1
|
Duan SL, Jiang Y, Li GQ, Fu W, Song Z, Li LN, Li J. Research insights into the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM): their roles in various tumors. PeerJ 2024; 12:e16757. [PMID: 38223763 PMCID: PMC10787544 DOI: 10.7717/peerj.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers. Furthermore, we discuss several clinically applied tumor therapies targeted at the CMTM family, indicating that CMTM family members could be novel immune checkpoints and potential targets effective in tumor treatment.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Yingke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
| | - Guo-Qing Li
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Weijie Fu
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha Province, Hunan, China
| | - Li-Nan Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Bitter EE, Skidmore J, Allen CI, Erickson RI, Morris RM, Mortimer T, Meade A, Brog R, Phares T, Townsend M, Pickett BE, O’Neill KL. TK1 expression influences pathogenicity by cell cycle progression, cellular migration, and cellular survival in HCC 1806 breast cancer cells. PLoS One 2023; 18:e0293128. [PMID: 38033034 PMCID: PMC10688958 DOI: 10.1371/journal.pone.0293128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Breast cancer is the most common cancer diagnosis worldwide accounting for 1 out of every 8 cancer diagnoses. The elevated expression of Thymidine Kinase 1 (TK1) is associated with more aggressive tumor grades, including breast cancer. Recent studies indicate that TK1 may be involved in cancer pathogenesis; however, its direct involvement in breast cancer has not been identified. Here, we evaluate potential pathogenic effects of elevated TK1 expression by comparing HCC 1806 to HCC 1806 TK1-knockdown cancer cells (L133). Transcriptomic profiles of HCC 1806 and L133 cells showed cell cycle progression, apoptosis, and invasion as potential pathogenic pathways affected by TK1 expression. Subsequent in-vitro studies confirmed differences between HCC 1806 and L133 cells in cell cycle phase progression, cell survival, and cell migration. Expression comparison of several factors involved in these pathogenic pathways between HCC 1806 and L133 cells identified p21 and AKT3 transcripts were significantly affected by TK1 expression. Creation of a protein-protein interaction map of TK1 and the pathogenic factors we evaluated predict that the majority of factors evaluated either directly or indirectly interact with TK1. Our findings argue that TK1 elevation directly increases HCC 1806 cell pathogenicity and is likely occurring by p21- and AKT3-mediated mechanisms to promote cell cycle arrest, cellular migration, and cellular survival.
Collapse
Affiliation(s)
- Eliza E. Bitter
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
- Thunder Biotech Inc., Provo, Utah, United States of America
| | - Jonathan Skidmore
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Carolyn I. Allen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Rachel I. Erickson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Rachel M. Morris
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Toni Mortimer
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Audrey Meade
- Thunder Biotech Inc., Provo, Utah, United States of America
| | - Rachel Brog
- Thunder Biotech Inc., Provo, Utah, United States of America
| | - Tim Phares
- Thunder Biotech Inc., Provo, Utah, United States of America
| | - Michelle Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
- Thunder Biotech Inc., Provo, Utah, United States of America
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
3
|
Rehman M, Ihsan A, Iftikhar M, Anwar M, Khalid Q. Gold nanoshells for imaging and photothermal ablation of cancer. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
4
|
Novacescu D, Cut TG, Cumpanas AA, Bratosin F, Ceausu RA, Raica M. Novel Expression of Thymine Dimers in Renal Cell Carcinoma, Demonstrated through Immunohistochemistry. Biomedicines 2022; 10:2673. [PMID: 36359193 PMCID: PMC9687240 DOI: 10.3390/biomedicines10112673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/25/2022] [Accepted: 10/20/2022] [Indexed: 08/26/2023] Open
Abstract
