1
|
Yin J, Ma Y, Fu H, Fan Y, Xiang D, Ding L, Huang J. Spartin Promotes Smurf1-Mediated Ubiquitination Modification of YWHAZ to Inhibit Cisplatin Resistance in Ovarian Cancer. FASEB J 2025; 39:e70658. [PMID: 40386996 DOI: 10.1096/fj.202401164r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/18/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Cisplatin (DDP) remains the commonly used chemotherapeutic drug for ovarian cancer (OV); however, DDP resistance poses a great challenge to the outcomes of patients. This work investigated the biological function and mechanism of Spartin in DDP resistance of OV. The growth and apoptosis of DDP-resistant OV cells were assessed by CCK-8, colony formation, and flow cytometry, respectively. Autolysosome fusion was observed by immunofluorescent staining of LC3 and LAMP2. The interaction between E3 ligase Smurf1 and YWHAZ or Spartin protein, and the ubiquitination level of YWHAZ were determined by Co-IP assay. Expression levels of autophagy or apoptosis-related markers were measured by RT-qPCR, western blotting, and immunohistochemistry. DDP resistance was assessed by xenograft tumor experiments in vivo. We found that Spartin expression was lower, while YWHAZ expression was higher in DDP-resistant OV samples and cells. Lower expression of Spartin indicated a poorer survival rate of OV patients. In addition, overexpression of Spartin sensitized OV cells to DDP and repressed autophagy. Moreover, Spartin bound to Smurf1 to promote Smurf1-mediated ubiquitination and degradation of YWHAZ, restraining autophagy and DDP resistance. Overexpression of YWHAZ counteracted the effects of Spartin against DDP resistance by promoting autophagy. In conclusion, Spartin-induced Smurf1-mediated ubiquitination modification of YWHAZ to inactivate autophagy, thereby increasing the sensitivity of OV cells to DDP. Our findings suggest that Spartin-combined therapy might act as an effective approach to fight against DDP resistance in OV.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmaceutics, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong Province, P.R. China
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, P.R. China
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Yan Ma
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, P.R. China
| | - Hong Fu
- Department of Pediatrics, Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Ying Fan
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Debing Xiang
- Oncology, Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Ling Ding
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Jing Huang
- Department of Pediatrics, Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| |
Collapse
|
2
|
Pattoo TS, Khanday FA. Corelating the molecular structure of BAG3 to its oncogenic role. Cell Biol Int 2024; 48:1080-1096. [PMID: 38924608 DOI: 10.1002/cbin.12199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
BAG3 is a multifaceted protein characterised by having WW domain, PXXP motif and BAG domain. This protein gets upregulated during malignant transformation of cells and has been associated with poorer survival of patients. Procancerous activity of BAG domain of BAG3 is well documented. BAG domain interacts with ATPase domain of Hsp-70 preventing protein delivery to proteasome. This impediment results in enhanced cell survival, proliferation, resistance to apoptosis and chemoresistance. Besides BAG domain other two domains/motifs of BAG3 are under research vigilance to explore its further oncogenic role. This review summarises the role of different structural determinants of BAG3 in elevating oncogenesis. Based on the already existing findings, more interacting partners of BAG3 are anticipated. The anticipated partners of BAG3 can shed a wealth of information into the mechanistic insights of its proproliferative role. Proper insights into the mechanistic details adopted by BAG3 to curtail/elaborate activity of anticipated interacting partners can serve as a potent target for development of therapeutic interventions.
Collapse
Affiliation(s)
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
3
|
Yang Y, Liu L, Tian Y, Gu M, Wang Y, Ashrafizadeh M, Reza Aref A, Cañadas I, Klionsky DJ, Goel A, Reiter RJ, Wang Y, Tambuwala M, Zou J. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett 2024; 587:216659. [PMID: 38367897 DOI: 10.1016/j.canlet.2024.216659] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Despite the challenges posed by drug resistance and side effects, chemotherapy remains a pivotal strategy in cancer treatment. A key issue in this context is macroautophagy (commonly known as autophagy), a dysregulated cell death mechanism often observed during chemotherapy. Autophagy plays a cytoprotective role by maintaining cellular homeostasis and recycling organelles, and emerging evidence points to its significant role in promoting cancer progression. Cisplatin, a DNA-intercalating agent known for inducing cell death and cell cycle arrest, often encounters resistance in chemotherapy treatments. Recent studies have shown that autophagy can contribute to cisplatin resistance or insensitivity in tumor cells through various mechanisms. This resistance can be mediated by protective autophagy, which suppresses apoptosis. Additionally, autophagy-related changes in tumor cell metastasis, particularly the induction of Epithelial-Mesenchymal Transition (EMT), can also lead to cisplatin resistance. Nevertheless, pharmacological strategies targeting the regulation of autophagy and apoptosis offer promising avenues to enhance cisplatin sensitivity in cancer therapy. Notably, numerous non-coding RNAs have been identified as regulators of autophagy in the context of cisplatin chemotherapy. Thus, therapeutic targeting of autophagy or its associated pathways holds potential for restoring cisplatin sensitivity, highlighting an important direction for future clinical research.
