1
|
Bellavita R, Barra T, Braccia S, Prisco M, Valiante S, Lombardi A, Leone L, Pisano J, Esposito R, Nastri F, D’Errico G, Falanga A, Galdiero S. Engineering Multifunctional Peptide-Decorated Nanofibers for Targeted Delivery of Temozolomide across the Blood-Brain Barrier. Mol Pharm 2025; 22:1920-1938. [PMID: 40091203 PMCID: PMC11979881 DOI: 10.1021/acs.molpharmaceut.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
A nanoplatform based on self-assembling peptides was developed with the ability to effectively transport and deliver a wide range of moieties across the blood-brain barrier (BBB) for the treatment of glioblastoma. Its surface was functionalized to have a targeted release of TMZ thanks to the targeting peptide that binds to EGFRvIII, which is overexpressed on tumor cells, and gH625, which acts as an enhancer of penetration. Furthermore, the on-demand release of TMZ was achieved through matrix metalloproteinase-9 (MMP-9) cleavage. Nanofibers were characterized for their stability, critical aggregation concentration, and morphology. Next, the effect on both 2D and 3D glioblastoma/astrocytoma (U-87) and glioma (U-118) cell lines was evaluated. The Annexin V/Propidium iodide showed an increase in necrotic and apoptotic cells, and the morphological analysis allowed to discover that both U-118 and U-87 spheroids are smaller in surface, perimeter, and Feret's diameter when treated with NF-TMZ. The developed nanofiber was demonstrated to permeate the BBB in vitro in a 3D spheroidal biodynamic BBB model. Finally, there were no cytotoxic effects of nanofibers without the drug on spheroids, while a significant decrease in viability was observed when NF-TMZ was used. Overall, these results open new opportunities for the evaluation of the efficacy and safety of this nanoplatform in in vivo studies.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department
of Pharmacy, School of Medicine, University
of Naples Federico II, Napoli 80131, Italy
| | - Teresa Barra
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Simone Braccia
- Department
of Pharmacy, School of Medicine, University
of Naples Federico II, Napoli 80131, Italy
| | - Marina Prisco
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Salvatore Valiante
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Assunta Lombardi
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Linda Leone
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
| | - Jessica Pisano
- Department
of Biology, University of Napoli Federico
II, Via Cintia, Naples 80126, Italy
| | - Rodolfo Esposito
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
| | - Flavia Nastri
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
| | - Gerardino D’Errico
- Department
of Chemical Sciences, University of Napoli
Federico II and 4CSGI (Unit of Naples), Via Cintia, Naples 80126, Italy
- CSGI
(Unit of Naples), Via
Cintia, Naples 80126, Italy
| | - Annarita Falanga
- Department
of Agricultural Science, University of Naples
Federico II, Via Università
100, Portici, Portici 80055, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, School of Medicine, University
of Naples Federico II, Napoli 80131, Italy
| |
Collapse
|
2
|
Thakur R, Kumar M, Kumar A, Joshi RK, Maheshwari D, Km AM, Venkataswamy M, Mohanty B, Chaudhari P, Mohan HK, Kumar P. Synthesis, Preclinical Toxicity, and Biodistribution of [ 18F]AVT-011 to Assess the P-Glycoprotein Function. Cancer Biother Radiopharm 2025; 40:96-103. [PMID: 39263748 DOI: 10.1089/cbr.2024.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Introduction: Many studies have reported the role of P-glycoprotein (Pgp) in chemoresistance in various pathological conditions such as cancer and neurodegenerative diseases, such as Alzheimer's. In this study, we are reporting the high-performance liquid chromatography (HPLC)-based purification of fluorine-18 [18F]AVT-011 and its preclinical evaluation. Methods: AVT-011 was labeled with 18F using the nucleophilic substitution method by heating the reaction mixture at 110°C for 10 min, followed by purification using preparative HPLC and C18ec cartridge. The in vitro cell uptake study was carried out in U87 cells with and without an inhibitor. The preclinical toxicity was carried out in CD1 mice in three groups, including control, AVT-011 treated, and [18F]AVT-011 treated. The biodistribution study was done in CD1 mice (n = 12) after intravenous injection of 4-6 MBq [18F]AVT-011, and mice were sacrificed at various time intervals. A dose of 3.7 ± 0.7 MBq of [18F]AVT-011 was injected intravenously in the healthy Swiss albino mice, and the whole-body micro-positron emission tomography was acquired at 0-, 30-, 60-, and 120-min postinjection. Results: The radiochemical purity of [18F]AVT-011 was 97 ± 1.5% as evaluated by radio-HPLC with a yield of 14 ± 2% and was stable up to 95% under in vitro conditions in blood and in vivo conditions up to 4 h. The in vitro cell uptake study showed a significant difference in control (27.4 ± 2.1%) and blocked U987 cells (73.2 ± 3.2%) after incubation of 120 min. The tissue distribution in mice showed the highest uptake in the liver (17.3 ± 2.4%), kidneys (16.6 ± 3.1%), lungs (10.4 ± 2.9%), and spleen (5.6 ± 0.8%) at 15 min, and the activity was washed out with time. The radioactivity cleared through the hepatorenal pathway. The animal imaging study also demonstrates a similar biodistribution pattern. Conclusions: [18F]AVT-011 showed higher specific activity than the cartridge-based method but showed similar biological activity.
