1
|
Deng X, Luo Y, Lu M, Lin Y, Ma L. Identification of GMFG as a novel biomarker in IgA nephropathy based on comprehensive bioinformatics analysis. Heliyon 2024; 10:e28997. [PMID: 38601619 PMCID: PMC11004809 DOI: 10.1016/j.heliyon.2024.e28997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Background IgA nephropathy (IgAN) stands as the most prevalent form of glomerulonephritis and ranks among the leading causes of end-stage renal disease worldwide. Regrettably, we continue to grapple with the absence of dependable diagnostic markers and specific therapeutic agents for IgAN. Therefore, this study endeavors to explore novel biomarkers and potential therapeutic targets in IgAN, while also considering their relevance in the context of tumors. Methods We gathered IgAN datasets from the Gene Expression Omnibus (GEO) database. Subsequently, leveraging these datasets, we conducted an array of analyses, encompassing differential gene expression, weighted gene co-expression network analysis (WGCNA), machine learning, receiver operator characteristic (ROC) curve analysis, gene expression validation, clinical correlations, and immune infiltration. Finally, we carried out pan-cancer analysis based on hub gene. Results We obtained 1391 differentially expressed genes (DEGs) in GSE93798 and 783 DGEs in GSE14795, respectively. identifying 69 common genes for further investigation. Subsequently, GMFG was identified the hub gene based on machine learning. In the verification set and the training set, the GMFG was higher in the IgAN group than in the healthy group and all of the GMFG area under the curve (AUC) was more 0.8. In addition, GMFG has a close relationship with the prognosis of malignancies and a range of immune cells. Conclusions Our study suggests that GMFG could serve as a promising novel biomarker and potential therapeutic target for both IgAN and certain types of tumors.
Collapse
Affiliation(s)
- Xiaoqi Deng
- Department of Nephrology, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan Province, China
| | - Yu Luo
- Chongqing Medical University, Chongqing, 400000, China
| | - Meiqi Lu
- School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yun Lin
- Department of Nephrology, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan Province, China
| | - Li Ma
- Department of Nephrology, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan Province, China
| |
Collapse
|
2
|
Tao L, Zhu Y, Wu L, Liu J. Comprehensive analysis of senescence-associated genes in sepsis based on bulk and single-cell sequencing data. Front Mol Biosci 2024; 10:1322221. [PMID: 38259686 PMCID: PMC10801732 DOI: 10.3389/fmolb.2023.1322221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Sepsis is a pathological state resulting from dysregulated immune response in host during severe infection, leading to persistent organ dysfunction and ultimately death. Senescence-associated genes (SAGs) have manifested their potential in controlling the proliferation and dissemination of a variety of diseases. Nevertheless, the correlation between sepsis and SAGs remains obscure and requires further investigation. Methods: Two RNA expression datasets (GSE28750 and GSE57065) specifically related to sepsis were employed to filter hub SAGs, based on which a diagnostic model predictive of the incidence of sepsis was developed. The association between the expression of the SAGs identified and immune-related modules was analyzed employing Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Microenvironment Cell Populations-counter (MCP-counter) analysis. The identified genes in each cohort were clustered by unsupervised agreement clustering analysis and weighted gene correlation network analysis (WGCNA). Results: A diagnostic model for sepsis established based on hub genes (IGFBP7, GMFG, IL10, IL18, ETS2, HGF, CD55, and MMP9) exhibited a strong clinical reliability (AUC = 0.989). Sepsis patients were randomly assigned and classified by WGCNA into two clusters with distinct immune statuses. Analysis on the single-cell RNA sequencing (scRNA-seq) data revealed high scores of SAGs in the natural killer (NK) cells of the sepsis cohort than the healthy cohort. Conclusion: These findings suggested a close association between SAGs and sepsis alterations. The identified hub genes had potential to serve as a viable diagnostic marker for sepsis.