Collapse
Affiliation(s)
- Yang Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Lixia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL, USA
| | - Miaomiao Gu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji Yan Road, Jinan, Shandong, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc, 6, Tide Street, Boston, MA, 02210, USA
| | - Israel Cañadas
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Nuclear Dynamics and Cancer Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | - Yuzhuo Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
4
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
5
|
Ke Y, Chen X, Su Y, Chen C, Lei S, Xia L, Wei D, Zhang H, Dong C, Liu X, Yin F. Low Expression of SLC7A11 Confers Drug Resistance and Worse Survival in Ovarian Cancer via Inhibition of Cell Autophagy as a Competing Endogenous RNA. Front Oncol 2021; 11:744940. [PMID: 34790572 PMCID: PMC8591223 DOI: 10.3389/fonc.2021.744940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023] Open
Abstract
Drug resistance is the main cause of chemotherapy failure in ovarian cancer (OC), and identifying potential druggable targets of autophagy is a novel and promising approach to overcoming drug resistance. In this study, 131 genes associated with autophagy were identified from three autophagy-related databases, and of these, 14 were differentially expressed in 90 drug-resistant OC tissues versus 197 sensitive tissues according to the Cancer Genome Atlas ovarian cancer cohort. Among these 14 genes, SLC7A11 was significantly decreased in two paclitaxel-resistant OC cells (HeyA8-R and SKOV3-R) and in 90 drug-resistant tissues compared with their controls. In vitro overexpression of SLC7A11 significantly increased the sensitivity of HeyA8-R cells to paclitaxel, inhibited colony formation, induced apoptosis, and arrested cell cycle. Further, low SLC7A11 expression was correlated with poor overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS) in 1815 OC patients. Mechanistically, SLC7A11 strongly regulated cell autophagy as a competing endogenous RNA (ceRNA) based on pan-cancer analyses of 32 tumor types. Specifically, as a ceRNA for autophagy genes STX17, RAB33B, and UVRAG, SLC7A11 was strongly and positively co-expressed with these three genes in 20, 12, and 12 different tumors, respectively, in 379 OC tissues and in 90 drug-resistant OC tissues, and the former two were significantly upregulated in SLC7A11-overexpressed HeyA8-R cells. Further, SLC7A11 induced the protein expression of other autophagy genes, such as LC3, Atg16L1, and Atg7, and the expression of the respective proteins was further increased when the cells were treated with paclitaxel. The results strongly suggest that SLC7A11 regulates autophagy via ceRNA interactions with the three abovementioned genes in pan-cancer and in drug-resistant OC. Moreover, low expression of STX17 and UVRAG also significantly predicted low OS, PFS, and PPS. The combination of SLC7A11 with STX17 was more predictive of OS and PFS than either individually, and the combination of SLC7A11 with UVRAG was highly predictive of OS and PPS. The above results indicated that decreased SLC7A11 resulted in drug resistance and effected low rates of survival in OC patients, probably via ceRNA interactions with autophagy genes, and thus the gene could serve as a therapeutic target and potential biomarker in OC.