Despite significant developments in renal cell carcinoma (RCC) detection and molecular pathology, mortality has been steadily rising. Advanced RCC remains an incurable disease. Better clinical management tools, i.e., RCC biomarkers, have yet to emerge. Thymine-dimers (TDs) were traditionally considered photo-dependent pre-mutagenic lesions, occurring exclusively during ultra-violet light exposure. Non-oxidative, direct, and preferential byproducts of DNA photochemical reactions, TDs, have recently shown evidence regarding UVR-independent formation. In this study, we investigate, for the first time, TD expression within RCC tumor tissue and tumor-adjacent healthy renal parenchyma using a TD-targeted IHC monoclonal antibody, clone KTM53. Remarkably, out of the 54 RCCs evaluated, 77.8% showed nuclear TD-expression in RCC tumor tissue and 37% in the tumor-adjacent healthy renal parenchyma. A comprehensive report regarding quantitative/qualitative TD-targeted immunostaining was elaborated. Two main distribution models for TD expression within RCC tumor tissue were identified. Statistical analysis showed significant yet moderate correlations regarding TD-positivity in RCC tissue/tumor-adjacent healthy renal parenchyma and TNM stage at diagnosis/lymphatic dissemination, respectively, indicating possible prognostic relevance. We review possible explanations for UVR-independent TD formation and molecular implications regarding RCC carcinogenesis. Further rigorous molecular analysis is required in order to fully comprehend/validate the biological significance of this newly documented TD expression in RCC.
Collapse
Affiliation(s)
- Dorin Novacescu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Talida Georgiana Cut
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Felix Bratosin
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Methodological and Infectious Diseases Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department II, Discipline of Histology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Marius Raica
- Department II, Discipline of Histology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Wang M, Cui Y, Cai Y, Jiang Y, Peng Y. Comprehensive Bioinformatics Analysis of mRNA Expression Profiles and Identification of a miRNA-mRNA Network Associated with the Pathogenesis of Low-Grade Gliomas. Cancer Manag Res 2021; 13:5135-5147. [PMID: 34234557 PMCID: PMC8254561 DOI: 10.2147/cmar.s314011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Low-grade glioma is the most common type of primary intracranial tumour, and the overall survival of patients with low-grade glioma (LGG) has shown no significant improvement over the past few decades. Therefore, it is crucial to understand the precise molecular mechanisms involved in the carcinogenesis of LGG. Methods To investigate the regulatory mechanisms of mRNA–miRNA networks related to LGG, in the present study, a comprehensive analysis of the genomic landscape between low-grade gliomas and normal brain tissues from the GEO and TCGA datasets was first conducted to identify differentially expressed genes (DEGs) and differentially expressed miRNAs in LGG. Following a series of analyses, including WGCNA, GO and KEGG analyses, PPI and key model analyses, and survival analysis of the DEGs with clinical phenotypes, the potential key genes were screened and identified, and the related miRNA–mRNA networks were subsequently constructed through miRWalk 3.0. Finally, the potential miRNA–mRNA networks were further validated in CGGA (Chinese Glioma Genome Atlas) datasets and clinical specimens by qRT-PCR. Results In our results, six hub genes, MELK, NCAPG, KIF4A, NUSAP1, CEP55, and TOP2A, were ultimately identified. Two regulatory pathways, miR-495-3p-TOP2A and miR-1224-3p-MELK, that regulate the pathogenesis of LGG were ultimately identified. Furthermore, the expression of miR-495-3p-TOP2A and miR-1224-3p-MELK in solid tissues was validated by qRT-PCR. Conclusion Our study identified hub genes and related miRNA–mRNA regulatory pathways that contribute to the carcinogenesis of LGG, which may help us reveal the mechanisms underlying the development of LGG.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yang Cai
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
6
|
Abstract
BACKGROUND The CKLF-like MARVEL transmembrane domain-containing family (CMTM) is the protein product of at least one splice variant of each gene contained a Marvel (MAL and related proteins for vesicle trafficking and membrane link) domain, involved in a variety of cellular processes and the pathogenesis of diseases, including tumorigenesis. However, the diverse expression patterns and prognostic values of eight CMTMs have yet to be elucidated. OBJECTIVE We analyzed the expressions and impacts on survival of different CMTM factors in BC patients to determine their potential diagnosis and prognosis values in BC. METHODS In the current study, we examined the transcriptional and survival data of CMTMs in patients with breast carcinoma (BC) from ONCOMINE, GEPIA, Kaplan-Meier Plotter, and cBioPortal databases. RESULTS It was found that CMTM5/7 were down-regulated, whereas CMTM1/6 were up-regulated in BC patients compared with the normal tissues. In survival analyses through the Kaplan-Meier plotter database, increased mRNA expressions of CMTM5/6/7 and decreased mRNA expression of CMTM4 were associated with better relapse-free survival (RFS) of BC patients. CONCLUSIONS These data provided CMTM5/7 as new biomarker and prognostic factors in BC.