Collapse
Affiliation(s)
- Linfeng Tao
- Gusu School of Nanjing Medical University, Department of Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lifang Wu
- Department of Critical Care Medicine of Kunshan Third People’s Hospital, Suzhou, China
| | - Jun Liu
- Gusu School of Nanjing Medical University, Department of Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, China
| |
Collapse
|
3
|
Zhao Y, Wei X, Li J, Diao Y, Shan C, Li W, Zhang S, Wu F. High Level of GMFG Correlated to Poor Clinical Outcome and Promoted Cell Migration and Invasion through EMT Pathway in Triple-Negative Breast Cancer. Genes (Basel) 2023; 14:1157. [PMID: 37372337 DOI: 10.3390/genes14061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has a very poor prognosis due to the disease's lack of established targeted treatment options. Glia maturation factor γ (GMFG), a novel ADF/cofilin superfamily protein, has been reported to be differentially expressed in tumors, but its expression level in TNBC remains unknown. The question of whether GMFG correlates with the TNBC prognosis is also unclear. In this study, data from the Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), Human Protein Atlas (HPA), and Genotype-Tissue Expression (GTEx) databases were used to analyze the expression of GMFG in pan-cancer and the correlation between clinical factors. Gene Set Cancer Analysis (GSCA) and Gene Set Enrichment Analysis (GSEA) were also used to analyze the functional differences between the different expression levels and predict the downstream pathways. GMFG expression in breast cancer tissues, and its related biological functions, were further analyzed by immunohistochemistry (IHC), immunoblotting, RNAi, and function assay; we found that TNBC has a high expression of GMFG, and this higher expression was correlated with a poorer prognosis in TCGA and collected specimens of the TNBC. GMFG was also related to TNBC patients' clinicopathological data, especially those with histological grade and axillary lymph node metastasis. In vitro, GMFG siRNA inhibited cell migration and invasion through the EMT pathway. The above data indicate that high expression of GMFG in TNBC is related to malignancy and that GMFG could be a biomarker for the detection of TNBC metastasis.
Collapse
Affiliation(s)
- Yonglin Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xing Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jia Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yan Diao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Changyou Shan
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Weimiao Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Fei Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China
| |
Collapse
|
4
|
Li H, Luo Q, Cai S, Tie R, Meng Y, Shan W, Xu Y, Zeng X, Qian P, Huang H. Glia maturation factor-γ is required for initiation and maintenance of hematopoietic stem and progenitor cells. Stem Cell Res Ther 2023; 14:117. [PMID: 37122014 PMCID: PMC10150485 DOI: 10.1186/s13287-023-03328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND In vertebrates, hematopoietic stem and progenitor cells (HSPCs) emerge from hemogenic endothelium in the floor of the dorsal aorta and subsequently migrate to secondary niches where they expand and differentiate into committed lineages. Glia maturation factor γ (gmfg) is a key regulator of actin dynamics that was shown to be highly expressed in hematopoietic tissue. Our goal is to investigate the role and mechanism of gmfg in embryonic HSPC development. METHODS In-depth bioinformatics analysis of our published RNA-seq data identified gmfg as a cogent candidate gene implicated in HSPC development. Loss and gain-of-function strategies were applied to study the biological function of gmfg. Whole-mount in situ hybridization, confocal microscopy, flow cytometry, and western blotting were used to evaluate changes in the number of various hematopoietic cells and expression levels of cell proliferation, cell apoptosis and hematopoietic-related markers. RNA-seq was performed to screen signaling pathways responsible for gmfg deficiency-induced defects in HSPC initiation. The effect of gmfg on YAP sublocalization was assessed in vitro by utilizing HUVEC cell line. RESULTS We took advantage of zebrafish embryos to illustrate that loss of gmfg impaired HSPC initiation and maintenance. In gmfg-deficient embryos, the number of hemogenic endothelium and HSPCs was significantly reduced, with the accompanying decreased number of erythrocytes, myelocytes and lymphocytes. We found that blood flow modulates gmfg expression and gmfg overexpression could partially rescue the reduction of HSPCs in the absence of blood flow. Assays in zebrafish and HUVEC showed that gmfg deficiency suppressed the activity of YAP, a well-established blood flow mediator, by preventing its shuttling from cytoplasm to nucleus. During HSPC initiation, loss of gmfg resulted in Notch inactivation and the induction of Notch intracellular domain could partially restore the HSPC loss in gmfg-deficient embryos. CONCLUSIONS We conclude that gmfg mediates blood flow-induced HSPC maintenance via regulation of YAP, and contributes to HSPC initiation through the modulation of Notch signaling. Our findings reveal a brand-new aspect of gmfg function and highlight a novel mechanism for embryonic HSPC development.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Ye Meng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- School of Medicine, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, School of Medicine, The First Affiliated Hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, People's Republic of China.
