1
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
2
|
Poli E, Barbon V, Lucchetta S, Cattelan M, Santoro L, Zin A, Milano GM, Zanetti I, Bisogno G, Bonvini P. Immunoreactivity against fibroblast growth factor 8 in alveolar rhabdomyosarcoma patients and its involvement in tumor aggressiveness. Oncoimmunology 2022; 11:2096349. [PMID: 35813575 PMCID: PMC9262361 DOI: 10.1080/2162402x.2022.2096349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma characterized by a very poor prognosis when relapses occur after front-line therapy. Therefore, a major challenge for patients’ management remains the identification of markers associated with refractory and progressive disease. In this context, cancer autoantibodies are natural markers of disease onset and progression, useful to unveil novel therapeutic targets. Herein, we matched autoantibody profiling of alveolar RMS (ARMS) patients with genes under regulatory control of PAX3-FOXO1 transcription factor and revealed fibroblast growth factor 8 (FGF8) as a novel ARMS tumor antigen of diagnostic, prognostic, and therapeutic potential. We demonstrated that high levels of FGF8 autoantibodies distinguished ARMS patients from healthy subjects and represented an independent prognostic factor of better event-free survival. FGF8 was overexpressed in ARMS tumors compared to other types of pediatric soft tissue sarcomas, acting as a positive regulator of cell signaling. Indeed, FGF8 was capable of stimulating ARMS cells migration and expression of pro-angiogenic and metastasis-related factors, throughout MAPK signaling activation. Of note, FGF8 was found to increase in recurrent tumors, independently of PAX3-FOXO1 expression dynamics. Risk of recurrence correlated positively with FGF8 expression levels at diagnosis and reduced FGF8 autoantibodies titer, almost as if to suggest a failure of the immune response to control tumor growth in recurring patients. This study provides evidence about the crucial role of FGF8 in ARMS and the protective function of natural autoantibodies, giving new insights into ARMS biology and laying the foundations for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Poli
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Vanessa Barbon
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Silvia Lucchetta
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Luisa Santoro
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | - Angelica Zin
- Fondazione Città Della Speranza, Institute of Pediatric Research (IRP), Padua, Italy
| | - Giuseppe Maria Milano
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), Bambino Gesù Childrens’ Hospital, Rome, Italy
| | - Ilaria Zanetti
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Gianni Bisogno
- Department of Woman’s and Children’s Health Hematology and Oncology Unit, University of Padua, Padua, Italy
| | - Paolo Bonvini
- Fondazione Città Della Speranza, Institute of Pediatric Research (IRP), Padua, Italy
| |
Collapse
|
3
|
The Effect of Direct and Indirect EZH2 Inhibition in Rhabdomyosarcoma Cell Lines. Cancers (Basel) 2021; 14:cancers14010041. [PMID: 35008205 PMCID: PMC8750739 DOI: 10.3390/cancers14010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Rhabdomyosarcoma is the most common soft tissue tumor in children. Its two major subtypes show epigenetic alterations that are associated with poor prognosis. Therefore, targeting these epigenetic alterations by pharmacological intervention could be a therapeutic approach. We investigated two different types of substances that interfere with the epigenetic process of histone methylation. We performed studies in two cell lines that carry characteristics of the major rhabdomyosarcoma subtypes. The aim of this study was to find out if the substances differ in their effect on tumor-related cellular functions and to find out if the tumor subtypes differ in their response to the substances. These findings may contribute to a better assessment of the feasibility of pharmacological intervention directed against histone methylation in subtypes of rhabdomyosarcoma. Abstract Enhancer of Zeste homolog 2 (EZH2) is involved in epigenetic regulation of gene transcription by catalyzing trimethylation of histone 3 at lysine 27. In rhabdomyosarcoma (RMS), increased EZH2 protein levels are associated with poor prognosis and increased metastatic potential, suggesting EZH2 as a therapeutic target. The inhibition of EZH2 can be achieved by direct inhibition which targets only the enzyme activity or by indirect inhibition which also affects activities of other methyltransferases and reduces EZH2 protein abundance. We assessed the direct inhibition of EZH2 by EPZ005687 and the indirect inhibition by 3-deazaneplanocin (DZNep) and adenosine dialdehyde (AdOx) in the embryonal RD and the alveolar RH30 RMS cell line. EPZ005687 was more effective in reducing the cell viability and colony formation, in promoting apoptosis induction, and in arresting cells in the G1 phase of the cell cycle than the indirect inhibitors. DZNep was more effective in decreasing spheroid viability and size in both cell lines than EPZ005687 and AdOx. Both types of inhibitors reduced cell migration of RH30 cells but not of RD cells. The results show that direct and indirect inhibition of EZH2 affect cellular functions differently. The alveolar cell line RH30 is more sensitive to epigenetic intervention than the embryonal cell line RD.