Collapse
|
7
|
Cava C, Sabetian S, Castiglioni I. Patient-Specific Network for Personalized Breast Cancer Therapy with Multi-Omics Data. ENTROPY (BASEL, SWITZERLAND) 2021; 23:225. [PMID: 33670375 PMCID: PMC7918754 DOI: 10.3390/e23020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/06/2023]
Abstract
The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein-protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug-protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy
| | - Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Isabella Castiglioni
- Department of Physics “Giuseppe Occhialini”, University of Milan-Bicocca Piazza dell’Ateneo Nuovo, 20126 Milan, Italy;
| |
Collapse
|
8
|
Zhao X, Sun W, Ren Y, Lu Z. Therapeutic potential of p53 reactivation in cervical cancer. Crit Rev Oncol Hematol 2020; 157:103182. [PMID: 33276182 DOI: 10.1016/j.critrevonc.2020.103182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer (CC) is one of most common malignancies affecting women worldwide. To date, surgical resection is the only effective radical remedy for CC at its early stages, while the prognosis of metastatic or recurrent CC is very poor. Dysfunction of the tumor suppressor p53 due to aberrant expression, post-translational modification, mutations, SNPs, and LOH as well as sequestration by viral antigens and MDM2/HDM2-mediated degradation is closely associated with the therapeutic insensitivity and relapse of many malignancies, including CC. Accumulating studies have demonstrated that restoration of p53 activity can induce cell cycle arrest and apoptosis, eliminate radio- and chemotherapy resistance, and inhibit tumor growth in CC cells. Therefore, activation of wild-type p53 as well as restoration of p53 function seems appealing as a therapeutic strategy. In this review, we focus on the potential roles of p53 reactivation in CC treatment and their underlying molecular mechanisms towards the development of novel therapies.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, LN, China.
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, LN, China
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, LN, China
| |
Collapse
|
9
|
Sebastián Sebastián C, García Mur C, Gros Bañeres B, Cruz Ciria S, Rosero Cuesta D, Suñén Amador I. Analysis of the radio-pathological factors of triple negative breast cancer and determination of risk profiles. RADIOLOGIA 2020. [DOI: 10.1016/j.rxeng.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Analysis of the radio-pathological factors of triple negative breast cancer and determination of risk profiles. RADIOLOGIA 2020; 62:365-375. [PMID: 32093905 DOI: 10.1016/j.rx.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/14/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Triple-negative tumors are the most aggressive type of breast cancer. We aimed to analyze the main radiologic and histopathologic factors of these tumors to create a risk profile. MATERIALS AND METHODS We analyzed data from 140 patients diagnosed with triple-negative breast cancer between January 2007 and December 2016, with follow-up through April 2018. We analyzed the following variables in the breast MRI done for staging: size, necrosis, associated findings, adenopathies, and perfusion and diffusion parameters. We analyzed the following variables in histopathologic studies of biopsy specimens: histological type, Scarf-Bloom, Ki67, and p53 in the infiltrating component as well as in the in situ component. We analyzed the following variables in histopathologic studies of positive lymph nodes and surgical specimens: size, lymphovascular/perineural invasion, and microglandular adenosis. We analyzed the relation between the radiologic and histopathologic factors and recurrence and disease-free survival. RESULTS MRI tumor size>25mm, non-nodular enhancement, breast edema, areola-nipple complex retraction, and lymph-node involvement were associated with recurrence and lower disease-free survival. Invasive lobular carcinoma, postsurgical size>20mm, and p53<15% were also associated with recurrence and lower disease-free survival. Histologically positive lymph nodes were associated with a greater percentage of recurrence and lymphovascular invasion and with lower disease-free survival. The multivariate analysis found that the variables MRI size>25mm, non-nodular enhancement, adenopathies on MRI, and p53 expression <15% were independent predictors of lower disease-free survival. CONCLUSIONS In triple-negative breast tumors, factors associated with lower disease-free survival are non-nodular enhancement, size>25mm, and adenopathies on MRI, and p53 expression <15% on histopathologic study.