| |
Collapse
|
5
|
Liu J, Zhu X, Gao L, Geng R, Tao X, Xu H, Chen Z. Expression and Prognostic Role of Glia Maturation Factor-γ in Gliomas. Front Mol Neurosci 2022; 15:906762. [PMID: 35845613 PMCID: PMC9277395 DOI: 10.3389/fnmol.2022.906762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background Glia maturation factor-γ (GMFG) regulates actin cytoskeletal organization and promotes the invasion of cancer cells. However, its expression pattern and molecular function in gliomas have not been clearly defined. Methods In this study, public datasets comprising 2,518 gliomas samples were used to explore GMFG expression and its correlation with malignancy in gliomas. Immunohistochemistry (IHC) staining was performed to determine the expression of GMFG in gliomas using an in-house cohort that contained 120 gliomas samples. Gene ontology enrichment analysis was conducted using the DAVID tool. The correlation between GMFG expression and immune cell infiltration was evaluated using TIMER, Tumor Immune Single-Cell Hub (TISCH) database, and IHC staining assays. The Kaplan-Meier analysis was performed to determine the prognostic role of GMFG and its association with temozolomide (TMZ) response in gliomas. Results The GMFG expression was higher in gliomas compared with non-tumor brain tissues both in public datasets and in-house cohort. High expression of GMFG was significantly associated with WHO grade IV, IDH 1/2 wild-type, and mesenchymal (ME) subtypes. Bioinformatic prediction and IHC analysis revealed that GMFG expression obviously correlated with the macrophage marker CD163 in gliomas. Moreover, both lower grade glioma (LGG) and glioblastoma multiforme (GBM) patients with high GMFG expression had shorter overall survival than those with low GMFG expression. These results indicate that GMFG may be a therapeutic target for the treatment of such patients. Patients with low GMFG expression who received chemotherapy had a longer survival time than those with high GMFG expression. For patients who received ion radiotherapy (IR) only, the GMFG expression level had no effect on the overall survival neither in CGGA and TCGA datasets. Conclusion The GMFG is a novel prognostic biomarker for patients with both LGG and GBM. Increased GMFG expression is associated with tumor-associated macrophages (TAMs) infiltration and with a bad response to TMZ treatment.
Collapse
Affiliation(s)
- Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaonan Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Tao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haitao Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Tang H, Liu J, Huang J. GMFG (glia maturation factor gamma) inhibits lung cancer growth by activating p53 signaling pathway. Bioengineered 2022; 13:9284-9293. [PMID: 35383531 PMCID: PMC9161896 DOI: 10.1080/21655979.2022.2049958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
The tumor-promoting or tumor-suppressing functions of Glia maturation factor gamma (GMFG) were described in several cancers. However, how GMFG regulates lung cancer progression is elusive. Bioinformatics analysis was employed to analyze GMFG expression in lung adenocarcinoma (LUAD) and lung squamous cancer (LUSC) as well as its significance in prognosis prediction and diagnosis in lung cancer patients. CCK8 and colony formation assays were adopted to evaluate the impact of GMFG overexpressing and depleting on lung cancer cell proliferation. And in vivo experiments were implemented. Luciferase reporter assays were used to disclose the signaling pathway mediated by GMFG in lung cancer. GMFG expression was lower in LUSC and LUAD tissues compared with normal lung tissues based on TCGA and GTEx databases. Low GMFG expression was associated with lower overall survival and shorter disease specific survival compared high GMFG expression. In vitro loss and gain functions assays demonstrated that ectopically GMFG expression dampened the lung cancer cell proliferation while GMFG knockout escalated the cell proliferation. The promoting effect of GMFG knockout on lung cancer tumorgenesis was also observed in vivo. More interesting, GMFG overexpression reinforced the p53 signaling pathway in lung cancer cells, conversely GMFG deficiency disrupted p53 signaling pathway. In conclusion, we revealed that GMFG is fundamental to p53 signaling pathway to inhibit lung cancer progression, highlighting the importance of GMFG as a p53 inducer for lung cancer patient's diagnosis and therapy.