Collapse
Affiliation(s)
- Riptee Thakur
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Manoj Kumar
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Aishwarya Kumar
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Raman Kumar Joshi
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | | | | | | | - Bhabani Mohanty
- Animal Oncology Group, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Pradip Chaudhari
- Animal Oncology Group, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Hosahalli K Mohan
- Department of Nuclear Medicine, Sri Shankara Cancer Hospital & Research Centre, Bengaluru, India
| | - Pardeep Kumar
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
3
|
Pilotto Heming C, de Souza Barbosa I, Lyra Miranda R, Nogueira Ugarte O, Santório de São José V, Moura Neto V, Aran V. P-Glycoprotein Drives Glioblastoma Survival and Chemotherapy Resistance: Potential as a Promising Liquid Biopsy Biomarker. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(24)00476-0. [PMID: 39788485 DOI: 10.1016/j.ajpath.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Drug resistance is a major challenge in cancer therapy, and the expression of efflux pumps such as P-glycoprotein (P-gp, ABCB1) often correlates with poor prognosis in various tumors, including glioblastoma (GB). Considering that different roles for these proteins have been established in the biology of various tumors, this study aimed to investigate the functions of P-gp in GB-derived cells by evaluating its survival, migratory, and apoptosis-regulating capabilities, as well as its potential as a liquid biopsy biomarker. P-gp expression was diminished via siRNA to determine its exact role in GB biology. The P-gp mRNA levels were evaluated by using quantitative real-time RT-PCR. With respect to liquid biopsy, circulating cell-free RNA was extracted from plasma belonging to patients diagnosed with GB, and P-gp levels were compared with matching tumor tissues using digital PCR. P-gp silencing significantly decreased viability, increased apoptosis, and enhanced chemotherapy sensitivity in GB cells, although it did not affect migratory patterns. Finally, P-gp expression levels in circulating cell-free RNA from patients with GB matched tumor tissue, whereas healthy volunteers appeared to bear no circulating P-gp. Taken together, the results indicate that P-gp affects GB tumor biology beyond its known role in drug resistance and could integrate a broader molecular signature for future diagnosis via liquid biopsy.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Post-Graduate Program in Anatomic Pathology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Isabel de Souza Barbosa
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Post-Graduate Program in Anatomic Pathology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Renan Lyra Miranda
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil
| | | | | | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil; Post-Graduate Program in Anatomic Pathology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S, Florio T. Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets 2024; 28:937-952. [PMID: 39582130 DOI: 10.1080/14728222.2024.2433130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells. This process also involves modification of extracellular matrix components, such as collagen and glycoproteins, where the secretion of soluble mediators, particularly CXC chemokines, plays a significant role. AREAS COVERED We analyze the critical role of chemokines in glioblastoma tumorigenesis, proliferation, angiogenesis, tumor progression, and brain parenchyma invasiveness. Recent evidence highlights how chemokines and their receptors impact glioblastoma biology and represent potential therapeutic targets. Several studies show that chemokines modulate glioblastoma development by acting on glioma stem cell proliferation and self-renewal, promoting vasculogenic mimicry, and altering the extracellular matrix to facilitate tumor invasiveness. EXPERT OPINION There is clear evidence supporting CXC receptors (such as CXCR1, 2, 3, 4, and ACKR3/CXCR7) and their signaling pathways as promising pharmacological targets. This in-depth review of chemokine roles in glioblastoma development provides a critical evaluation of the possible clinical translation of innovative compounds targeting these ligand/receptor systems, leading to improved therapeutic outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Beatrice Tremonti
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Pokorná M, Kútna V, Ovsepian SV, Matěj R, Černá M, O’Leary VB. Biomolecules to Biomarkers? U87MG Marker Evaluation on the Path towards Glioblastoma Multiforme Pathogenesis. Pharmaceutics 2024; 16:123. [PMID: 38258133 PMCID: PMC10818292 DOI: 10.3390/pharmaceutics16010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules to the realm of GBM pathogenesis. Our study's objectives were to address this preclinical issue and assess prominin-1, ICAM-1, PARTICLE and GAS5 as potential GBM diagnostic targets. The methodologies included haemoxylin and eosin staining, immunofluorescence, in situ hybridization and quantitative PCR. The findings identified that morphology correlates with malignancy in GBM patient pathology. Immunofluorescence confocal microscopy revealed prominin-1 in pseudo-palisades adjacent to necrotic foci in both animal and human GBM. Evidence is presented for an ICAM-1 association with degenerating vasculature. Significantly elevated nuclear PARTICLE expression from in situ hybridization and quantitative PCR reflected its role as a tumor activator. GAS5 identified within necrotic GBM validated this potential prognostic biomolecule with extended survival. Here we present evidence for the stem cell marker prominin-1 and the chemotherapeutic target ICAM-1 in a glioma animal model and GBM pathology sections from patients that elicited alternative responses to adjuvant chemotherapy. This foremost study introduces the long non-coding RNA PARTICLE into the context of human GBM pathogenesis while substantiating the role of GAS5 as a tumor suppressor. The validation of GBM biomarkers from cellular models contributes to the advancement towards superior detection, therapeutic responders and the ultimate attainment of promising prognoses for this currently incurable brain cancer.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.P.); (M.Č.)
| | - Viera Kútna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 25067 Klecany, Czech Republic;
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
| | - Radoslav Matěj
- Department of Pathology, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic;
- Department of Pathology, University Hospital Královské Vinohrady, Šrobárova 50, Vinohrady, 10000 Prague, Czech Republic
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.P.); (M.Č.)
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.P.); (M.Č.)
| |
Collapse
|
6
|
Guterres A, Filho PNS, Moura-Neto V. Breaking Barriers: A Future Perspective on Glioblastoma Therapy with mRNA-Based Immunotherapies and Oncolytic Viruses. Vaccines (Basel) 2024; 12:61. [PMID: 38250874 PMCID: PMC10818651 DOI: 10.3390/vaccines12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
The use of mRNA-based immunotherapies that leverage the genomes of oncolytic viruses holds significant promise in addressing glioblastoma (GBM), an exceptionally aggressive neurological tumor. We explore the significance of mRNA-based platforms in the area of immunotherapy, introducing an innovative approach to mitigate the risks associated with the use of live viruses in cancer treatment. The ability to customize oncolytic virus genome sequences enables researchers to precisely target specific cancer cells, either through viral genome segments containing structural proteins or through a combination of regions with oncolytic potential. This strategy may enhance treatment effectiveness while minimizing unintended impacts on non-cancerous cells. A notable case highlighted here pertains to advanced findings regarding the application of the Zika virus (ZIKV) in GBM treatment. ZIKV, a member of the family Flaviviridae, shows oncolytic properties against GBM, opening novel therapeutic avenues. We explore intensive investigations of glioblastoma stem cells, recognized as key drivers in GBM initiation, progression, and resistance to therapy. However, a comprehensive elucidation of ZIKV's underlying mechanisms is imperative to pave the way for ZIKV-based clinical trials targeting GBM patients. This investigation into harnessing the potential of oncolytic-virus genomes for mRNA-based immunotherapies underscores its noteworthy implications, potentially paving the way for a paradigm shift in cancer treatment strategies.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, RJ, Brazil
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-360, RJ, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, RJ, Brazil; (P.N.S.F.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| |
Collapse
|
7
|
Gonçalves TL, de Araújo LP, Pereira Ferrer V. Tamoxifen as a modulator of CXCL12-CXCR4-CXCR7 chemokine axis: A breast cancer and glioblastoma view. Cytokine 2023; 170:156344. [PMID: 37639844 DOI: 10.1016/j.cyto.2023.156344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
The chemokine stromal cell-derived-factor 1 (SDF)-1/CXCL12 acts by binding to its receptors, the CXC-4 chemokine receptor (CXCR4) and the CXC-7 chemokine receptor (CXCR7). The binding of CXCL12 to its receptors results in downstream signaling that leads to cell survival, proliferation and migration of tumor cells. CXCL12 and CXCR4 are highly expressed in breast cancer (BC) and glioblastoma (GBM) compared to normal cells. High expression of this chemokine axis correlates with increased therapy resistance and grade, tumor spread and poorer prognosis in these tumors. Tamoxifen (TMX) is a selective estrogen receptor modulator (SERM) that inhibits the expression of estrogen-regulated genes, including growth and angiogenic factors secreted by tumor cells. Additionally, TMX targets several proteins, such as protein kinase C (PKC), phospholipase C (PLC), P-glycoprotein (PgP), phosphatidylinositol-3-kinase (PI3K) and ion channels. This drug showed promising antitumor activity against both BC and GBM cells. In this review, we discuss the role of the CXCL12-CXCR4-CXCR7 chemokine axis in BC and GBM tumor biology and propose TMX as a potential modulator of this axis in these tumors. TMX modulates the CXCL12-CXCR4-CXCR7 axis in BC, however, there are no studies on this in GBM. We propose that studying this axis in GBM cells/patients treated with TMX might be beneficial for these patients. TMX inhibits important signaling pathways in these tumors and the activation of this chemokine axis is associated with increased therapy resistance.
