse
Affiliation(s)
- Chen Wei
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Jiebin Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoxia Yuan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yaomin Luo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yang Xiao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Weiliang Liao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhen Jiang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.,Department of Biochemistry and Molecular Biology, School of Preclinical Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
Liu M, Li R, Wang M, Liu T, Zhou Q, Zhang D, Wang J, Shen M, Ren X, Sun Q. PGAM1 regulation of ASS1 contributes to the progression of breast cancer through the cAMP/AMPK/CEBPB pathway. Mol Oncol 2022; 16:2843-2860. [PMID: 35674458 PMCID: PMC9348593 DOI: 10.1002/1878-0261.13259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a crucial glycolytic enzyme, and its expression status has been confirmed to be associated with tumor progression and metastasis. However, the precise role and other biological functions of PGAM1 remain unclear. Here, we report that PGAM1 expression is upregulated and related to poor prognosis in patients with breast cancer (BC). Functional experiments showed that knockdown of PGAM1 could suppress the proliferation, invasion, migration, and epithelial–mesenchymal transition of BC cells. Through RNA sequencing, we found that argininosuccinate synthase 1 (ASS1) expression was markedly upregulated in BC cells following PGAM1 knockdown, and it is required to suppress the malignant biological behavior of BC cells. Importantly, we demonstrated that PGAM1 negatively regulates ASS1 expression through the cAMP/AMPK/CEBPB axis. In vivo experiments further validated that PGAM1 promoted tumor growth in BC by altering ASS1 expression. Finally, immunohistochemical analysis showed that downregulated ASS1 levels were associated with PGAM1 expression and poor prognosis in patients with BC. Our study provides new insight into the regulatory mechanism of PGAM1‐mediated BC progression that might shed new light on potential targets and combination therapeutic strategies for BC treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Runmei Li
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Min Wang
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Ting Liu
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Qiuru Zhou
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Dong Zhang
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Jian Wang
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Meng Shen
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Xiubao Ren
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| | - Qian Sun
- Department of Immunology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China
| |
Collapse
|
8
|
Wang Y, Guo Y, Qiang S, Jin R, Li Z, Tang Y, Leung ELH, Guo H, Yao X. 3D-QSAR, Molecular Docking, and MD Simulations of Anthraquinone Derivatives as PGAM1 Inhibitors. Front Pharmacol 2021; 12:764351. [PMID: 34899321 PMCID: PMC8656170 DOI: 10.3389/fphar.2021.764351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
PGAM1 is overexpressed in a wide range of cancers, thereby promoting cancer cell proliferation and tumor growth, so it is gradually becoming an attractive target. Recently, a series of inhibitors with various structures targeting PGAM1 have been reported, particularly anthraquinone derivatives. In present study, the structure-activity relationships and binding mode of a series of anthraquinone derivatives were probed using three-dimensional quantitative structure-activity relationships (3D-QSAR), molecular docking, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, r2 = 0.97, q2 = 0.81) and comparative molecular similarity indices analysis (CoMSIA, r2 = 0.96, q2 = 0.82) techniques were performed to produce 3D-QSAR models, which demonstrated satisfactory results, especially for the good predictive abilities. In addition, molecular dynamics (MD) simulations technology was employed to understand the key residues and the dominated interaction between PGAM1 and inhibitors. The decomposition of binding free energy indicated that the residues of F22, K100, V112, W115, and R116 play a vital role during the ligand binding process. The hydrogen bond analysis showed that R90, W115, and R116 form stable hydrogen bonds with PGAM1 inhibitors. Based on the above results, 7 anthraquinone compounds were designed and exhibited the expected predictive activity. The study explored the structure-activity relationships of anthraquinone compounds through 3D-QSAR and molecular dynamics simulations and provided theoretical guidance for the rational design of new anthraquinone derivatives as PGAM1 inhibitors.
Collapse
Affiliation(s)
- Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yifan Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shaojia Qiang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Elaine Lai Han Leung
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaojun Yao
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
9
|
In Silico Drug Screening Analysis against the Overexpression of PGAM1 Gene in Different Cancer Treatments. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5515692. [PMID: 34195264 PMCID: PMC8184345 DOI: 10.1155/2021/5515692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 01/24/2023]
Abstract
Phosphoglycerate mutase 1 (PGAM1) is considered as a novel target for multiple types of cancer drugs for the upregulation in tumor, cell prefoliation, and cell migration. During aerobic glycolysis, PGAM1 plays a critical role in cancer cell metabolism by catalyzing the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG). In this computational-based study, the molecular docking approach was used with the best binding active sites of PGAM1 to screen 5,000 Chinese medicinal phytochemical library. The docking results were three ligands with docking score, RMSD-refine, and residues. Docking scores were -16.57, -15.22, and -15.74. RMSD values were 0.87, 2.40, and 0.98, and binding site residues were Arg 191, Arg 191, Arg 116, Arg 90, Arg 10, and Tyr 92. The best compounds were subjected to ADMETsar, ProTox-2 server, and Molinspiration analysis to evaluate the toxicological and drug likeliness potential of such selected compounds. The UCSF-Chimera tool was used to visualize the results, which shows that the three medicinal compounds named N-Nitrosohexamethyleneimine, Subtrifloralactone-K, and Kanzonol-N in chain-A were successfully binding with the active pockets of PGAM1. The study might facilitate identifying the hit molecules that could be beneficial in the development of antidrugs against various types of cancer treatment. These hit phytochemicals could be beneficial for further investigation of a novel target for cancer.