Collapse
Affiliation(s)
- Hua Tang
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, Shanghai, China
| | - Jie Liu
- Department of Thoracic Surgery, Army medical university, Southwest hospital, Chongqing, Sichuan , China
| | - Jun Huang
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Zhang YL, Cao JL, Zhang Y, Liao L, Deng L, Yang SY, Hu SY, Ning Y, Zhang FL, Li DQ. RNF144A exerts tumor suppressor function in breast cancer through targeting YY1 for proteasomal degradation to downregulate GMFG expression. Med Oncol 2022; 39:48. [PMID: 35103856 PMCID: PMC8807444 DOI: 10.1007/s12032-021-01631-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Ring finger protein 144A (RNF144A), a poorly characterized member of the RING-in-between-RING family of E3 ubiquitin ligases, is an emerging tumor suppressor, but its underlying mechanism remains largely elusive. To address this issue, we used Affymetrix GeneChip Human Transcriptome Array 2.0 to profile gene expression in MDA-MB-231 cells stably expressing empty vector pCDH and Flag-RNF144A, and found that 128 genes were differentially expressed between pCDH- and RNF144A-expressing cells with fold change over 1.5. We further demonstrated that RNF144A negatively regulated the protein and mRNA levels of glial maturation factor γ (GMFG). Mechanistical investigations revealed that transcription factor YY1 transcriptionally activated GMFG expression, and RNF144A interacted with YY1 and promoted its ubiquitination-dependent degradation, thus blocking YY1-induced GMFG expression. Functional rescue assays showed that ectopic expression of RNF144A suppressed the proliferative, migratory, and invasive potential of breast cancer cells, and the noted effects were partially restored by re-expression of GMFG in RNF144A-overexpressing breast cancer cells. Collectively, these findings reveal that RNF144A negatively regulates GMFG expression by targeting YY1 for proteasomal degradation, thus inhibiting the proliferation, migration, and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Yin-Ling Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jin-Ling Cao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ye Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Ning
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism of Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Yang Y, He X, Tang QQ, Shao YC, Song WJ, Gong PJ, Zeng YF, Huang SR, Zhou JY, Wan HF, Wei L, Zhang JW. GMFG Has Potential to Be a Novel Prognostic Marker and Related to Immune Infiltrates in Breast Cancer. Front Oncol 2021; 11:629633. [PMID: 34367945 PMCID: PMC8343142 DOI: 10.3389/fonc.2021.629633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
A growing amount of evidence has indicated immune genes perform a crucial position in the development and progression of breast cancer microenvironment. The purpose of our study was to identify immunogenic prognostic marker and explore potential regulatory mechanisms for breast cancer. We identified the genes related to ImmuneScore using ESTIMATE algorithm and WGCNA analysis, and we identified the differentially expressed gene (DEGs). Then, Glia maturation factor γ (GMFG) was determined as a predictive factor by intersecting immune-related genes with DEGs and survival analysis. We found the expression of GMFG was lower in breast cancer tissues compared with normal breast tissues, which was further verified by immunohistochemical (IHC). Moreover, the decreased expression of GMFG was significantly related to the poor prognosis. Besides, the expression of GMFG was related to the age, ER status, PR status, HER2 status and tumor size, which further suggested that the expression of GMFG was correlated with the subtype and the growth of tumor. The univariate and multivariate Cox regression analyses revealed that age, stage, the expression level of GMFG and radiotherapy were independent factors for predicting the prognosis of breast cancer patients. Subsequently, a prognostic model to predict the 3-year, 5-year and 10-year overall survival rate was developed based on the above four variables, and visualized as a nomogram. The values of area under the curve of the nomogram at 3-year, 5-year and 10-year