1
|
Liu Y, Tang A, Liu M, Luo Z, Cao F, Yang C. The effectiveness of sanggenon c in alleviating SLC7A11-induced ferroptosis in lung cancer was evaluated using in vivo, in vitro, and computational approaches. Int Immunopharmacol 2025; 145:113819. [PMID: 39657537 DOI: 10.1016/j.intimp.2024.113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Sanggenon c, a component in Morus alba L, has been proved to possess various biological activities. The aim of this study is to investigate whether sanggenon c can target SLC7A11 and inhibit lung cancer by regulating the ferroptosis mechanism. The levels of antioxidant factor, Fe 2+, and SLC7A11 were measured in the lungs of cancerous mice and human A 549 lung cancer cells. The computer-aided techniques were employed to validate the molecular docking and molecular dynamics simulations of sanggenon c and SLC7A11. The sanggenon c significantly inhibits lung cancer cell metastasis in vivo and A 549 cell proliferation in vitro by targeting the over-expression of SLC7A11, which inhibits GPX 4 and induces the release of ROS and MDA, effectively triggering ferroptosis. The interaction between sanggenon c and SLC7A11 exhibits a strong binding affinity, leading to the significant inhibition of the key protein SLC7A11. This restriction of system xc- transport induces ferroptosis in lung cancer. It epitomizes a groundbreaking inhibitor specifically designed to target SLC7A11.
Collapse
Affiliation(s)
- Yang Liu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Amei Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Meng Liu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Zhenliang Luo
- School of Health Care, Guizhou University of Traditional Chinese Medicine, Guiyang,550025, Guizhou, China
| | - Feng Cao
- School of Health Care, Guizhou University of Traditional Chinese Medicine, Guiyang,550025, Guizhou, China.
| | - Changfu Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China.
| |
Collapse
|
2
|
Sun W, Cai H, Zhang K, Cui H, Zhao E. Targeting MCL1 with Sanggenon C overcomes MCL1-driven adaptive chemoresistance via dysregulation of autophagy and endoplasmic reticulum stress in cervical cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155935. [PMID: 39126925 DOI: 10.1016/j.phymed.2024.155935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Cervical cancer ranks as one of the most prevalent malignancies among women worldwide and poses a significant threat to health and quality of life. MCL1 is an antiapoptotic protein closely linked to tumorigenesis, drug-resistance and poor prognosis in various cancers. Sanggenon C, a natural flavonoid derived from Morus albal., exhibits multiple activities, including anti-oxidant, anti-inflammatory, antivirus, and antitumor properties. However, the molecular mechanisms by which Sanggenon C exerts antitumor effects on in cervical cancer remain unclear. PURPOSE To investigate the oncogenic role of MCL1 and elucidate the antitumor activity of Sanggenon C, along with its molecular mechanisms, in cervical cancer. METHODS In vitro, the effects of Sanggenon C on proliferation, the cell cycle, apoptosis, and autophagy were explored. Transcriptome sequencing was employed to analyze critical genes and pathways. The expression of genes or proteins was evaluated via immunofluorescence, qRT-PCR, immunohistochemistry, and Western blotting. To identify targets of Sanggenon C, various techniques such as clinical database analysis, molecular docking, cellular thermal shift assays, co-immunoprecipitation, and ubiquitination assays were utilized. Additionally, Xenograft mouse models were established to further investigate Sanggenon C as a novel MCL1 inhibitor and its anti-tumor activity in vivo. RESULTS Our investigation reveals that Sanggenon C effectively inhibits cervical cancer cell proliferation both in vitro and in vivo. Furthermore, Sanggenon C induces endoplasmic reticulum stress and triggers protective autophagy via activation of the ATF4-DDIT3-TRIB3-AKT-MTOR signaling axis. Furthermore, Sanggenon C specifically targets MCL1 to exert its antitumor effects by modulating MCL1 protein stability through SYVN1-mediated ubiquitination. Notably, MCL1 overexpression attenuates the Sanggenon C-induced decrease in cell viability and apoptosis. Our study further characterizes the role of MCL1 in cisplatin resistance and identifies MCL1 as a promising target for Sanggenon C, which effectively inhibits proliferation and induces apoptosis in cisplatin-resistant cervical cancer cells. Importantly, combining Sanggenon C with an autophagy inhibitor represents a promising strategy to enhance therapeutic outcomes in cisplatin-resistant cervical cancer cells. CONCLUSION Our findings demonstrates that Sanggenon C induces endoplasmic reticulum stress and highlights the potential of targeting MCL1 to exploit vulnerabilities in drug-resistant cervical cancer cells. Sanggenon C emerges as a promising therapeutic agent against MCL1-driven adaptive chemoresistance through disruption of autophagy and endoplasmic reticulum stress in cervical cancer.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Huarui Cai
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, IL, USA
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China.