Collapse
Affiliation(s)
- Yao Ke
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xiaoying Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yuting Su
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Cuilan Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Shunmei Lei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Lianping Xia
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Dan Wei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Han Zhang
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
6
|
Zhao FY, Zhang Q, Wang JM, Jiang JY, Huyan LY, Liu BQ, Yan J, Li C, Wang HQ. BAG3 epigenetically regulates GALNT10 expression via WDR5 and facilitates the stem cell-like properties of platin-resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119077. [PMID: 34111434 DOI: 10.1016/j.bbamcr.2021.119077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignant cancer, frequently due to its late diagnosis and high recurrence. Cancer stem cells (CSCs) from different malignancies including ovarian cancer have been linked to chemotherapy resistance and poor prognosis. Therefore, identifying the molecular mechanisms mediating therapy resistance is urgent to finding novel targets for therapy-resistant tumors. Aberrant O-glycosylation ascribed to subtle alteration of GALNT family members during malignant transformation facilitate metastasis in various cancers. The current study demonstrated that BAG3 was upregulated in platin-resistant ovarian cancer tissues and cells, and high BAG3 predicted dismal disease-free survival of patients with ovarian cancer. In addition, the current study showed that BAG3 facilitated CSC-like properties of ovarian cancer cells via regulation of GALTN10. In a term of mechanism, BAG3 epigenetically regulated GALNT10 transactivation via histone H3 lysine 4 (H3K4) presenter WDR5. We demonstrated that WDR5 increased H3K4 trimethylation (H3K4me3) modification at the promoter regions of GALNT10, facilitating recruitment of transcription factor ZBTB2 to the GALNT10 promoter. Collectively, our study uncovers an epigenetic upregulation of GALNT10 by BAG3 via WDR5 to facilitate CSCs of platin-resistant ovarian cancers, providing additional information for further identification of attractive targets with therapeutic significance in platin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Qi Zhang
- Criminal Investigation Police University of China, Shenyang 110854, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, the 1st affiliated hospital, China Medical University, Shenyang 110001, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Ling-Yue Huyan
- 5+3 integrated clinical medicine 103K, China Medical University, Shenyang 110026, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China.
| |
Collapse
|
7
|
De Marco M, Falco A, Iaccarino R, Raffone A, Mollo A, Guida M, Rosati A, Chetta M, Genovese G, De Caro F, Capunzo M, Turco MC, Uversky VN, Marzullo L. An emerging role for BAG3 in gynaecological malignancies. Br J Cancer 2021; 125:789-797. [PMID: 34099896 DOI: 10.1038/s41416-021-01446-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
BAG3, a member of the BAG family of co-chaperones, is a multidomain protein with a role in several cellular processes, including the control of apoptosis, autophagy and cytoskeletal dynamics. The expression of bag3 is negligible in most cells but can be induced by stress stimuli or malignant transformation. In some tumours, BAG3 has been reported to promote cell survival and resistance to therapy. The expression of BAG3 has been documented in ovarian, endometrial and cervical cancers, and studies have revealed biochemical and functional connections of BAG3 with proteins involved in the survival, invasion and resistance to therapy of these malignancies. BAG3 expression has also been shown to correlate with the grade of dysplasia in squamous intraepithelial lesions of the uterine cervix. Some aspects of BAG3 activity, such as its biochemical and functional interaction with the human papillomavirus proteins, could help in our understanding of the mechanisms of oncogenesis induced by the virus. This review aims to highlight the potential value of BAG3 studies in the field of gynaecological tumours.
Collapse
Affiliation(s)
- Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy
| | - Antonia Falco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy
| | - Roberta Iaccarino
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Antonio Raffone
- Gynaecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonio Mollo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maurizio Guida
- Gynaecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy
| | | | - Giovanni Genovese
- University Hospital "San Giovanni di Dio e Ruggi D'Aragona", Salerno, Italy
| | - Francesco De Caro
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy. .,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center, Moscow region, Russia
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,BIOUNIVERSA s.r.l., R&D Division, Baronissi, SA, Italy
| |
Collapse
|
8
|