were 0.897, 0.873 and 0.922, respectively, which was higher than stage in prognostic accuracy. In addition, we also found that GMFG expression level was correlated with sensitivity of some breast cancer chemotherapy drugs. Furthermore, the results of GSEA indicated immune-related pathways were mainly enriched in GMFG-high-expression group. CIBERSORT analysis for the proportion of tumor-infiltrating immune cells (TIICs) suggested that expression of GMFG was positively association with multiple kinds T-cell in BC. Among them, CD8+ T cells had the strongest correlation with GMFG expression, which revealed that GMFG might has an antitumor effect by increasing the infiltration of CD8+ T cells in breast cancer. Accordingly, GMFG has the potential to become a novel immune biomarker for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yan Yang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin He
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qian-Qian Tang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - You-Cheng Shao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Wen-Jing Song
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Peng-Ju Gong
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yi-Fan Zeng
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Si-Rui Huang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jiang-Yao Zhou
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui-Fang Wan
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Jing-Wei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Lan A, Ren C, Wang X, Tong G, Yang G. Bioinformatics and survival analysis of glia maturation factor-γ in pan-cancers. BMC Cancer 2021; 21:423. [PMID: 33863293 PMCID: PMC8052856 DOI: 10.1186/s12885-021-08163-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background Glia maturation factor-γ (GMFG) is reported to inhibit the actin nucleation through binding to the actin-related protein-2/3 complex (Arp2/3). Considering the main function of GMFG in actin remodeling, which is vital for immune response, angiogenesis, cell division and motility, GMFG is supposed to have important roles in tumor development, while up to now, only two studies described the role of GMFG in cancers. By investigating the clinical values of GMFG using The Cancer Genome Atlas (TCGA) data and the functional mechanisms of GMFG through analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments, this study was aimed to better understand the impact of GMFG in pan-cancers and to draw more attentions for the future research of GMFG. Methods RNA-seq and clinical data of cancer patients were collected from TCGA and analyzed by the Kaplan-Meier methods. GO and KEGG analyses were conducted using the online tools from the Database for Annotation, Visualization and Integrated Discovery (DAVID). Results Compared to the corresponding normal samples, GMFG was significantly upregulated in glioblastoma (GBM), kidney clear cell carcinoma (KIRC), lower grade glioma (LGG), acute myeloid leukemia (LAML), and pancreatic cancer (PAAD), testicular cancer (TGCT), but was downregulated in kidney chromophobe (KICH), lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) (P < 0.05 for all). High expression of GMFG predicted worse OS in GBM (HR = 1.5, P = 0.017), LGG (HR = 2.2, P < 0.001), LUSC (HR = 1.4, P = 0.022) and ocular melanomas (UVM) (HR = 7, P < 0.001), as well as worse DFS in LGG (HR = 1.8, P < 0.001) and prostate cancer (PRAD) (HR = 1.9, P = 0.004). In contrast, high expression of GMFG was associated with better OS in skin cutaneous melanoma (SKCM) (HR = 0.59, P < 0.001) and thymoma (THYM) (HR = 0.098, P = 0.031), as well as better DFS in bile duct cancer (CHOL) (HR = 0.2, P = 0.003). GMFG was mainly involved in the immune response, protein binding and cytokine-cytokine receptor interaction pathways, and was positively associated with multiple immunomodulators in most cancers. Conclusion Our study preliminarily identified that GMFG may cause different survivals for different cancers through modulating tumor progression, immune response status and tissue-specific tumor microenvironment (TME). Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08163-2.