Collapse
Affiliation(s)
- Thaynan Lopes Gonçalves
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Postgraduate Program in Pathological Anatomy, Faculty of Medicine, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Luanna Prudencio de Araújo
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Valéria Pereira Ferrer
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Postgraduate Program in Pathological Anatomy, Faculty of Medicine, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Leonel AV, Alisson-Silva F, Santos RCM, Silva-Aguiar RP, Gomes JC, Longo GMC, Faria BM, Siqueira MS, Pereira MG, Vasconcelos-dos-Santos A, Chiarini LB, Slawson C, Caruso-Neves C, Romão L, Travassos LH, Carneiro K, Todeschini AR, Dias WB. Inhibition of O-GlcNAcylation Reduces Cell Viability and Autophagy and Increases Sensitivity to Chemotherapeutic Temozolomide in Glioblastoma. Cancers (Basel) 2023; 15:4740. [PMID: 37835434 PMCID: PMC10571858 DOI: 10.3390/cancers15194740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma (GB) is the most aggressive primary malignant brain tumor and is associated with short survival. O-GlcNAcylation is an intracellular glycosylation that regulates protein function, enzymatic activity, protein stability, and subcellular localization. Aberrant O-GlcNAcylation is related to the tumorigenesis of different tumors, and mounting evidence supports O-GlcNAc transferase (OGT) as a potential therapeutic target. Here, we used two human GB cell lines alongside primary human astrocytes as a non-tumoral control to investigate the role of O-GlcNAcylation in cell proliferation, cell cycle, autophagy, and cell death. We observed that hyper O-GlcNAcylation promoted increased cellular proliferation, independent of alterations in the cell cycle, through the activation of autophagy. On the other hand, hypo O-GlcNAcylation inhibited autophagy, promoted cell death by apoptosis, and reduced cell proliferation. In addition, the decrease in O-GlcNAcylation sensitized GB cells to the chemotherapeutic temozolomide (TMZ) without affecting human astrocytes. Combined, these results indicated a role for O-GlcNAcylation in governing cell proliferation, autophagy, cell death, and TMZ response, thereby indicating possible therapeutic implications for treating GB. These findings pave the way for further research and the development of novel treatment approaches which may contribute to improved outcomes and increased survival rates for patients facing this challenging disease.
Collapse
Affiliation(s)
- Amanda V. Leonel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Frederico Alisson-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ronan C. M. Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Julia C. Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Gabriel M. C. Longo
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Bruna M. Faria
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (L.R.); (K.C.)
| | - Mariana S. Siqueira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Miria G. Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Andreia Vasconcelos-dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Luciana B. Chiarini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Luciana Romão
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (L.R.); (K.C.)
| | - Leonardo H. Travassos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Katia Carneiro
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (L.R.); (K.C.)
| | - Adriane R. Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Wagner B. Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| |
Collapse
|
9
|
Geraldo LH, Garcia C, Xu Y, Leser FS, Grimaldi I, de Camargo Magalhães ES, Dejaegher J, Solie L, Pereira CM, Correia AH, De Vleeschouwer S, Tavitian B, Canedo NHS, Mathivet T, Thomas JL, Eichmann A, Lima FRS. CCL21-CCR7 signaling promotes microglia/macrophage recruitment and chemotherapy resistance in glioblastoma. Cell Mol Life Sci 2023; 80:179. [PMID: 37314567 DOI: 10.1007/s00018-023-04788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) is the most common and fatal primary tumor of the central nervous system (CNS) and current treatments have limited success. Chemokine signaling regulates both malignant cells and stromal cells of the tumor microenvironment (TME), constituting a potential therapeutic target against brain cancers. Here, we investigated the C-C chemokine receptor type 7 (CCR7) and the chemokine (C-C-motif) ligand 21 (CCL21) for their expression and function in human GBM and then assessed their therapeutic potential in preclinical mouse GBM models. In GBM patients, CCR7 expression positively associated with a poor survival. CCL21-CCR7 signaling was shown to regulate tumor cell migration and proliferation while also controlling tumor associated microglia/macrophage recruitment and VEGF-A production, thereby controlling vascular dysmorphia. Inhibition of CCL21-CCR7 signaling led to an increased sensitivity to temozolomide-induced tumor cell death. Collectively, our data indicate that drug targeting of CCL21-CCR7 signaling in tumor and TME cells is a therapeutic option against GBM.
Collapse
Affiliation(s)
- Luiz Henrique Geraldo
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil.
- Université de Paris, PARCC, INSERM, 75015, Paris, France.
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06510-3221, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510-3221, USA.
| | - Celina Garcia
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Yunling Xu
- Université de Paris, PARCC, INSERM, 75015, Paris, France
| | - Felipe Saceanu Leser
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Izabella Grimaldi
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Eduardo Sabino de Camargo Magalhães
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil
| | - Joost Dejaegher
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | - Lien Solie
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | - Cláudia Maria Pereira
- Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Ana Helena Correia
- Departmento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Steven De Vleeschouwer
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, KU Leuven, Leuven, Belgium
| | | | - Nathalie Henriques Silva Canedo
- Departmento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jean-Leon Thomas
- Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Paris, France.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510-3221, USA.
| | - Anne Eichmann
- Université de Paris, PARCC, INSERM, 75015, Paris, France
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06510-3221, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510-3221, USA
| | - Flavia Regina Souza Lima
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rua César Pernetta, 1.766, Cidade Universitária da UFRJ, Rio de Janeiro, RJ, 21949-590, Brazil.