Martin TG, Tawfik S, Moravec CS, Pak TR, Kirk JA. BAG3 expression and sarcomere localization in the human heart are linked to HSF-1 and are differentially affected by sex and disease. Am J Physiol Heart Circ Physiol 2021; 320:H2339-H2350. [PMID: 33989081 DOI: 10.1152/ajpheart.00419.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations to the sarcomere-localized cochaperone protein Bcl2-associated athanogene 3 (BAG3) are associated with dilated cardiomyopathy (DCM) and display greater penetrance in male patients. Decreased protein expression of BAG3 is also associated with nongenetic heart failure; however, the factors regulating cardiac BAG3 expression are unknown. Using left ventricular (LV) tissue from nonfailing and DCM human samples, we found that whole LV BAG3 expression was not significantly impacted by DCM or sex; however, myofilament localized BAG3 was significantly decreased in males with DCM. Females with DCM displayed no changes in BAG3 compared with nonfailing. This sex difference appears to be estrogen independent, as estrogen treatment in ovariectomized female rats had no impact on BAG3 expression. BAG3 gene expression in noncardiac cells is primarily regulated by the heat shock transcription factor-1 (HSF-1). We show whole LV HSF-1 expression and nuclear localized/active HSF-1 each displayed a striking positive correlation with whole LV BAG3 expression. We further found that HSF-1 localizes to the sarcomere Z-disc in cardiomyocytes and that this myofilament-associated HSF-1 pool decreases in heart failure. The decrease of HSF-1 was more pronounced in male patients and tightly correlated with myofilament BAG3 expression. Together our findings indicate that cardiac BAG3 expression and myofilament localization are differentially impacted by sex and disease and are linked to HSF-1.NEW & NOTEWORTHY Myofilament BAG3 expression decreases in male patients with nonischemic DCM but is preserved in female patients with DCM. BAG3 expression in the human heart is tightly linked to HSF-1 expression and nuclear translocation. HSF-1 localizes to the sarcomere Z-disc in the human heart. HSF-1 expression in the myofilament fraction decreases in male patients with DCM and positively correlates with myofilament BAG3.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | - Sara Tawfik
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Toni R Pak
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, Illinois
| |
Collapse
|
9
|
The Oxygen-Generating Calcium Peroxide-Modified Magnetic Nanoparticles Attenuate Hypoxia-Induced Chemoresistance in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13040606. [PMID: 33546453 PMCID: PMC7913619 DOI: 10.3390/cancers13040606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer response to chemotherapy is regulated not only by intrinsic sensitivity of cancer cells but also by tumor microenvironment. Tumor hypoxia, a condition of low oxygen level in solid tumors, is known to increase the resistance of cancer cells to chemotherapy. Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to lack of target in TNBC, chemotherapy is the only approved systemic treatment. We evaluated the effect of hypoxia on chemotherapy resistance in TNBC in a series of in vitro and in vivo experiments. Furthermore, we synthesized the calcium peroxide-modified magnetic nanoparticles (CaO2-MNPs) with the function of oxygen generation to improve and enhance the therapeutic efficiency of doxorubicin treatment in the hypoxia microenvironment of TNBC. The results of gene set enrichment analysis (GSEA) software showed that the hypoxia and autophagy gene sets are significantly enriched in TNBC patients. We found that the chemical hypoxia stabilized the expression of hypoxia-inducible factor 1α (HIF-1α) protein and increased doxorubicin resistance in TNBC cells. Moreover, hypoxia inhibited the induction of apoptosis and autophagy by doxorubicin. In addition, CaO2-MNPs promoted ubiquitination and protein degradation of HIF-1α. Furthermore, CaO2-MNPs inhibited autophagy and induced apoptosis in TNBC cells. Our animal studies with an orthotopic mouse model showed that CaO2-MNPs in combination with doxorubicin exhibited a stronger tumor-suppressive effect on TNBC, compared to the doxorubicin treatment alone. Our findings suggest that combined with CaO2-MNPs and doxorubicin attenuates HIF-1α expression to improve the efficiency of chemotherapy in TNBC.
Collapse
|
10
|
Wang K, Zheng J. Knockdown of BAG3 synergizes with olaparib to kill ovarian cancer cells via repressing autophagy. J Investig Med 2020; 69:jim-2020-001602. [PMID: 33361105 DOI: 10.1136/jim-2020-001602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 11/04/2022]
Abstract
This study aimed at expounding the synergistic effect of Bcl-2-associated athanogene 3 (BAG3) knockdown and poly ADP-ribose polymerase (PARP) inhibitor on ovarian cancer (OC) cells and the potential mechanism. Short hairpin RNA (shRNA) targeting BAG3 (sh-BAG3) was transfected into SK-OV-3 (SKOV-3 ;SKOV3) and A2780 cells, and western blot assay was used to detect transfection efficiency. Cell proliferation and apoptosis were detected by the cell counting kit-8 method, 5-Bromodeoxyuridine (BrdU) experiment and flow cytometry analysis, respectively. The expressions of apoptosis-related proteins Bax and Bcl-2, as well as the expressions of autophagy-related proteins LC3-I, LC3-II and Beclin-1, were examined by western blot assay. Additionally, the cells were treated with autophagy activator rapamycin to investigate whether the tumor-suppressive function of BAG3 knockdown+PARP inhibitor was dependent on autophagy. In this work, we demonstrated that BAG3 knockdown further sensitized OC cells to olaparib treatment, reducing cellular viability and promoting apoptosis. Both sh-BAG3 and olaparib decreased the expression of Beclin-1 and the LC3-Ⅱ:LC3-I ratio, and their synergism further inhibited the process of autophagy. However, the aforementionede effects were reversed after the cells were treated with rapamycin. Based on these results, we concluded that BAG3 knockdown synergizes with olaparib to kill OC cells in vitro by repressing autophagy.