Collapse
Affiliation(s)
- Aihua Lan
- Central Laboratory, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Chunxia Ren
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Xiaoling Wang
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Guoqing Tong
- Center for Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China.
| | - Gong Yang
- Central Laboratory, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China. .,Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
10
|
Tew BY, Legendre C, Schroeder MA, Triche T, Gooden GC, Huang Y, Butry L, Ma DJ, Johnson K, Martinez RA, Pierobon M, Petricoin EF, O'shaughnessy J, Osborne C, Tapia C, Buckley DN, Glen J, Bernstein M, Sarkaria JN, Toms SA, Salhia B. Patient-derived xenografts of central nervous system metastasis reveal expansion of aggressive minor clones. Neuro Oncol 2021; 22:70-83. [PMID: 31433055 DOI: 10.1093/neuonc/noz137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The dearth of relevant tumor models reflecting the heterogeneity of human central nervous system metastasis (CM) has hindered development of novel therapies. METHODS We established 39 CM patient-derived xenograft (PDX) models representing the histological spectrum, and performed phenotypic and multi-omic characterization of PDXs and their original patient tumors. PDX clonal evolution was also reconstructed using allele-specific copy number and somatic variants. RESULTS PDXs retained their metastatic potential, with flank-implanted PDXs forming spontaneous metastases in multiple organs, including brain, and CM subsequent to intracardiac injection. PDXs also retained the histological and molecular profiles of the original patient tumors, including retention of genomic aberrations and signaling pathways. Novel modes of clonal evolution involving rapid expansion by a minor clone were identified in 2 PDXs, including CM13, which was highly aggressive in vivo forming multiple spontaneous metastases, including to brain. These PDXs had little molecular resemblance to the patient donor tumor, including reversion to a copy number neutral genome, no shared nonsynonymous mutations, and no correlation by gene expression. CONCLUSIONS We generated a diverse and novel repertoire of PDXs that provides a new set of tools to enhance our knowledge of CM biology and improve preclinical testing. Furthermore, our study suggests that minor clone succession may confer tumor aggressiveness and potentiate brain metastasis.
Collapse
Affiliation(s)
- Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tim Triche
- Center of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Gerald C Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yizhou Huang
- Center of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Loren Butry
- Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyle Johnson
- Translational Genomics Institute (TGEN), Phoenix, Arizona, USA
| | | | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Joyce O'shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas, USA
| | - Cindy Osborne
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas, USA
| | - Coya Tapia
- Department of Molecular Pathology, The MD Anderson Cancer Center, Houston, Texas, USA
| | - David N Buckley
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven A Toms
- Geisinger Medical Center, Danville, Pennsylvania, USA.,Lifespan, Providence, RI
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Translational Genomics Institute (TGEN), Phoenix, Arizona, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
WGCNA reveals key gene modules regulated by the combined treatment of colon cancer with PHY906 and CPT11. Biosci Rep 2020; 40:226138. [PMID: 32812032 PMCID: PMC7468096 DOI: 10.1042/bsr20200935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Irinotecan (CPT11) is one of the most effective drugs for treating colon cancer, but its severe side effects limit its application. Recently, a traditional Chinese herbal preparation, named PHY906, has been proved to be effective for improving therapeutic effect and reducing side effects of CPT11. The aim of the present study was to provide novel insight to understand the molecular mechanism underlying PHY906-CPT11 intervention of colon cancer. Based on the GSE25192 dataset, for different three treatments (PHY906, CPT11, and PHY906-CPT11), we screened out differentially expressed genes (DEGs) and constructed a co-expression network by weighted gene co-expression network analysis (WGCNA) to identify hub genes. The key genes of the three treatments were obtained by merging the DEGs and hub genes. For the PHY906-CPT11 treatment, a total of 18 key genes including Eif4e, Prr15, Anxa2, Ddx5, Tardbp, Skint5, Prss12 and Hnrnpa3, were identified. The results of functional enrichment analysis indicated that the key genes associated with PHY906-CPT11 treatment were mainly enriched in ‘superoxide anion generation’ and ‘complement and coagulation cascades’. Finally, we validated the key genes by Gene Expression Profiling Interactive Analysis (GEPIA) and RT-PCR analysis, the results indicated that EIF4E, PRR15, ANXA2, HNRNPA3, NCF1, C3AR1, PFDN2, RGS10, GNG11, and TMSB4X might play an important role in the treatment of colon cancer with PHY906-CPT11. In conclusion, a total of 18 key genes were identified in the present study. These genes showed strong correlation with PHY906-CPT11 treatment in colon cancer, which may help elucidate the underlying molecular mechanism of PHY906-CPT11 treatment in colon cancer.