| |
Collapse
|
10
|
Santos C, Valentim AM, Félix L, Balça-Silva J, Pinto MLR. Longitudinal effects of ketamine on cell proliferation and death in the CNS of zebrafish. Neurotoxicology 2023; 97:78-88. [PMID: 37196828 DOI: 10.1016/j.neuro.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Zebrafish is known for its widespread neurogenesis and regenerative capacity, as well as several biological advantages, which turned it into a relevant animal model in several areas of research, namely in toxicological studies. Ketamine is a well-known anesthetic used both in human as well as veterinary medicine, due to its safety, short duration and unique mode of action. However, ketamine administration is associated with neurotoxic effects and neuronal death, which renders its use on pediatric medicine problematic. Thus, the evaluation of ketamine effects administration at early stages of neurogenesis is of pivotal importance. The 1-4 somites stage of zebrafish embryo development corresponds to the beginning of segmentation and formation of neural tube. In this species, as well as in other vertebrates, longitudinal studies are scarce, and the evaluation of ketamine long-term effects in adults is poorly understood. This study aimed to assess the effects of ketamine administration at the 1-4 somites stage, both in subanesthetic and anesthetic concentrations, in brain cellular proliferation, pluripotency and death mechanisms in place during early and adult neurogenesis. For that purpose, embryos at the 1-4 somites stage (10,5hours post fertilization - hpf) were distributed into study groups and exposed for 20minutes to ketamine concentrations at 0.2/0.8mg/mL. Animals were grown until defined check points, namely 50 hpf, 144 hpf and 7 months adults. The assessment of the expression and distribution patterns of proliferating cell nuclear antigen (PCNA), of sex-determining region Y-box 2 (Sox 2), apoptosis-inducing factor (AIF) and microtubule-associated protein 1 light chain 3 (LC3) was performed by Western-blot and immunohistochemistry. The results evidenced the main alterations in 144 hpf larvae, namely in autophagy and in cellular proliferation at the highest concentration of ketamine (0.8mg/mL). Nonetheless, in adults no significant alterations were seen, pointing to a return to a homeostatic stage. This study allowed clarifying some of the aspects pertaining the longitudinal effects of ketamine administration regarding the CNS capacity to proliferate and activate the appropriate cell death and repair mechanisms leading to homeostasis in zebrafish. Moreover, the results indicate that ketamine administration at 1-4 somites stage in the subanesthetic and anesthetic concentrations despite some transitory detrimental effects at 144 hpf, is long-term safe for CNS, which are newly and promising results in this research field.
Collapse
Affiliation(s)
- C Santos
- Escola Universitária Vasco da Gama (EUVG), Centro de Investigação Vasco da Gama (CIVG), EUVG, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra (FMUC), Coimbra, Portugal; Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - A M Valentim
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - L Félix
- Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), UTAD, Vila Real
| | - J Balça-Silva
- NOVA Medical School - Faculdade de Ciências Médicas, Universidade Nova de Lisboa (FCM-UNL), Lisboa, Portugal
| | - M L R Pinto
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
11
|
Fishman H, Monin R, Dor-On E, Kinzel A, Haber A, Giladi M, Weinberg U, Palti Y. Tumor Treating Fields (TTFields) increase the effectiveness of temozolomide and lomustine in glioblastoma cell lines. J Neurooncol 2023; 163:83-94. [PMID: 37131108 DOI: 10.1007/s11060-023-04308-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Tumor Treating Fields (TTFields) are electric fields that disrupt cellular processes critical for cancer cell viability and tumor progression, ultimately leading to cell death. TTFields therapy is approved for treatment of newly-diagnosed glioblastoma (GBM) concurrent with maintenance temozolomide (TMZ). Recently, the benefit of TMZ in combination with lomustine (CCNU) was demonstrated in patients with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. The addition of adjuvant TTFields to TMZ plus CCNU further improved patient outcomes, leading to a CE mark for this regimen. The current in vitro study aimed to elucidate the mechanism underlying the benefit of this treatment protocol. METHODS Human GBM cell lines with different MGMT promoter methylation statuses were treated with TTFields, TMZ, and CCNU, and effectiveness was tested by cell count, apoptosis, colony formation, and DNA damage measurements. Expression levels of relevant DNA-repair proteins were examined by western blot analysis. RESULTS TTFields concomitant with TMZ displayed an additive effect, irrespective of MGMT expression levels. TTFields concomitant with CCNU or with CCNU plus TMZ was additive in MGMT-expressing cells and synergistic in MGMT-non-expressing cells. TTFields downregulated the FA-BRCA pathway and increased DNA damage induced by the chemotherapy combination. CONCLUSIONS The results support the clinical benefit demonstrated for TTFields concomitant with TMZ plus CCNU. Since the FA-BRCA pathway is required for repair of DNA cross-links induced by CCNU in the absence of MGMT, the synergy demonstrated in MGMT promoter methylated cells when TTFields and CCNU were co-applied may be attributed to the BRCAness state induced by TTFields.
Collapse
|
12
|
Kumar P, Thakur R, Acharya PC, Mohan HK, Pallavi UN, Maheshwari D, Mohammed K M A, Kumar A, Goud Nerella S, Joshi RK, Kumar M, Nagaraj C. Synthesis, characterization, and radiosynthesis of fluorine-18-AVT-011 as a Pgp chemoresistance imaging marker. Sci Rep 2022; 12:18584. [PMID: 36329151 PMCID: PMC9633701 DOI: 10.1038/s41598-022-22930-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp) is the most studied ATP-binding cassette (ABC) efflux transporter and contributes to chemoresistance. A few tracers have been developed to detect the in-vivo status of chemoresistance using positron emission tomography (PET) imaging. In our study, we have synthesized labeled AVT-011 with fluorine-18 (18F) followed by in-vitro and in-vivo analysis. Tosylate AVT-011 precursor was synthesized and characterized by 1H-NMR and 13C-NMR. AVT-011 was labeled with 18F using the nucleophilic substitution method, and a standard set of quality control was performed. The specificity for Pgp was tested in U87MG cells with and without an inhibitor (tariquidar). The biodistribution and in-vivo stability were tested in the small animals (mice). The biodistribution data of [18F]-AVT-011 was extracted from the PET-CT imaging of breast cancer patients (n = 6). The precursor was synthesized with 36 ± 4% yield and 97 ± 2% purity. The labeling was more than 95% with a 42 ± 2% yield, as evaluated by Radio-HPLC. The cell-binding assay showed a specificity of the tracer for Pgp as the uptake increased by twice after blocking the Pgp receptors. The radiotracer showed a hepatorenal excretion pathway for clearance in an animal study. The uptake was higher in the liver, lungs, spleen, and heart at 15 min and decreased at 60 min. The patients' distribution showed similar uptake patterns as observed in the small animals. [18F]AVT-011 was characterized successfully with high radiochemical purity and yield. The in-vitro and in-vivo studies proved its specificity for Pgp and safe for patient use.