Collapse
Affiliation(s)
- Kexin Wang
- Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianhua Zheng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
At the Crossroads of Apoptosis and Autophagy: Multiple Roles of the Co-Chaperone BAG3 in Stress and Therapy Resistance of Cancer. Cells 2020; 9:cells9030574. [PMID: 32121220 PMCID: PMC7140512 DOI: 10.3390/cells9030574] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
BAG3, a multifunctional HSP70 co-chaperone and anti-apoptotic protein that interacts with the ATPase domain of HSP70 through its C-terminal BAG domain plays a key physiological role in cellular proteostasis. The HSP70/BAG3 complex determines the levels of a large number of selective client proteins by regulating their turnover via the two major protein degradation pathways, i.e. proteasomal degradation and macroautophagy. On the one hand, BAG3 competes with BAG1 for binding to HSP70, thereby preventing the proteasomal degradation of its client proteins. By functionally interacting with HSP70 and LC3, BAG3 also delivers polyubiquitinated proteins to the autophagy pathway. BAG3 exerts a number of key physiological functions, including an involvement in cellular stress responses, proteostasis, cell death regulation, development, and cytoskeletal dynamics. Conversely, aberrant BAG3 function/expression has pathophysiological relevance correlated to cardiomyopathies, neurodegeneration, and cancer. Evidence obtained in recent years underscores the fact that BAG3 drives several key hallmarks of cancer, including cell adhesion, metastasis, angiogenesis, enhanced autophagic activity, and apoptosis inhibition. This review provides a state-of-the-art overview on the role of BAG3 in stress and therapy resistance of cancer, with a particular focus on BAG3-dependent modulation of apoptotic signaling and autophagic/lysosomal activity.
Collapse
|
12
|
Yun HH, Kim S, Kuh HJ, Lee JH. Downregulation of BIS sensitizes A549 cells for digoxin-mediated inhibition of invasion and migration by the STAT3-dependent pathway. Biochem Biophys Res Commun 2020; 524:643-648. [PMID: 32029272 DOI: 10.1016/j.bbrc.2020.01.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 11/15/2022]
Abstract
Digoxin, a compound of the cardiac glycoside family, was originally prescribed for heart failure but has recently been rediscovered for its potent antitumor activity. However, it has a narrow therapeutic margin due to its cardiotoxicity, limiting its safe use as an antitumor agent in clinical practice. To widen its therapeutic margin, we investigated whether the antitumor effect of digoxin is potentiated by the depletion of BCL-2-interacting cell death suppressor (BIS) in A549 lung cancer cells. BIS is a multifunctional protein that is frequently overexpressed in most human cancers including lung cancer. Our results demonstrated that the inhibitory potential of digoxin on the migratory behavior of A549 cells is significantly enhanced by BIS depletion as assessed by transwell assay and collagen-incorporated 3D spheroid culture. Western blotting revealed that combination treatment significantly reduces p-STAT3 expression. In addition, a STAT3 inhibitor substantially suppressed the aggressive phenotypes of A549 cells. Thus, our results suggest that loss of STAT3 activity is a possible molecular mechanism for the synergistic effect of digoxin and BIS depletion. Our findings suggest the sensitizing role of BIS silencing to reduce the dose of digoxin for treatment of lung cancer with a high metastatic potential.
Collapse
Affiliation(s)
- Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seulki Kim
- Department of Biomedicine & Health Sciences, Graduate School, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hyo-Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea; Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
13
|
Alotaibi MR, As Sobeai HM, Alaqil FA, Almutairi M, Alhazzani K, Sulaiman AA, Isab AA, Hadal Alotaibi N. A newly synthesized platinum-based compound (PBC-II) increases chemosensitivity of HeLa ovarian cancer cells via inhibition of autophagy. Saudi Pharm J 2019; 27:1203-1209. [PMID: 31885480 PMCID: PMC6921179 DOI: 10.1016/j.jsps.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022] Open
Abstract
There are many mechanisms of resistance, chemoresistance of HeLa cells to anti-cancer agents seems to be autophagy-mediated. While using very effective anti-cancers such as Doxorubicin and cisplatin, cells overcome the cytotoxicity of these drugs through promotion of what so-called cytoprotective autophagy. Here in this study, we sought to introduce a novel platinum-based compound PBC-II that possesses anti-cancer activity. Our data showed that PBC-II is able to induce apoptosis at relatively low concentrations, with no detectable reactive oxygen species (ROS). However, further experiments demonstrated that exposure of HeLa cells to PBC-II did not promote autophagy; rather, it resulted in accumulation of p62 and decrease in LC3-II levels. Autophagy was then promoted in HeLa cells pharmacologically by Doxorubicin and genetically by siRNA IL-10. In order to confirm promotion of autophagy in our model, we performed acridine orange staining to assess for autophagy under microscope as well as via flow cytometry. We then measured protein level of autophagy markers p62 and LC3 by western blot. Our data indicated that PBC-II interferes with therapy-induced autophagy. We also determined PI3K activity while co-incubation of PBC-II with autophagy inducers. It was clear that PI3K activation decreased when PBC-II was co-administered with autophagy inducers. Collectively, PBC-II exerts unique anti-proliferative effects associated with inhibition of autophagy, which indicates that PBC-II is potentially a promising agent to be used in resistant ovarian tumors.