Collapse
|
12
|
Glia maturation factor-γ regulates murine macrophage iron metabolism and M2 polarization through mitochondrial ROS. Blood Adv 2020; 3:1211-1225. [PMID: 30971398 DOI: 10.1182/bloodadvances.2018026070] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/16/2019] [Indexed: 12/19/2022] Open
Abstract
In macrophages, cellular iron metabolism status is tightly integrated with macrophage phenotype and associated with mitochondrial function. However, how molecular events regulate mitochondrial activity to integrate regulation of iron metabolism and macrophage phenotype remains unclear. Here, we explored the important role of the actin-regulatory protein glia maturation factor-γ (GMFG) in the regulation of cellular iron metabolism and macrophage phenotype. We found that GMFG was downregulated in murine macrophages by exposure to iron and hydrogen peroxide. GMFG knockdown altered the expression of iron metabolism proteins and increased iron levels in murine macrophages and concomitantly promoted their polarization toward an anti-inflammatory M2 phenotype. GMFG-knockdown macrophages exhibited moderately increased levels of mitochondrial reactive oxygen species (mtROS), which were accompanied by decreased expression of some mitochondrial respiration chain components, including the iron-sulfur cluster assembly scaffold protein ISCU as well as the antioxidant enzymes SOD1 and SOD2. Importantly, treatment of GMFG-knockdown macrophages with the antioxidant N-acetylcysteine reversed the altered expression of iron metabolism proteins and significantly inhibited the enhanced gene expression of M2 macrophage markers, suggesting that mtROS is mechanistically linked to cellular iron metabolism and macrophage phenotype. Finally, GMFG interacted with the mitochondrial membrane ATPase ATAD3A, suggesting that GMFG knockdown-induced mtROS production might be attributed to alteration of mitochondrial function in macrophages. Our findings suggest that GMFG is an important regulator in cellular iron metabolism and macrophage phenotype and could be a novel therapeutic target for modulating macrophage function in immune and metabolic disorders.
Collapse
|
13
|
Glycosaminoglycan / gold nanocluster hybrid nanoparticles as a new sensing platform: Metastatic potential assessment of cancer cells. Carbohydr Polym 2020; 230:115654. [DOI: 10.1016/j.carbpol.2019.115654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
|
14
|
Wang Q, Wang T, Zhu L, He N, Duan C, Deng W, Zhang H, Zhang X. Sophocarpine Inhibits Tumorgenesis of Colorectal Cancer via Downregulation of MEK/ERK/VEGF Pathway. Biol Pharm Bull 2019; 42:1830-1838. [PMID: 31434836 DOI: 10.1248/bpb.b19-00353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors and the third leading cause of cancer-related deaths in the world. It was reported that sophocarpine could attenuate the progression of CRC in mice. However, the mechanisms by which sophocarpine regulate the proliferation and migration in CRC remain unclear. Thus, this study aimed to investigate anti-tumor mechanisms of sophocarpine in CRC cells. CCK-8 assay, wound healing assay and transwell migration were used to detect cell proliferation and migration, respectively. In addition, Western blotting and enzyme-linked immunosorbent assay (ELISA) were used to further detect protein expressions and cytokines in vitro. The results revealed that sophocarpine significantly inhibited proliferation in HCT116 and SW620 cells, respectively. Meanwhile, sophocarpine inhibited CRC cells migration via downregulation of the levels of N-cadherin, matrix metalloproteinase (MMP)-9, phosphorylated extracellular signal-regulated kinase (p-ERK), p-mitogen-activated protein kinase kinase (MEK), vascular endothelial growth factor (VEGF)-A, VEGF-C and VEGF-D. Moreover, overexpression of MEK reversed the anti-migration effects of sophocarpine on CRC cells via upregulation of VEGF-A/C/D. Our findings indicated that sophocarpine could inhibit CRC cells migration via downregulation of MEK/ERK/VEGF pathway. Thus, sophocarpine may act as a potential agent for the treatment of CRC.