Collapse
Affiliation(s)
- Pardeep Kumar
- grid.416861.c0000 0001 1516 2246Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka India
| | - Riptee Thakur
- grid.416861.c0000 0001 1516 2246Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka India
| | - Pratap Chandra Acharya
- grid.444729.80000 0000 8668 6322Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Tripura (W) India
| | - Hosahalli K. Mohan
- Department of Nuclear Medicine, Sri Shankara Cancer Hospital & Research Centre, Bengaluru, Karnataka India
| | - U. N. Pallavi
- Department of Nuclear Medicine, Sri Shankara Cancer Hospital & Research Centre, Bengaluru, Karnataka India
| | | | | | - Aishwarya Kumar
- grid.416861.c0000 0001 1516 2246Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka India
| | - Sridhar Goud Nerella
- grid.416861.c0000 0001 1516 2246Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka India
| | - Raman Kumar Joshi
- grid.416861.c0000 0001 1516 2246Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka India
| | - Manoj Kumar
- grid.416861.c0000 0001 1516 2246Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka India
| | - Chandana Nagaraj
- grid.416861.c0000 0001 1516 2246Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka India
| |
Collapse
|
13
|
PI3K Pathway Inhibition with NVP-BEZ235 Hinders Glycolytic Metabolism in Glioblastoma Multiforme Cells. Cells 2021; 10:cells10113065. [PMID: 34831287 PMCID: PMC8616488 DOI: 10.3390/cells10113065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular targeted therapies. The PI3K/AKT/mTOR pathway is activated in 90% of all Glioblastoma multiforme (GBM) tumors. To gain insight into the impact of the PI3K pathway on GBM metabolism, we treated U87MG GBM cells with NVP-BEZ235 (PI3K and mTOR a dual inhibitor) and identified differentially expressed genes with RNA-seq analysis. RNA-seq identified 7803 differentially regulated genes in response to NVP-BEZ235. Gene Set Enrichment Analysis (GSEA) identified two glycolysis-related gene sets that were significantly enriched (p < 0.05) in control samples compared to NVP-BEZ235-treated samples. We validated the inhibition of glycolytic genes by NVP-BEZ235 and examined the impact of the FOXO1 inhibitor (AS1842856) on these genes in a set of GBM cell lines. FOXO1 inhibition alone was associated with reduced LDHA expression, but not ENO1 or PKM2. Bioinformatics analyses revealed that PI3K-impacted glycolytic genes were over-expressed and co-expressed in GBM clinical samples. The elevated expression of PI3K-impacted glycolytic genes was associated with poor prognosis in GBM based on Kaplan-Meier survival analyses. Our results suggest novel insights into hallmark metabolic reprogramming associated with the PI3K-mTOR dual inhibition.
Collapse
|
14
|
The Potential of Dietary Antioxidants from a Series of Plant Extracts as Anticancer Agents against Melanoma, Glioblastoma, and Breast Cancer. Antioxidants (Basel) 2021; 10:antiox10071115. [PMID: 34356348 PMCID: PMC8301026 DOI: 10.3390/antiox10071115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/24/2023] Open
Abstract
In modern society, cancer is one of the most relevant medical problems. It is important to search for promising plant raw materials whose extracts have strong antioxidant and anticancer effects. The aim of this study was to determine the composition of phenolic compounds in plant extracts, to evaluate their antioxidant and anticancer activity, and to find the correlations between those activities. Extracts of calendula, sage, bearberry, eucalyptus, yarrow, and apple were selected for the study. The phenolic compounds of these extracts were determined by the UPLC-ESI-MS/MS method and the antioxidant activity was evaluated in vitro by four different UV-VIS spectrophotometric methods (ABTS, DPPH, CUPRAC, FRAP). The anticancer activity of extracts was tested against melanoma IGR39, glioblastoma U-87, and triple-negative breast cancer MDA-MB-231 cell lines in vitro by MTT assay. The highest content of identified and quantified phenolic compounds was found in sage leaf extract and the lowest in ethanol eucalyptus leaf extract. The highest antioxidant activity was determined by all applied methods for the acetone eucalyptus leaf extract. The majority of extracts were mostly active against the melanoma IGR39 cell line, and possessed the lowest activity against the glioblastoma U-87 cell line. Acetone extract of eucalyptus leaf samples exhibited the highest anticancer activity against all tested cell lines. Strong and reliable correlation has been found between antioxidant and anticancer activity in breast cancer and glioblastoma cell lines, especially when evaluating antioxidant activity by the FRAP method.
Collapse
|
15
|
Gold Nanopeanuts as Prospective Support for Cisplatin in Glioblastoma Nano-Chemo-Radiotherapy. Int J Mol Sci 2020; 21:ijms21239082. [PMID: 33260340 PMCID: PMC7730046 DOI: 10.3390/ijms21239082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Herein, we propose newly designed and synthesized gold nanopeanuts (Au NPes) as supports for cisplatin (cPt) immobilization, dedicated to combined glioblastoma nano-chemo-radiotherapy. Au NPes offer a large active surface, which can be used for drugs immobilization. Transmission electron microscopy (TEM) revealed that the size of the synthesized Au NPes along the longitudinal axis is ~60 nm, while along the transverse axis ~20 nm. Raman, thermogravimetric analysis (TGA) and differential scanning calorimetry (DCS) measurements showed, that the created nanosystem is stable up to a temperature of 110 °C. MTT assay revealed, that the highest cell mortality was observed for cell lines subjected to nano-chemo-radiotherapy (20–55%). Hence, Au NPes with immobilized cPt (cPt@AuNPes) are a promising nanosystem to improve the therapeutic efficiency of combined nano-chemo-radiotherapy.
Collapse
|
16
|
Cyclopamine sensitizes glioblastoma cells to temozolomide treatment through Sonic hedgehog pathway. Life Sci 2020; 257:118027. [PMID: 32622951 DOI: 10.1016/j.lfs.2020.118027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
AIM Glioblastoma is an extremely aggressive glioma, resistant to radio and chemotherapy usually performed with temozolomide. One of the main reasons for glioblastoma resistance to conventional therapies is due to the presence of cancer stem-like cells. These cells could recapitulate some signaling pathways important for embryonic development, such as Sonic hedgehog. Here, we investigated if the inhibitor of the Sonic hedgehog pathway, cyclopamine, could potentiate the temozolomide effect in cancer stem-like cells and glioblastoma cell lines in vitro. MAIN METHODS The viability of glioblastoma cells exposed to cyclopamine and temozolomide treatment was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while the induction of apoptosis was assessed by western blot. The stemness properties of glioma cells were verified by clonogenic and differentiation assay and the expression of stem cell markers were measured by fluorescence microscopy and western blot. KEY FINDINGS The glioblastoma viability was reduced by cyclopamine treatment. Cyclopamine potentiated temozolomide treatment in glioblastoma cell lines by inducing apoptosis through activation of caspase-3 cleaved. Conversely, the combined treatment of cyclopamine and temozolomide potentiated the stemness properties of glioblastoma cells by inducing the expression of SOX-2 and OCT-4. SIGNIFICANCE Cyclopamine plays an effect on glioblastoma cell lines but also sensibilize them to temozolomide treatment. Thus, first-line treatment with Sonic hedgehog inhibitor followed by temozolomide could be used as a new therapeutic strategy for glioblastoma patients.