Collapse
|
11
|
Dai X, Zhang X, Lu P. Toward a holistic view of multiscale breast cancer molecular biomarkers. Biomark Med 2019; 13:1509-1533. [PMID: 31668082 DOI: 10.2217/bmm-2019-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Powered by rapid technology developments, biomarkers become increasingly diverse, including those detected at genomic, transcriptomic, proteomic, metabolomic and cellular levels. While diverse sets of biomarkers have been utilized in breast cancer predisposition, diagnosis, prognosis, treatment and management, recent additions derived from lincRNA, circular RNA, circulating DNA together with its methylated and hydroxymethylated forms and immune signatures are likely to further transform clinical practice. Here, we take breast cancer as an example of heterogeneous diseases that require many informed decisions from treatment to care to review the huge variety of biomarkers. By assessing the advantages and limitations of modern biomarkers in diverse use scenarios, this article outlines the prospects and challenges of releasing complimentary advantages by augmentation of multiscale molecular biomarkers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Peihua Lu
- Wuxi People's Hospital, Nan Chang Qu, Wuxi, Jiangsu, PR China
| |
Collapse
|
12
|
Zou G, Ren B, Liu Y, Fu Y, Chen P, Li X, Luo S, He J, Gao G, Zeng Z, Xiong W, Li G, Huang Y, Xu K, Zhang W. Inhibin B suppresses anoikis resistance and migration through the transforming growth factor-β signaling pathway in nasopharyngeal carcinoma. Cancer Sci 2018; 109:3416-3427. [PMID: 30151927 PMCID: PMC6215878 DOI: 10.1111/cas.13780] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibin B (INHBB), a heterodimer of a common α‐subunit and a βB‐subunit, is a glycoprotein belonging to the transforming growth factor‐β (TGF‐β) family. In this study, we observed INHBB expression was reduced in nasopharyngeal carcinoma (NPC) tissues compared to non‐tumor nasopharyngeal epithelium tissues, and INHBB was associated with lymph node metastasis, stage of disease, and clinical progress. Positive expression of INHBB in NPC predicted a better prognosis (overall survival, P = 0.038). However, the molecular mechanisms of INHBB have not been addressed in NPC. We induced anoikis‐resistant cells in NPC cell lines under anchorage‐independent conditions, then found epithelial‐mesenchymal transition markers changed, cell apoptosis decreased, cell cycle was modified, and invasion strengthened in anoikis‐resistant NPC cells. These anoikis‐resistant NPC cells showed decreased expression of INHBB compared with adhesion cells. Furthermore, INHBB was found to influence the above‐mentioned changes. In the anoikis‐resistant NPC cells with INHBB overexpression, apoptotic cells increased, S phase cells weakened, vimentin, matrix metallopeptidase‐9, and vascular endothelial growth factor A expression were downregulated, and E‐cadherin expression was upregulated, and vice versa in knockdown of INHBB (INHBB shRNA) anoikis‐resistant NPC cells. Diminished INHBB expression could activate the TGF‐β pathway to phosphorylate Smad2/3 and form complexes in the nucleus, which resulted in the above changes. Thus, our results revealed for the first time that INHBB could suppress anoikis resistance and migration of NPC cells by the TGF‐β signaling pathway, decrease p53 overexpression, and could serve as a potential biomarker for NPC metastasis and prognosis as well as a therapeutic application.