Collapse
Affiliation(s)
- Qiaoling Wang
- Department of Oncology, Traditional Chinese Medical Hospital Affiliated Xinjiang Medical University
| | - Ting Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine
| | - Lei Zhu
- Department of Internal Medicine IV, Changji Traditional Chinese Medicine Hospital of Xinjiang
| | - Nana He
- Department of Oncology, Traditional Chinese Medical Hospital Affiliated Xinjiang Medical University
| | - Chunyan Duan
- Department of Oncology, Traditional Chinese Medical Hospital Affiliated Xinjiang Medical University
| | - Wanli Deng
- Department of Oncology, Traditional Chinese Medical Hospital Affiliated Xinjiang Medical University.,Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine
| | - Hongping Zhang
- Department of Pharmacy, The Affiliated Hospital of Guangxin University of Chinese Medicine
| | - Xiaotian Zhang
- Preventive Treatment of Disease Center, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
15
|
Giannopoulou AF, Konstantakou EG, Velentzas AD, Avgeris SN, Avgeris M, Papandreou NC, Zoi I, Filippa V, Katarachia S, Lampidonis AD, Prombona A, Syntichaki P, Piperi C, Basdra EK, Iconomidou V, Papadavid E, Anastasiadou E, Papassideri IS, Papavassiliou AG, Voutsinas GE, Scorilas A, Stravopodis DJ. Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. Int J Mol Sci 2019; 20:937. [PMID: 30795533 PMCID: PMC6412294 DOI: 10.3390/ijms20040937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. METHODS Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Ιntronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. RESULTS c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. CONCLUSIONS The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.
Collapse
Affiliation(s)
- Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Socratis N Avgeris
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Margaritis Avgeris
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vicky Filippa
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Stamatia Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Antonis D Lampidonis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Anastasia Prombona
- Laboratory of Chronobiology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Popi Syntichaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vassiliki Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, "Attikon" University Hospital, 12462 Athens, Greece.
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Gerassimos E Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Andreas Scorilas
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
16
|
Li Y, Zhong W, Zhu M, Hu S, Su X. Nodal regulates bladder cancer cell migration and invasion via the ALK/Smad signaling pathway. Onco Targets Ther 2018; 11:6589-6597. [PMID: 30323631 PMCID: PMC6178944 DOI: 10.2147/ott.s177514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Bladder cancer is the most common malignant tumor of the urinary tract. We aimed to explore the biological role and molecular mechanism of Nodal in bladder cancer. Materials and methods The expression of Nodal in bladder cancer tissues and cells was determined by quantitative real-time polymerase chain reaction. The effect of silencing of Nodal on cell proliferation, clone formation, and migration and invasion was evaluated by MTT cell proliferation assay, colony formation, and transwell assays, respectively. Western blot analysis was employed to detect the expression of proliferation- and invasion-related proteins and proteins involved in ALK/Smad signaling. Results We found that the expression of Nodal was significantly increased in bladder cancer tissues and cell lines. Downregulation of Nodal effectively weakened cell proliferation, clone formation, and cell migration and invasion abilities. The protein expression levels of CDC6, E-cadherin, MMP-2, and MMP-9 were also altered by downregulation of Nodal. Knockdown of Nodal also blocked the expression of ALK4, ALK7, Smad2, and Smad4, which are involved in ALK/Smad signaling. Additionally, the ALK4/7 receptor blocker SB431542 reversed the promotive effects of Nodal overexpression on bladder cancer cell proliferation, migration, and invasion. Conclusion Our study indicated that Nodal functions as an oncogene by regulating cell proliferation, migration, and invasion in bladder cancer via the ALK/Smad signaling pathway, thereby providing novel insights into its role in bladder cancer treatment.
Collapse
Affiliation(s)
- Youkong Li
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Wen Zhong
- Department of Endocrine, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China
| | - Min Zhu
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Shengguo Hu
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| | - Xiaokang Su
- Department of Urology, Jingzhou Central Hospital and The Second Clinical Medical College, Yangtze University, Jingzhou 434020, People's Republic of China,
| |
Collapse
|