Collapse
Affiliation(s)
- Moureq Rashed Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Homood Moqbel As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mashal Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adam A.A. Sulaiman
- Lab Technical Support Office (LTSO), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| |
Collapse
|
14
|
Linder B, Kögel D. Autophagy in Cancer Cell Death. BIOLOGY 2019; 8:biology8040082. [PMID: 31671879 PMCID: PMC6956186 DOI: 10.3390/biology8040082] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Autophagy has important functions in maintaining energy metabolism under conditions of starvation and to alleviate stress by removal of damaged and potentially harmful cellular components. Therefore, autophagy represents a pro-survival stress response in the majority of cases. However, the role of autophagy in cell survival and cell death decisions is highly dependent on its extent, duration, and on the respective cellular context. An alternative pro-death function of autophagy has been consistently observed in different settings, in particular, in developmental cell death of lower organisms and in drug-induced cancer cell death. This cell death is referred to as autophagic cell death (ACD) or autophagy-dependent cell death (ADCD), a type of cellular demise that may act as a backup cell death program in apoptosis-deficient tumors. This pro-death function of autophagy may be exerted either via non-selective bulk autophagy or excessive (lethal) removal of mitochondria via selective mitophagy, opening new avenues for the therapeutic exploitation of autophagy/mitophagy in cancer treatment.
Collapse
Affiliation(s)
- Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60528 Frankfurt am Main, Germany.
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60528 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Cocetta V, Ragazzi E, Montopoli M. Mitochondrial Involvement in Cisplatin Resistance. Int J Mol Sci 2019; 20:ijms20143384. [PMID: 31295873 PMCID: PMC6678541 DOI: 10.3390/ijms20143384] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is one of the worldwide anticancer drugs and, despite its toxicity and frequent recurrence of resistance phenomena, it still remains the only therapeutic option for several tumors. Circumventing cisplatin resistance remains, therefore, a major goal for clinical therapy and represents a challenge for scientific research. Recent studies have brought to light the fundamental role of mitochondria in onset, progression, and metastasis of cancer, as well as its importance in the resistance to chemotherapy. The aim of this review is to give an overview of the current knowledge about the implication of mitochondria in cisplatin resistance and on the recent development in this research field. Recent studies have highlighted the role of mitochondrial DNA alterations in onset of resistance phenomena, being related both to redox balance alterations and to signal crosstalk with the nucleus, allowing a rewiring of cell metabolism. Moreover, an important role of the mitochondrial dynamics in the adaptation mechanism of cancer cells to challenging environment has been revealed. Giving bioenergetic plasticity to tumor cells, mitochondria allow cells to evade death pathways in stressful conditions, including chemotherapy. So far, even if the central role of mitochondria is recognized, little is known about the specific mechanisms implicated in the resistance. Nevertheless, mitochondria appear to be promising pharmacological targets for overcoming cisplatin resistance, but further studies are necessary.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Egidio Meneghetti 2, 35131 Padua, Italy.
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy.
| |
Collapse
|
16
|
Condello M, Pellegrini E, Caraglia M, Meschini S. Targeting Autophagy to Overcome Human Diseases. Int J Mol Sci 2019; 20:E725. [PMID: 30744021 PMCID: PMC6387456 DOI: 10.3390/ijms20030725] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular process, through which damaged organelles and superfluous proteins are degraded, for maintaining the correct cellular balance during stress insult. It involves formation of double-membrane vesicles, named autophagosomes, that capture cytosolic cargo and deliver it to lysosomes, where the breakdown products are recycled back to cytoplasm. On the basis of degraded cell components, some selective types of autophagy can be identified (mitophagy, ribophagy, reticulophagy, lysophagy, pexophagy, lipophagy, and glycophagy). Dysregulation of autophagy can induce various disease manifestations, such as inflammation, aging, metabolic diseases, neurodegenerative disorders and cancer. The understanding of the molecular mechanism that regulates the different phases of the autophagic process and the role in the development of diseases are only in an early stage. There are still questions that must be answered concerning the functions of the autophagy-related proteins. In this review, we describe the principal cellular and molecular autophagic functions, selective types of autophagy and the main in vitro methods to detect the role of autophagy in the cellular physiology. We also summarize the importance of the autophagic behavior in some diseases to provide a novel insight for target therapies.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena, 00161 Rome, Italy.