Collapse
Affiliation(s)
- Guoying Zou
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Clinical Laboratory, Brain Hospital of Hunan Province, Changsha, China
| | - Biqiong Ren
- Department of Clinical Laboratory, Brain Hospital of Hunan Province, Changsha, China
| | - Yi Liu
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yin Fu
- Department of Medical Laboratory, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shudi Luo
- Department of Medical Laboratory, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Junyu He
- Department of Clinical Laboratory, Brain Hospital of Hunan Province, Changsha, China
| | - Ge Gao
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yumei Huang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Keqian Xu
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Li J, Liu X, Qiao Y, Qi R, Liu S, Guo J, Gui Y, Li J, Yu H. Association Between Genetic Variant in the Promoter of Pri-miR-34b/c and Risk of Glioma. Front Oncol 2018; 8:413. [PMID: 30319976 PMCID: PMC6170877 DOI: 10.3389/fonc.2018.00413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Growing evidence indicates that p53 can regulate the expression of miRNAs, particularly the miR-34 family members, which are described as potential tumor suppressors. Loss of miR-34 suppresses TP53-mediated cell death, whereas over expression of miR-34 induced apoptosis. The study designed to investigate the association between the pir-miR-34b/c rs4938723, TP53 Arg72Pro and the risk of glioma. We genotyped the two polymorphisms in175 glioma patients and 235 healthy controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing assay. Association analysis showed that the CC genotype of the pir-miR-34b/c rs4938723 was associated with a significantly decreased risk of glioma compared to the TT genotype (CC vs. TT: adjusted OR = 0.43;95% CI, 0.21–0.87,P = 0.02). Moreover, a significant association between the patients with glioma and controls was also observed in a recessive model (OR = 0.41; 95% CI, 0.21–0.81, P = 0.007). In contrast, the CC genotype of the TP53 Arg72Pro was associated with a significantly increased risk of glioma compared to the GG genotype (CC vs. GG: adjusted OR = 1.73;95% CI, 1.04–2.89,P = 0.04), and a significant association between the patients with glioma and controls was also observed in a recessive model (OR = 2.00; 95% CI, 1.26–3.18, P = 0.003). These findings suggest that the pri-miR-34b/c rs4938723CC and TP53 Arg72-Pro polymorphisms may be associated with the risk of glioma.