Collapse
|
10
|
Zeng A, Wei Z, Rabinovsky R, Jun HJ, El Fatimy R, Deforzh E, Arora R, Yao Y, Yao S, Yan W, Uhlmann EJ, Charest A, You Y, Krichevsky AM. Glioblastoma-Derived Extracellular Vesicles Facilitate Transformation of Astrocytes via Reprogramming Oncogenic Metabolism. iScience 2020; 23:101420. [PMID: 32795915 PMCID: PMC7424213 DOI: 10.1016/j.isci.2020.101420] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/24/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) may arise from astrocytes through a multistep process involving a progressive accumulation of mutations. We explored whether GBM-derived extracellular vesicles (EVs) may facilitate neoplastic transformation and malignant growth of astrocytes. We utilized conditioned media (CM) of cultured glioma cells, its sequential filtration, diverse cell-based assays, RNA sequencing, and metabolic assays to compare the effects of EV-containing and EV-depleted CM. GBM EVs facilitated the neoplastic growth of pre-transformed astrocytes but not normal human or mouse astrocytes. They induced proliferation, self-renewal, and colony formation of pre-transformed astrocytes and enhanced astrocytoma growth in a mouse allograft model. GBM EVs appear to reprogram astrocyte metabolism by inducing a shift in gene expression that may be partly associated with EV-mediated transfer of full-length mRNAs encoding ribosomal proteins, oxidative phosphorylation, and glycolytic factors. Our study suggests an EV/extracellular RNA (exRNA)-mediated mechanism that contributes to astrocyte transformation via metabolic reprograming and implicates horizontal mRNA transfer. Extracellular vesicles (EVs) shed by glioma cells are taken up by astrocytes Glioma EVs facilitate astrocyte transformation and tumor growth EVs reprogram glycolysis and oxidative phosphorylation of transformed astrocytes mRNAs coding ribosomal proteins and other factors are dispersed via EVs
Collapse
Affiliation(s)
- Ailiang Zeng
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hyun Jung Jun
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ramil Arora
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shun Yao
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510062, China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alain Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Li N, Liu X. Phosphoglycerate Mutase 1: Its Glycolytic and Non-Glycolytic Roles in Tumor Malignant Behaviors and Potential Therapeutic Significance. Onco Targets Ther 2020; 13:1787-1795. [PMID: 32161473 PMCID: PMC7051807 DOI: 10.2147/ott.s238920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is an important enzyme that catalyzes the reversible conversion of 3-phosphoglycerate and 2-phosphoglycerate during the process of glycolysis. Increasing evidence suggests that PGAM1 is widely overexpressed in various cancer tissues and plays a significant role in promoting cancer progression and metastasis. Although PGAM1 is a potential target in cancer therapy, the specific mechanisms of action remain unknown. This review introduces the basic structure and functions of PGAM1 and its family members and summarizes recent advances in the role of PGAM1 and various inhibitors of cancer cell proliferation and metastasis from a glycolytic and non-glycolytic perspective. Recent studies have highlighted a correlation between PGAM1 and clinical features and prognosis of cancer as well as the development of target drugs for PGAM1. The integrated information in this review will help better understand the specific roles of PGAM1 in cancer progression. Furthermore, the information highlights the non-glycolytic functions of PGAM1 in tumor metastasis, providing an innovative basis and direction for clinical drug research.