Collapse
|
17
|
Popova TV, Krumkacheva OA, Burmakova AS, Spitsyna AS, Zakharova OD, Lisitskiy VA, Kirilyuk IA, Silnikov VN, Bowman MK, Bagryanskaya EG, Godovikova TS. Protein modification by thiolactone homocysteine chemistry: a multifunctionalized human serum albumin theranostic. RSC Med Chem 2020; 11:1314-1325. [PMID: 34085043 PMCID: PMC8126878 DOI: 10.1039/c9md00516a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/23/2020] [Indexed: 01/15/2023] Open
Abstract
As the most abundant protein with a variety of physiological functions, albumin has been used extensively for the delivery of therapeutic molecules. Thiolactone chemistry provides a powerful tool to prepare spin-labeled albumin-based multimodal imaging probes and therapeutic agents. We report the synthesis of a tamoxifen homocysteine thiolactone derivative and its use in thiol-'click' chemistry to prepare multi-functionalized serum albumin. The released sulfhydryl group of the homocysteine functional handle was labeled with a nitroxide reagent to prepare a spin-labeled albumin-tamoxifen conjugate confirmed by MALDI-TOF-MS, EPR spectroscopy, UV-vis and fluorescent emission spectra. This is the basis for a novel multimodal tamoxifen-albumin theranostic with a significant (dose-dependent) inhibitory effect on the proliferation of malignant cells. The response of human glioblastoma multiforme T98G cells and breast cancer MCF-7 cells to tamoxifen and its albumin conjugates was different in tumor cells with different expression level of ERα in our experiments. These results provide further impetus to develop a serum protein for delivery of tamoxifen to cancer cells.
Collapse
Affiliation(s)
- Tatyana V Popova
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Olesya A Krumkacheva
- Novosibirsk State University 630090 Novosibirsk Russia
- International Tomography Center SB RAS 630090 Novosibirsk Russia
| | - Anna S Burmakova
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Anna S Spitsyna
- Novosibirsk State University 630090 Novosibirsk Russia
- Novosibirsk Institute of Organic Chemistry SB RAS 630090 Novosibirsk Russia
| | - Olga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
| | - Vladimir A Lisitskiy
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
| | - Igor A Kirilyuk
- Novosibirsk Institute of Organic Chemistry SB RAS 630090 Novosibirsk Russia
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
| | - Michael K Bowman
- Novosibirsk Institute of Organic Chemistry SB RAS 630090 Novosibirsk Russia
- University of Alabama Tuscaloosa Alabama 35487-0336 USA
| | - Elena G Bagryanskaya
- Novosibirsk State University 630090 Novosibirsk Russia
- Novosibirsk Institute of Organic Chemistry SB RAS 630090 Novosibirsk Russia
| | - Tatyana S Godovikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS 630090 Novosibirsk Russia
| |
Collapse
|
18
|
Xia H, Avci NG, Akay Y, Esquenazi Y, Schmitt LH, Tandon N, Zhu JJ, Akay M. Temozolomide in Combination With NF-κB Inhibitor Significantly Disrupts the Glioblastoma Multiforme Spheroid Formation. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:9-16. [PMID: 35402955 PMCID: PMC8983150 DOI: 10.1109/ojemb.2019.2962801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 11/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor, accounting for 50% of all cases. GBM patients have a five-year survival rate of merely 5.6% and a median overall survival of 14.6 months with the "Stupp" regimen, 20.9 months with tumor treatment fields (TTF, OptuneR) in patients who participated in clinical trials, and 11 months for all GBM patients prior to TTF use. Objective: Our group recently developed a brain cancer chip which generates tumor spheroids, and provides large-scale assessments on the response of tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies. To minimize any sample loss in vitro, we improved our brain cancer chip system by adding an additional laminar flow distribution layer, which reduces sample loss during cell seeding and prevents spheroids from escaping from the microwells. Methods: In this study, we cultured 3D spheroids from GBM cell lines and patient-derived GBM cells in vitro, and investigated the effect of the combination of Temozolomide and nuclear factor-κB inhibitor on tumor growth. Results: Our study revealed that these drugs have synergistic effects in inhibiting spheroid formation when used in combination. Conclusions: These results suggest that the brain cancer chip enables large-scale, inexpensive and sample-effective drug screening to 3D cancer tumors in vitro, and could be applied to related tissue engineering drug screening studies.
Collapse
Affiliation(s)
- Hui Xia
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Naze G. Avci
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Yasemin Akay
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| | - Yoshua Esquenazi
- Mischer Neuroscience Associates and the Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Science Center in Houston, UTHealth and Memorial HermannHoustonTX77030USA
| | - Lisa H. Schmitt
- Mischer Neuroscience Associates and the Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Science Center in Houston, UTHealth and Memorial HermannHoustonTX77030USA
| | - Nitin Tandon
- Mischer Neuroscience Associates and the Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Science Center in Houston, UTHealth and Memorial HermannHoustonTX77030USA
| | - Jay-Jiguang Zhu
- Mischer Neuroscience Associates and the Vivian L. Smith Department of NeurosurgeryUniversity of Texas Health Science Center in Houston, UTHealth and Memorial HermannHoustonTX77030USA
| | - Metin Akay
- Biomedical Engineering DepartmentUniversity of HoustonHoustonTX77204USA
| |
Collapse
|
19
|
Honorato JR, Hauser-Davis RA, Saggioro EM, Correia FV, Sales-Junior SF, Soares LOS, Lima LDR, Moura-Neto V, Lopes GPDF, Spohr TCLDS. Role of Sonic hedgehog signaling in cell cycle, oxidative stress, and autophagy of temozolomide resistant glioblastoma. J Cell Physiol 2019; 235:3798-3814. [PMID: 31613002 DOI: 10.1002/jcp.29274] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
The first-line chemotherapy treatment for Glioblastoma (GBM) - the most aggressive and frequent brain tumor - is temozolomide (TMZ). The Sonic hedgehog (SHH) pathway is involved with GBM tumorigenesis and TMZ chemoresistance. The role of SHH pathway inhibition in the potentiation of TMZ's effects using T98G, U251, and GBM11 cell lines is investigated herein. The combination of GANT-61 and TMZ over 72 hr suggested a synergistic effect. All TMZ-resistant cell lines displayed a significant decrease in cell viability, increased DNA fragmentation and loss of membrane integrity. For T98G cells, G2 /M arrest was observed, while U251 cells presented a significant increase in reactive oxygen species production and catalase activity. All the cell lines presented acidic vesicles formation correlated to Beclin-1 overexpression. The combined treatment also enhanced GLI1 expression, indicating the presence of select resistant cells. The selective inhibition of the SHH pathway potentiated the cytotoxic effect of TMZ, thus becoming a promising in vitro strategy for GBM treatment.