| | - Evelin Pellegrini
- National Center for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena, 00161 Rome, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, Viale Regina Elena, 00161 Rome, Italy.
| |
Collapse
|
17
|
Folkerts H, Hilgendorf S, Vellenga E, Bremer E, Wiersma VR. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 2018; 39:517-560. [PMID: 30302772 PMCID: PMC6585651 DOI: 10.1002/med.21531] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a crucial recycling process that is increasingly being recognized as an important factor in cancer initiation, cancer (stem) cell maintenance as well as the development of resistance to cancer therapy in both solid and hematological malignancies. Furthermore, it is being recognized that autophagy also plays a crucial and sometimes opposing role in the complex cancer microenvironment. For instance, autophagy in stromal cells such as fibroblasts contributes to tumorigenesis by generating and supplying nutrients to cancerous cells. Reversely, autophagy in immune cells appears to contribute to tumor‐localized immune responses and among others regulates antigen presentation to and by immune cells. Autophagy also directly regulates T and natural killer cell activity and is required for mounting T‐cell memory responses. Thus, within the tumor microenvironment autophagy has a multifaceted role that, depending on the context, may help drive tumorigenesis or may help to support anticancer immune responses. This multifaceted role should be taken into account when designing autophagy‐based cancer therapeutics. In this review, we provide an overview of the diverse facets of autophagy in cancer cells and nonmalignant cells in the cancer microenvironment. Second, we will attempt to integrate and provide a unified view of how these various aspects can be therapeutically exploited for cancer therapy.
Collapse
Affiliation(s)
- Hendrik Folkerts
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susan Hilgendorf
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Peña-Oyarzun D, Bravo-Sagua R, Diaz-Vega A, Aleman L, Chiong M, Garcia L, Bambs C, Troncoso R, Cifuentes M, Morselli E, Ferreccio C, Quest AFG, Criollo A, Lavandero S. Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state? Free Radic Biol Med 2018; 124:61-78. [PMID: 29859344 DOI: 10.1016/j.freeradbiomed.2018.05.084] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Non-communicable diseases (NCDs), also known as chronic diseases, are long-lasting conditions that affect millions of people around the world. Different factors contribute to their genesis and progression; however they share common features, which are critical for the development of novel therapeutic strategies. A persistently altered inflammatory response is typically observed in many NCDs together with redox imbalance. Additionally, dysregulated proteostasis, mainly derived as a consequence of compromised autophagy, is a common feature of several chronic diseases. In this review, we discuss the crosstalk among inflammation, autophagy and oxidative stress, and how they participate in the progression of chronic diseases such as cancer, cardiovascular diseases, obesity and type II diabetes mellitus.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzun
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alexis Diaz-Vega
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Larissa Aleman
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena Garcia
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Bambs
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eugenia Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Studies of Exercise, Metabolism and Cancer Studies (CEMC), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Li N, Chen M, Cao Y, Li H, Zhao J, Zhai Z, Ren F, Li K. Bcl-2-associated athanogene 3(BAG3) is associated with tumor cell proliferation, migration, invasion and chemoresistance in colorectal cancer. BMC Cancer 2018; 18:793. [PMID: 30081850 PMCID: PMC6080525 DOI: 10.1186/s12885-018-4657-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/01/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND CRC is one of the most common malignancies worldwide, and its molecular mechanisms remain unclear. Elevated levels of BAG3 have been reported in various tumors. The present study aimed to explore the expression and function of BAG3 in CRC. METHODS BAG3 protein expression was evaluated in 90 CRC specimens using immunohistochemistry in tissue microarrays, and the correlation between BAG3 expression and the clinicopathological features were assessed. In HCT116 cells BAG3 overexpression cell models were constructed, and CRISPR/Cas9 was used for BAG3 knockout. Western blotting and quantitative real-time PCR were used to determine BAG3 expression in HCT-116 Cells. Cell proliferation, migration and invasion were analyzed by cell counting, colony formation assay, EdU cell proliferation assay, RTCA growth curve assays, wound-healing migration assay and transwell invasion assay. The influence of BAG3 expression level on chemoresistance in HCT-116 cells was examined. Gene expression microarray and IPA analyses were employed to explore signaling pathways associated with the control of BAG3. RESULTS Using immunohistochemistry, this study found that BAG3 was markedly upregulated in colorectal cancer tissues and that BAG3 levels were significantly associated with tumor size and gender. BAG3 overexpression promoted HCT-116 cell growth, migration and invasion in vitro. In contrast, BAG3 knockout inhibited HCT-116 cell growth, migration and invasion. HCT-116 cells with high expression of BAG3 had higher cell viability and lower apoptosis rate than control cells after treatment with 5-FU, while the BAG3 knockout group demonstrated the opposite effects. So BAG3 expression level was associated with chemoresistance to 5-FU in HCT-116 cells. Gene expression microarrays and bioinformatics analyses of HCT-116 cells with BAG3 knockout demonstrated the involvement of BAG3 in signaling pathways associated with the control of cell proliferation, migration, invasion and chemoresistance in CRC. CONCLUSIONS In conclusion, this study provided evidence that BAG3 has a relevant role in CRC biology, and defined potential molecular pathways and networks. So BAG3 may be considered as a potential therapeutic target for anti-tumor therapy in colorectal cancer.