Collapse
Affiliation(s)
- Na Li
- 1st Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| | - Xinlu Liu
- 1st Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, People's Republic of China
| |
Collapse
|
12
|
Sharif F, Rasul A, Ashraf A, Hussain G, Younis T, Sarfraz I, Chaudhry MA, Bukhari SA, Ji XY, Selamoglu Z, Ali M. Phosphoglycerate mutase 1 in cancer: A promising target for diagnosis and therapy. IUBMB Life 2019; 71:1418-1427. [PMID: 31169978 DOI: 10.1002/iub.2100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Altered enzymatic machineries are a substantial biochemical characteristic of tumor cell metabolism that switch metabolic profile from oxidative phosphorylation to amplified glycolysis as well as increased lactate production under hypoxia conditions. Reprogrammed metabolic profile is an emerging hallmark of cancer. Overexpression of several glycolytic enzymes and glucose transporters has been reported in 24 different types of cancers that represent approximately 70% of all the cancer cases around the globe. Thus, targeting glycolytic enzymes could serve as tempting avenue for drug design against cancer. Phosphoglycerate mutase 1 (PGAM1) is an important glycolytic enzyme that catalyzes the conversion of 3-phosphoglycerate to 2-phosphoglycerate. Recent investigations have revealed the overexpression of PGAM1 in several human cancers that is linked with tumor growth, survival, and invasion. The aim of this review is to update scientific research network with cancer-specific role of PGAM1 to elucidate its capability as bonafide therapeutic target for cancer therapy. Moreover, we have also summarized the reported genetic and pharmacological inhibitors of PGAM1. This study suggests that further investigations on PGAM1 should focus on the exploration of molecular mechanisms of PGAM1 overexpression in development of cancer, assessment of biosafety profiles of known inhibitors of PGAM1, and utilization of PGAM1 inhibitors in combinatorial therapies. These future studies will surely support the unbiased strategies for the development of novel PGAM1 inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Farzana Sharif
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Pakistan
| | - Asma Ashraf
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Pakistan
| | - Tahira Younis
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Pakistan
| | - Muhammad Asrar Chaudhry
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Pakistan
| | - Shazia A Bukhari
- Department of Biochemistry, Faculty of Life Sciences, Government College University Faisalabad (GCUF), Pakistan
| | - Xin Y Ji
- Henan International Joint Laboratory of Protein Regulation, College of Medicine, Henan University, Kaifeng, Henan, China
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Turkey
| | | |
Collapse
|
13
|
Wen YA, Zhou BW, Lv DJ, Shu FP, Song XL, Huang B, Wang C, Zhao SC. Phosphoglycerate mutase 1 knockdown inhibits prostate cancer cell growth, migration, and invasion. Asian J Androl 2019; 20:178-183. [PMID: 29271400 PMCID: PMC5858104 DOI: 10.4103/aja.aja_57_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is upregulated in many cancer types and involved in cell proliferation, migration, invasion, and apoptosis. However, the relationship between PGAM1 and prostate cancer is poorly understood. The present study investigated the changes in PGAM1 expression in prostate cancer tissues compared with normal prostate tissues and examined the cellular function of PGAM1 and its relationship with clinicopathological variables. Immunohistochemistry and Western blotting revealed that PGAM1 expression was upregulated in prostate cancer tissues and cell lines. PGAM1 expression was associated with Gleason score (P = 0.01) and T-stage (P = 0.009). Knockdown of PGAM1 by siRNA in PC-3 and 22Rv1 prostate cancer cell lines inhibited cell proliferation, migration, and invasion and enhanced cancer cell apoptosis. In a nude mouse xenograft model, PGAM1 knockdown markedly suppressed tumor growth. Deletion of PGAM1 resulted in decreased expression of Bcl-2, enhanced expression of Bax, caspases-3 and inhibition of MMP-2 and MMP-9 expression. Our results indicate that PGAM1 may play an important role in prostate cancer progression and aggressiveness, and that it might be a valuable marker of poor prognosis and a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Yao-An Wen
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bo-Wei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dao-Jun Lv
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fang-Peng Shu
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xian-Lu Song
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Bin Huang
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Zhao Y, Zhang S. PGAM1 knockdown is associated with busulfan‑induced hypospermatogenesis and spermatogenic cell apoptosis. Mol Med Rep 2019; 19:2497-2502. [PMID: 30720109 PMCID: PMC6423611 DOI: 10.3892/mmr.2019.9930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is reported to be involved in spermatogenic dysfunction. However, the association between PGAM1 and busulfan‑induced hypospermatogenesis and spermatogenic cell apoptosis remains unclear. The aim of the current study was to investigate the association between PGAM1 expression and busulfan‑induced hypospermatogenesis, and the effect of PGAM1 expression on spermatogenic cell apoptosis. PGAM1 expression was detected in mouse models of busulfan‑induced hypospermatogenesis by western blotting, reverse transcription‑quantitative polymerase chain reaction and immunohistochemistry. Then, spermatogenic cell apoptosis in mouse models of busulfan‑induced hypospermatogenesis was assessed by TUNEL assay. The effect and potential mechanism of PGAM1 downregulation on spermatogenic cells were further investigated. The results indicated that PGAM1 expression was significantly downregulated in the mouse models of busulfan‑induced hypospermatogenesis, compared with those with normal spermatogenesis (P<0.05). Furthermore, the TUNEL assay revealed that the apoptosis of spermatogenic cells was accelerated in the mouse model of busulfan‑induced hypospermatogenesis. In addition, PGAM1 knockdown promoted the apoptosis of spermatogenic cells in vitro, which was associated with the P53/Caspase 3/Caspase 6/Caspase 9 signaling pathway. In conclusion, these data indicate that PGAM1 knockdown is associated with busulfan‑induced hypospermatogenesis and contributes to spermatogenic cell apoptosis by regulating the P53/Caspase 3/Caspase 6/Caspase 9 signaling pathway.