Collapse
Affiliation(s)
- Jessica R Honorato
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rachel A Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Enrico M Saggioro
- Departamento de Saneamento e Saúde Ambiental, Escola Nacional de Saúde Pública (ENSP), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Fábio V Correia
- Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Sidney F Sales-Junior
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública (ENSP), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lorena O S Soares
- Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Leandro da R Lima
- Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle P de F Lopes
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Tania C L de S Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Akay M, Hite J, Avci NG, Fan Y, Akay Y, Lu G, Zhu JJ. Drug Screening of Human GBM Spheroids in Brain Cancer Chip. Sci Rep 2018; 8:15423. [PMID: 30337660 PMCID: PMC6194126 DOI: 10.1038/s41598-018-33641-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), an extremely invasive and high-grade (grade IV) glioma, is the most common and aggressive form of brain cancer. It has a poor prognosis, with a median overall survival of only 11 months in the general GBM population and 14.6 to 21 months in clinical trial participants with standard GBM therapies, including maximum safe craniotomy, adjuvant radiation, and chemotherapies. Therefore, new approaches for developing effective treatments, such as a tool for assessing tumor cell drug response before drug treatments are administered, are urgently needed to improve patient survival. To address this issue, we developed an improved brain cancer chip with a diffusion prevention mechanism that blocks drugs crossing from one channel to another. In the current study, we demonstrate that the chip has the ability to culture 3D spheroids from patient tumor specimen-derived GBM cells obtained from three GBM patients. Two clinical drugs used to treat GBM, temozolomide (TMZ) and bevacizumab (Avastin, BEV), were applied and a range of relative concentrations was generated by the microfluidic channels in the brain cancer chip. The results showed that TMZ works more effectively when used in combination with BEV compared to TMZ alone. We believe that this low-cost brain cancer chip could be further developed to generate optimal combination of chemotherapy drugs tailored to individual GBM patients.
Collapse
Affiliation(s)
- Metin Akay
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, USA.
| | - John Hite
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, USA
| | - Naze Gul Avci
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, USA
| | - Yantao Fan
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, USA
| | - Yasemin Akay
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, USA
| | - Guangrong Lu
- Mischer Neuroscience Associates and the Vivian L. Smith Department of Neurosurgery University of Texas Health Science Center in Houston, UTHealth and Memorial Hermann, 6400 Fannin St. Suite 2800, Houston, TX, 77030, USA
| | - Jay-Jiguang Zhu
- Mischer Neuroscience Associates and the Vivian L. Smith Department of Neurosurgery University of Texas Health Science Center in Houston, UTHealth and Memorial Hermann, 6400 Fannin St. Suite 2800, Houston, TX, 77030, USA
| |
Collapse
|
21
|
Balça-Silva J, do Carmo A, Tão H, Rebelo O, Barbosa M, Moura-Neto V, Sarmento-Ribeiro AB, Lopes MC, Moreira JN. Nucleolin is expressed in patient-derived samples and glioblastoma cells, enabling improved intracellular drug delivery and cytotoxicity. Exp Cell Res 2018; 370:68-77. [PMID: 29902537 DOI: 10.1016/j.yexcr.2018.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022]
Abstract
One of the major challenges in Glioblastoma (GBM) therapy relates with the existence of glioma stem-like cells (GSCs), known to be chemo- and radio-resistant. GSCs and non-stem GBM cells have the ability to interchange, emphasizing the importance of identifying common molecular targets among those cell sub-populations. Nucleolin overexpression has been recently associated with breast cancer sub-populations with different stem-like phenotype. The goal of this work was to evaluate the potential of cell surface nucleolin as a target in GBM cells. Different levels of nucleolin expression resulted in a 3.4-fold higher association of liposomes targeting nucleolin (functionalized with the nucleolin-binding F3 peptide) in U87, relative to GBM11 glioblastoma cells. Moreover, nucleolin was suggested as a potential marker in OCT4-, NANOG-positive GSC, and in the corresponding non-stem GBM cells, as well as in SOX2-positive GSC. Doxorubicin delivered by liposomes targeting nucleolin enabled a level of cytotoxicity that was 2.5- or 4.6-fold higher compared to the non-targeted counterparts. Importantly, an overexpression of nucleolin was also observed in cells of patient-derived samples, as compared with normal brain. Overall, these results suggested nucleolin as a therapeutic target in GBM.
Collapse
Affiliation(s)
- Joana Balça-Silva
- CNC.IBILI - Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, Coimbra, Portugal; FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; IECPN - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Anália do Carmo
- CNC.IBILI - Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, Coimbra, Portugal; CHUC - Clinical Pathology Department, Coimbra Hospital and Universitary Center, Coimbra, Portugal.
| | - Hermínio Tão
- CHUC - Neurosurgery Service, Coimbra Hospital and Universitary Center, Coimbra, Portugal.
| | - Olinda Rebelo
- CHUC - Neuropathology Laboratory, Neurology Service, Coimbra Hospital and Universitary Center, Coimbra, Portugal.