Collapse
|
4
|
Miyagaki S, Kikuchi K, Mori J, Lopaschuk GD, Iehara T, Hosoi H. Inhibition of lipid metabolism exerts antitumor effects on rhabdomyosarcoma. Cancer Med 2021; 10:6442-6455. [PMID: 34472721 PMCID: PMC8446407 DOI: 10.1002/cam4.4185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022] Open
Abstract
Rhabdomyosarcoma exhibits tumor-specific energy metabolic changes that include the Warburg effect. Since targeting cancer metabolism is a promising therapeutic approach, we examined the antitumor effects of suppressing lipid metabolism in rhabdomyosarcoma. We suppressed lipid metabolism in rhabdomyosarcoma cells in vitro by administering an inhibitor of malonyl-CoA decarboxylase, which increases malonyl-CoA and decreases fatty acid oxidation. Suppression of lipid metabolism in rhabdomyosarcoma cells decreased cell proliferation by inducing cell cycle arrest. Metabolomic analysis showed an increase in glycolysis and inactivation of the pentose phosphate pathway. Immunoblotting analysis revealed upregulated expression of the autophagy marker LC3A/B-II due to increased phosphorylation of AMP-activated protein kinase, a nutrient sensor. p21 protein expression level also increased. Inhibition of both lipid metabolism and autophagy suppressed tumor proliferation and increased apoptosis. In vivo studies involved injection of human Rh30 cells into the gastrocnemius muscle of 6-week-old female nude mice, which were divided into normal chow and low-fat diet groups. The mice fed a low-fat diet for 21 days showed reduced tumor growth compared to normal chow diet-fed mice. Suppression of lipid metabolism disrupted the equilibrium of the cancer-specific metabolism in rhabdomyosarcoma, resulting in a tumor growth-inhibition effect. Therefore, the development of treatments focusing on the lipid dependence of rhabdomyosarcoma is highly promising.
Collapse
Affiliation(s)
- Satoshi Miyagaki
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Pediatrics, Uji Takeda Hospital, Kyoto, Japan
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Gary D Lopaschuk
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
FOXF1 is required for the oncogenic properties of PAX3-FOXO1 in rhabdomyosarcoma. Oncogene 2021; 40:2182-2199. [PMID: 33627785 PMCID: PMC8005492 DOI: 10.1038/s41388-021-01694-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.
Collapse
|
6
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
7
|
Sobral LM, Hicks HM, Parrish JK, McCann TS, Hsieh J, Goodspeed A, Costello JC, Black JC, Jedlicka P. KDM3A/Ets1 epigenetic axis contributes to PAX3/FOXO1-driven and independent disease-promoting gene expression in fusion-positive Rhabdomyosarcoma. Mol Oncol 2020; 14:2471-2486. [PMID: 32697014 PMCID: PMC7530783 DOI: 10.1002/1878-0261.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and young adults. RMS exists as two major disease subtypes, oncofusion-negative RMS (FN-RMS) and oncofusion-positive RMS (FP-RMS). FP-RMS is characterized by recurrent PAX3/7-FOXO1 driver oncofusions and is a biologically and clinically aggressive disease. Recent studies have revealed FP-RMS to have a strong epigenetic basis. Epigenetic mechanisms represent potential new therapeutic vulnerabilities in FP-RMS, but their complex details remain to be defined. We previously identified a new disease-promoting epigenetic axis in RMS, involving the chromatin factor KDM3A and the Ets1 transcription factor. In the present study, we define the KDM3A and Ets1 FP-RMS transcriptomes and show that these interface with the recently characterized PAX3/FOXO1-driven gene expression program. KDM3A and Ets1 positively control numerous known and candidate novel PAX3/FOXO1-induced RMS-promoting genes, including subsets under control of PAX3/FOXO1-associated superenhancers (SE), such as MEST. Interestingly, KDM3A and Ets1 also positively control a number of known and candidate novel FP-RMS-promoting, but not PAX3/FOXO1-dependent, genes. Epistatically, Ets1 is downstream of, and exerts disease-promoting effects similar to, both KDM3A and PAX3/FOXO1. MEST also manifests disease-promoting properties in FP-RMS, and KDM3A and Ets1 each impacts activation of the PAX3/FOXO1-associated MEST SE. Taken together, our studies show that the KDM3A/Ets1 epigenetic axis plays an important role in disease promotion in FP-RMS, and provide insight into potential new ways to target aggressive phenotypes in this disease.