Collapse
Affiliation(s)
- Ning Li
- Department of Biochemistry and Molecular Biology,College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.,Department of Biological Anthropology Institute, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Minghong Chen
- Department of Biochemistry and Molecular Biology,College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yansha Cao
- Department of Biochemistry and Molecular Biology,College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Hua Li
- Department of Biochemistry and Molecular Biology,College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Jinping Zhao
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Zhenhua Zhai
- The Laboratory of Tumor Angiogenesis and Microenvironment, The First Hospital Affiliated to Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.,Department of Oncology, Cancer Centre, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Fu Ren
- Department of Biological Anthropology Institute, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Keyan Li
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, No. 2, Section 5, Renmin Road, Ling he District, Jinzhou, Liaoning, 121000, People's Republic of China.
| |
Collapse
|
20
|
Wang H, Wang Y, Gao H, Wang B, Dou L, Li Y. Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways. Oncol Lett 2018; 15:1423-1428. [PMID: 29434833 PMCID: PMC5774427 DOI: 10.3892/ol.2017.7498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/16/2017] [Indexed: 01/22/2023] Open
Abstract
Piperlongumine is an alkaloid compound extracted from Piper longum L. It is a chemical substance with various pharmacological effects and medicinal value, including anti-tumor, lipid metabolism regulatory, antiplatelet aggregation and analgesic properties. The present study aimed to understand whether piperlongumine induces the apoptosis and autophagy of leukemic cells, and to identify the mechanism involved. Cell viability and autophagy were detected using MTT, phenazine methyl sulfate and trypan blue exclusion assays. The apoptosis rate was calculated using flow cytometry. The protein expression levels of microtubule-associated protein 1A/1B-light chain 3, Akt and mechanistic target of rapamycin (mTOR) were measured using western blotting. The cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced. Dead cells as a result of autophagy were stained using immunofluorescence and observed under a light microscope. Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine. It was concluded that piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.
Collapse
Affiliation(s)
- Hongfei Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Yongqiang Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Hongmei Gao
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Bing Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Lin Dou
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| | - Yin Li
- Department of Intensive Care Unit, Tianjin First Center Hospital, Nankai, Tianjin 300192, P.R. China
| |
Collapse
|
21
|
Song F, Wang G, Ma Z, Ma Y, Wang Y. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer. Oncotarget 2017; 8:95392-95400. [PMID: 29221135 PMCID: PMC5707029 DOI: 10.18632/oncotarget.20726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022] Open
Abstract
Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach.
Collapse
Affiliation(s)
- Fei Song
- Department of General Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Geng Wang
- Department of Emergency, Laiwu City People's Hospital, Laiwu, Shandong, China
| | - Zhifang Ma
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuebing Ma
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yingying Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
22
|
Role of BAG3 in cancer progression: A therapeutic opportunity. Semin Cell Dev Biol 2017; 78:85-92. [PMID: 28864347 DOI: 10.1016/j.semcdb.2017.08.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
BAG3 is a multifunctional protein that can bind to heat shock proteins (Hsp) 70 through its BAG domain and to other partners through its WW domain, proline-rich (PXXP) repeat and IPV (Ile-Pro-Val) motifs. Its intracellular expression can be induced by stressful stimuli, while is constitutive in skeletal muscle, cardiac myocytes and several tumour types. BAG3 can modulate the levels, localisation or activity of its partner proteins, thereby regulating major cell pathways and functions, including apoptosis, autophagy, mechanotransduction, cytoskeleton organisation, motility. A secreted form of BAG3 has been identified in studies on pancreatic ductal adenocarcinoma (PDAC). Secreted BAG3 can bind to a specific receptor, IFITM2, expressed on macrophages, and induce the release of factors that sustain tumour growth and the metastatic process. BAG3 neutralisation therefore appears to constitute a novel potential strategy in the therapy of PDAC and, possibly, other tumours.
Collapse
|