| | - Marcos Barbosa
- FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CHUC - Neurosurgery Service, Coimbra Hospital and Universitary Center, Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- IECPN - Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Ana Bela Sarmento-Ribeiro
- FMUC, Laboratory of Oncobiology and Hematology and University Clinic of Hematology/ Faculty of Medicine, University of Coimbra, Coimbra, Portugal; iCBR, CIMAGO - Coimbra Institute for Clinical and Biomedical Research - Group of Environment, Genetics and Oncobiology - FMUC, Coimbra, Portugal; CHUC - Clinical Hematology Department/Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Maria Celeste Lopes
- CNC.IBILI - Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
22
|
Matias D, Balça-Silva J, da Graça GC, Wanjiru CM, Macharia LW, Nascimento CP, Roque NR, Coelho-Aguiar JM, Pereira CM, Dos Santos MF, Pessoa LS, Lima FRS, Schanaider A, Ferrer VP, Moura-Neto V. Microglia/Astrocytes-Glioblastoma Crosstalk: Crucial Molecular Mechanisms and Microenvironmental Factors. Front Cell Neurosci 2018; 12:235. [PMID: 30123112 PMCID: PMC6086063 DOI: 10.3389/fncel.2018.00235] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, the functions of glial cells, namely, astrocytes and microglia, have gained prominence in several diseases of the central nervous system, especially in glioblastoma (GB), the most malignant primary brain tumor that leads to poor clinical outcomes. Studies showed that microglial cells or astrocytes play a critical role in promoting GB growth. Based on the recent findings, the complex network of the interaction between microglial/astrocytes cells and GB may constitute a potential therapeutic target to overcome tumor malignancy. In the present review, we summarize the most important mechanisms and functions of the molecular factors involved in the microglia or astrocytes-GB interactions, which is particularly the alterations that occur in the cell's extracellular matrix and the cytoskeleton. We overview the cytokines, chemokines, neurotrophic, morphogenic, metabolic factors, and non-coding RNAs actions crucial to these interactions. We have also discussed the most recent studies regarding the mechanisms of transportation and communication between microglial/astrocytes - GB cells, namely through the ABC transporters or by extracellular vesicles. Lastly, we highlight the therapeutic challenges and improvements regarding the crosstalk between these glial cells and GB.
Collapse
Affiliation(s)
- Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joana Balça-Silva
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences Consortium, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Grazielle C da Graça
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Caroline M Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucy W Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Pires Nascimento
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia R Roque
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Juliana M Coelho-Aguiar
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Marcos F Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S Pessoa
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Schanaider
- Centro de Cirurgia Experimental do Departamento de Cirurgia da Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria P Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Universidade do Grande Rio (Unigranrio), Duque de Caxias, Brazil
| |
Collapse
|
23
|
Matias D, Dubois LG, Pontes B, Rosário L, Ferrer VP, Balça-Silva J, Fonseca ACC, Macharia LW, Romão L, E Spohr TCLDS, Chimelli L, Filho PN, Lopes MC, Abreu JG, Lima FRS, Moura-Neto V. GBM-Derived Wnt3a Induces M2-Like Phenotype in Microglial Cells Through Wnt/β-Catenin Signaling. Mol Neurobiol 2018; 56:1517-1530. [PMID: 29948952 DOI: 10.1007/s12035-018-1150-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022]
Abstract
Glioblastoma is an extremely aggressive and deadly brain tumor known for its striking cellular heterogeneity and capability to communicate with microenvironment components, such as microglia. Microglia-glioblastoma interaction contributes to an increase in tumor invasiveness, and Wnt signaling pathway is one of the main cascades related to tumor progression through changes in cell migration and invasion. However, very little is known about the role of canonical Wnt signaling during microglia-glioblastoma crosstalk. Here, we show for the first time that Wnt3a is one of the factors that regulate interactions between microglia and glioblastoma cells. Wnt3a activates the Wnt/β-catenin signaling of both glioblastoma and microglial cells. Glioblastoma-conditioned medium not only induces nuclear translocation of microglial β-catenin but also increases microglia viability and proliferation as well as Wnt3a, cyclin-D1, and c-myc expression. Moreover, glioblastoma-derived Wnt3a increases microglial ARG-1 and STI1 expression, followed by an upregulation of IL-10 mRNA levels, and a decrease in IL1β gene expression. The presence of Wnt3a in microglia-glioblastoma co-cultures increases the formation of membrane nanotubes accompanied by changes in migration capability. In vivo, tumors formed from Wnt3a-stimulated glioblastoma cells presented greater microglial infiltration and more aggressive characteristics such as growth rate than untreated tumors. Thus, we propose that Wnt3a belongs to the arsenal of factors capable of stimulating the induction of M2-like phenotype on microglial cells, which contributes to the poor prognostic of glioblastoma, reinforcing that Wnt/β-catenin pathway can be a potential therapeutic target to attenuate glioblastoma progression.
Collapse
Affiliation(s)
- Diana Matias
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil.,Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB/UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Luiz Gustavo Dubois
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil.,Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB/UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB/UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Luciane Rosário
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro -UFRJ, Rio de Janeiro, Brazil
| | - Valeria Pereira Ferrer
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil
| | - Joana Balça-Silva
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil.,Centro de Neurociências e Biologia celular e Instituto Biomédico da Imagem e das Ciências da Vida (CNC.IBILI), Coimbra, Portugal.,Faculdade de Medicina da Universidade de Coimbra (FMUC), Coimbra, Portugal
| | - Anna Carolina Carvalho Fonseca
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB/UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Lucy Wanjiku Macharia
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina da Universidade Federal do Rio de Janeiro -UFRJ, Rio de Janeiro, Brazil
| | - Luciana Romão
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB/UFRJ), Rio de Janeiro, 21941-902, Brazil.,Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil
| | - Leila Chimelli
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil
| | - Paulo Niemeyer Filho
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil
| | - Maria Celeste Lopes
- Centro de Neurociências e Biologia celular e Instituto Biomédico da Imagem e das Ciências da Vida (CNC.IBILI), Coimbra, Portugal.,Pólo das Ciências da Saúde, Faculdade de Farmácia da Universidade de Coimbra, Coimbra, Portugal
| | - José Garcia Abreu
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB/UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB/UFRJ), Rio de Janeiro, 21941-902, Brazil
| | - Vivaldo Moura-Neto
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Saúde do Estado do Rio de Janeiro, Rua do Resende 156, Rio de Janeiro, CEP 20231-092, Brazil.
| |
Collapse
|
24
|
DRR1 promotes glioblastoma cell invasion and epithelial-mesenchymal transition via regulating AKT activation. Cancer Lett 2018; 423:86-94. [PMID: 29548818 DOI: 10.1016/j.canlet.2018.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Metastatic invasion is the primary cause of treatment failure for GBM. EMT is one of the most important events in the invasion of GBM; therefore, understanding the molecular mechanisms of EMT is crucial for the treatment of GBM. In this study, high expression of DRR1 was identified to correlate with a shorter median overall and relapse-free survival. Loss-of-function assays using shDRR1 weakened the invasive potential of the GBM cell lines through regulation of EMT-markers. The expressions of p-AKT were significantly decreased after DRR-depletion in SHG44 and U373 cells. Moreover, the invasion was inhibited by the AKT inhibitor, MK-2206. The expression of Vimentin, N-cadherin, MMP-7, snail and slug was significantly inhibited by MK-2206, while the expression of E-cadherin was upregulated. Our results provide the first evidence that DRR1 is involved in GBM invasion and progression possibly through the induction of EMT activation by phosphorylation of AKT.
Collapse
|