Collapse
Affiliation(s)
- Lays M Sobral
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Hannah M Hicks
- Cancer Biology Graduate Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Janet K Parrish
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Tyler S McCann
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Joseph Hsieh
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Cancer Biology Graduate Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Medical Scientist Training Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Andrew Goodspeed
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, CO, USA
| | - Joshua C Black
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Paul Jedlicka
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Cancer Biology Graduate Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Medical Scientist Training Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
8
|
Nakagawa N, Kikuchi K, Yagyu S, Miyachi M, Iehara T, Tajiri T, Sakai T, Hosoi H. Mutations in the RAS pathway as potential precision medicine targets in treatment of rhabdomyosarcoma. Biochem Biophys Res Commun 2019; 512:524-530. [PMID: 30904164 DOI: 10.1016/j.bbrc.2019.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 01/14/2023]
Abstract
Precision medicine strategies for treating rhabdomyosarcoma (RMS), a childhood malignancy, have not been developed. We examined the effect of CH5126766, a potent selective dual RAF/MEK inhibitor, on RMS cell lines. Among the eleven cell lines studied, one NRAS and two HRAS mutated cell lines were detected. CH5126766 inhibited the proliferation and growth in all of the RAS-mutated RMS cell lines, while it induced G1 cell cycle arrest in two of them. G1 cell cycle arrest was accompanied by p21 up-regulation and RB dephosphorylation. CH5126766 also suppressed the in vivo growth of RAS-mutated RMS tumor, and the mice showed improved survival. Thus, our results demonstrate that CH5126766 is an effective RAF/MEK inhibitor in RAS-mutated RMS. This study not only shows that in RMS, mutations in the RAS pathway can be a target for precision medicine, but also demonstrates that the evaluation of the gene mutation status is important in childhood malignancies.
Collapse
Affiliation(s)
- Norio Nakagawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Pediatrics, Uji Takeda Hospital, Kyoto, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and represents a high-grade neoplasm of skeletal myoblast-like cells. Decades of clinical and basic research have gradually improved our understanding of the pathophysiology of RMS and helped to optimize clinical care. The two major subtypes of RMS, originally characterized on the basis of light microscopic features, are driven by fundamentally different molecular mechanisms and pose distinct clinical challenges. Curative therapy depends on control of the primary tumour, which can arise at many distinct anatomical sites, as well as controlling disseminated disease that is known or assumed to be present in every case. Sophisticated risk stratification for children with RMS incorporates various clinical, pathological and molecular features, and that information is used to guide the application of multifaceted therapy. Such therapy has historically included cytotoxic chemotherapy as well as surgery, ionizing radiation or both. This Primer describes our current understanding of RMS epidemiology, disease susceptibility factors, disease mechanisms and elements of clinical care, including diagnostics, risk-based care of newly diagnosed and relapsed disease and the prevention and management of late effects in survivors. We also outline potential opportunities to further translate new biological insights into improved clinical outcomes.
Collapse
Affiliation(s)
- Stephen X Skapek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Abha A Gupta
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Erin Butler
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Belmont, UK
| | - Frederic G Barr
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Douglas S Hawkins
- Seattle Children's Hospital, University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
10
|
Yan P, Huang Z, Zhu J. Matrine inhibits cell proliferation and induces apoptosis of human rhabdomyosarcoma cells via downregulation of the extracellular signal-regulated kinase pathway. Oncol Lett 2017; 14:3148-3154. [PMID: 28927059 DOI: 10.3892/ol.2017.6564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/27/2017] [Indexed: 01/12/2023] Open
Abstract
Matrine, extracted from the Chinese traditional medicine Sophorae flavescentis, has been demonstrated to exhibit antitumor effects on numerous types of cancer in vivo and in vitro with low toxicity. However, its antitumor mechanism in rhabdomyosarcoma (RMS) cells remains unclear. In the present study, the antitumor effects of matrine and its underlying mechanisms in RMS were investigated in vitro. The results demonstrated that matrine inhibited cell proliferation, migration and invasion, and induced apoptosis of RMS cells in a dose-dependent manner. Furthermore, the expression levels of phosphorylated mitogen-activated protein kinase (p-MEK) and phosphorylated extracellular signal-regulated kinase (p-ERK) significantly decreased in RMS cells following matrine treatment. In addition, the apoptotic effects of matrine in RMS cells were partially inhibited upon MEK1 overexpression and enhanced upon combined treatment with an ERK inhibitor (U0126). In addition, the ratio of apoptosis regulator BCL-2/BAX significantly decreased following matrine treatment. In conclusion, these findings indicate that matrine inhibits cell proliferation and induces the apoptosis of RMS cells by suppressing the ERK signaling pathway, and may be a novel effective candidate for the treatment of patients with RMS.
Collapse
Affiliation(s)
- Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Junbo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|