Collapse
Affiliation(s)
- Yuanshu Zhao
- Functional Experiment Center, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Shoubo Zhang
- Center for Reproductive Medicine, Guangdong Armed Police Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510507, P.R. China
| |
Collapse
|
15
|
Phosphoglycerate Mutase 1 Promotes Cell Proliferation and Neuroblast Differentiation in the Dentate Gyrus by Facilitating the Phosphorylation of cAMP Response Element-Binding Protein. Neurochem Res 2018; 44:323-332. [PMID: 30460638 DOI: 10.1007/s11064-018-2678-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
In a previous study, we observed a significant increase in phosphoglycerate mutase 1 (PGAM1) levels after pyridoxine treatment. In the present study, we investigated the effects of PGAM1 on novel object recognition, cell proliferation, and neuroblast differentiation in the dentate gyrus. We generated a Tat-PGAM1 fusion protein to cross the blood-brain barrier and neuronal plasma membrane. We administered the Tat peptide, control-PGAM1, or Tat-PGAM1 fusion protein to 8-week-old mice once a day for 3 weeks and tested novel object recognition memory. The mice were then euthanized to conduct western blot analysis for polyhistidine expression and immunohistochemical analysis for Ki67, doublecortin, and phosphorylated cAMP response element-binding protein. Mice treated with Tat peptide showed similar exploration times for familiar and new objects and the discrimination index was significantly lower in this group than in the control group. Tat-PGAM1 moderately increased the exploration time of new objects when compared to familiar objects, while the discrimination index was significantly higher in the Tat-PGAM1-treated group, but not in the control-PGAM1-treated group, when compared with the control group. Higher PGAM1 protein expression was observed in the hippocampus of Tat-PGAM1-treated mice when compared with the hippocampi of control, Tat peptide-, and control-PGAM1-treated mice, using western blot analysis. In addition, the numbers of proliferating cells and differentiated neuroblasts were significantly lower in the Tat peptide-treated group than in the control group. In contrast, the numbers of proliferating cells and differentiated neuroblasts in the dentate gyrus were higher in the Tat-PGAM1-treated group than in the control group. Administration of Tat-PGAM1 significantly facilitated the phosphorylation of cAMP response element-binding protein in the dentate gyrus. Administration of control-PGAM1 did not show any significant effects on novel object recognition, cell proliferation, and neuroblast differentiation in the dentate gyrus. These results suggest that PGAM1 plays a role in cell proliferation and neuroblast differentiation in the dentate gyrus via the phosphorylation of cAMP response element-binding protein in the hippocampus.
Collapse
|
16
|
Song J, Baek IJ, Chun CH, Jin EJ. Dysregulation of the NUDT7-PGAM1 axis is responsible for chondrocyte death during osteoarthritis pathogenesis. Nat Commun 2018; 9:3427. [PMID: 30143643 PMCID: PMC6109082 DOI: 10.1038/s41467-018-05787-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease; however, its etiopathogenesis is not completely understood. Here we show a role for NUDT7 in OA pathogenesis. Knockdown of NUDT7 in normal human chondrocytes results in the disruption of lipid homeostasis. Moreover, Nudt7-/- mice display significant accumulation of lipids via peroxisomal dysfunction, upregulation of IL-1β expression, and stimulation of apoptotic death of chondrocytes. Our genome-wide analysis reveals that NUDT7 knockout affects the glycolytic pathway, and we identify Pgam1 as a significantly altered gene. Consistent with the results obtained on the suppression of NUDT7, overexpression of PGAM1 in chondrocytes induces the accumulation of lipids, upregulation of IL-1β expression, and apoptotic cell death. Furthermore, these negative actions of PGAM1 in maintaining cartilage homeostasis are reversed by the co-introduction of NUDT7. Our results suggest that NUDT7 could be a potential therapeutic target for controlling cartilage-degrading disorders.
Collapse
Affiliation(s)
- Jinsoo Song
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk, 54538, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Churl-Hong Chun
- Department of Orthopedic Surgery, Wonkwang University School of Medicine, Iksan, Chunbuk, 54538, Republic of Korea
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk, 54538, Republic of Korea.
| |
Collapse
|
17
|
Snaebjornsson MT, Schulze A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med 2018; 50:1-16. [PMID: 29657328 PMCID: PMC5938058 DOI: 10.1038/s12276-018-0065-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell.
Collapse
Affiliation(s)
- Marteinn T Snaebjornsson
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany.
| |
Collapse
|