Collapse
Affiliation(s)
- Jinghui Li
- Department of Anatomy & Histology and Embryology, Kunming Medical University, Kunming, China.,Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyu Liu
- Department of Anatomy & Histology and Embryology, Kunming Medical University, Kunming, China
| | - Yu Qiao
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Renli Qi
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shunjin Liu
- Department of Anatomy & Histology and Embryology, Kunming Medical University, Kunming, China
| | - Jing Guo
- Department of Anatomy & Histology and Embryology, Kunming Medical University, Kunming, China
| | - Yang Gui
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juanjuan Li
- Department of Anatomy & Histology and Embryology, Kunming Medical University, Kunming, China
| | - Hualin Yu
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
The transcriptome of human mammary epithelial cells infected with the HCMV-DB strain displays oncogenic traits. Sci Rep 2018; 8:12574. [PMID: 30135434 PMCID: PMC6105607 DOI: 10.1038/s41598-018-30109-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that human cytomegalovirus (HCMV) populations under the influence of host environment, can either be stable or rapidly differentiating, leading to tissue compartment colonization. We isolated previously from a 30-years old pregnant woman, a clinical isolate of HCMV, that we refered to as the HCMV-DB strain (accession number KT959235). The HCMV-DB clinical isolate demonstrated its ability to infect primary macrophages and to upregulate the proto-oncogene Bcl-3. We observed in this study that the genome of HCMV-DB strain is close to the genomes of other primary clinical isolates including the Toledo and the JP strains with the later having been isolated from a glandular tissue, the prostate. Using a phylogenetic analysis to compare the genes involved in virus entry, we observed that the HCMV-DB strain is close to the HCMV strain Merlin, the prototype HCMV strain. HCMV-DB infects human mammary epithelial cells (HMECs) which in turn display a ER−/PR−/HER2− phenotype, commonly refered to as triple negative. The transcriptome of HCMV-DB-infected HMECs presents the characteristics of a pro-oncogenic cellular environment with upregulated expression of numerous oncogenes, enhanced activation of pro-survival genes, and upregulated markers of cell proliferation, stemcellness and epithelial mesenchymal transition (EMT) that was confirmed by enhanced cellular proliferation and tumorsphere formation in vitro. Taken together our data indicate that some clinical isolates could be well adapted to the mammary tissue environment, as it is the case for the HCMV-DB strain. This could influence the viral fitness, ultimately leading to breast cancer development.
Collapse
|
15
|
Wang Z, Peng S, Jiang N, Wang A, Liu S, Xie H, Guo L, Cai Q, Niu Y. Prognostic and clinicopathological value of p53 expression in renal cell carcinoma: a meta-analysis. Oncotarget 2017; 8:102361-102370. [PMID: 29254251 PMCID: PMC5731961 DOI: 10.18632/oncotarget.21971] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022] Open
Abstract
Background The prognostic value of p53 expression in renal cell carcinoma (RCC) had been investigated in previous studies; however, the results remain inconsistent. This study was performed to investigate the prognostic and clinicopathological significance of p53 protein expression in RCC. Materials and Methods Literature was identified from PubMed, Embase, Web of Science, and Cochrane database, which investigated the relationships between p53 expression and outcomes. Hazard ratios (HRs) for survival outcomes and odds ratios (ORs) for clinical parameters associated with p53 were extracted from eligible studies. Heterogeneity was assessed using the I2 value. The fixed-effects model was used if there was no evidence of heterogeneity; otherwise, the random-effects model was used. Publication bias was evaluated using Begg's funnel plots and Egger's regression test. Results A total of 2,013 patients from 22 studies were included in the meta-analysis. The results showed that p53 positive expression is associated with poor overall survival (OS) (HR = 2.17, 95% confidence [CI]: 1.51–3.13) and cancer-specific survival (CSS) (HR = 1.59, 95% CI: 1.19–2.12) in RCC. In addition, p53 positive expression was closely correlated with TNM stage (III/IV vs. I/II: OR = 2.51, 95% CI: 1.05–6.00), Fuhrman grade (III/IV vs. I/II: OR = 1.80, 95% CI: 1.24–2.63), and distant metastasis (M1 vs. M0: OR = 1.70, 95% CI: 1.16–2.49), but not related to lymph node involvement (N1 vs. N0: OR = 1.32, 95% CI: 0.80–2.18), primary tumor stage (pT3/pT4 vs. pT1/pT2: OR = 1.16, 95% CI: 0.88–1.53), and sex (n = 2, male vs. female, OR = 1.09, 95% CI: 0.70–1.68). Conclusions This study suggests that p53 positive expression is correlated with poor prognosis and advanced clinicopathological features in patients with RCC, which indicates that p53 is a potentially effective therapeutic target.
Collapse
Affiliation(s)
- Zhun Wang
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuanghe Peng
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ning Jiang
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Aixiang Wang
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuguang Liu
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hui Xie
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Linpei Guo
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qiliang Cai
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanjie Niu
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|