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China.
| |
Collapse
|
3
|
Yuan G, Qian P, Chen L, He N. Kuwanon C Inhibits Tumor Cell Proliferation and Induces Apoptosis by Targeting Mitochondria and Endoplasmic Reticulum. Int J Mol Sci 2024; 25:8293. [PMID: 39125863 PMCID: PMC11312418 DOI: 10.3390/ijms25158293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Kuwanon C is a unique flavonoid found in the mulberry family, characterized by two isopentenyl groups. While previous research has focused on various properties of kuwanon C, such as antioxidant, hypoglycemic, antimicrobial, food preservation, skin whitening, and nematode lifespan extension, little attention has been given to its potential role in oncological diseases. In this study, we investigate the antitumor effect of kuwanon C in cervical cancer cells and elucidate its specific mechanism of action. We assessed the antitumor effects of kuwanon C using various experimental techniques, including cell proliferation assay, wound healing assays, EdU 488 proliferation assay, mitochondrial membrane potential assay, ROS level assay, cell cycle, apoptosis analysis, and studies on kuwanon C target sites and molecular docking. The results revealed that kuwanon C significantly impacted the cell cycle progression of HeLa cells, disrupted their mitochondrial membrane potential, and induced a substantial increase in intracellular ROS levels. Moreover, kuwanon C exhibited notable anti-proliferative and pro-apoptotic effects on HeLa cells, surpassing the performance of commonly used antitumor drugs such as paclitaxel and cisplatin. Notably, kuwanon C demonstrated superior efficacy while also being more easily accessible compared to paclitaxel. Our study demonstrates that kuwanon C exerts potent antitumor effects by its interaction with the mitochondrial and endoplasmic reticulum membranes, induces a significant production of ROS, disrupts their normal structure, inhibits cell cycle progression, and stimulates apoptotic signaling pathways, ultimately resulting in the death of HeLa tumor cells. As an isopentenyl compound derived from Morus alba, kuwanon C holds great promise as a potential candidate for the development of effective antitumor drugs.
Collapse
Affiliation(s)
| | | | | | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (G.Y.); (P.Q.); (L.C.)
| |
Collapse
|
4
|
Zhang K, Hu X, Su J, Li D, Thakur A, Gujar V, Cui H. Gastrointestinal Cancer Therapeutics via Triggering Unfolded Protein Response and Endoplasmic Reticulum Stress by 2-Arylbenzofuran. Int J Mol Sci 2024; 25:999. [PMID: 38256073 PMCID: PMC10816499 DOI: 10.3390/ijms25020999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Gastrointestinal cancers are a major global health challenge, with high mortality rates. This study investigated the anti-cancer activities of 30 monomers extracted from Morus alba L. (mulberry) against gastrointestinal cancers. Toxicological assessments revealed that most of the compounds, particularly immunotoxicity, exhibit some level of toxicity, but it is generally not life-threatening under normal conditions. Among these components, Sanggenol L, Sanggenon C, Kuwanon H, 3'-Geranyl-3-prenyl-5,7,2',4'-tetrahydroxyflavone, Morusinol, Mulberrin, Moracin P, Kuwanon E, and Kuwanon A demonstrate significant anti-cancer properties against various gastrointestinal cancers, including colon, pancreatic, and gastric cancers. The anti-cancer mechanism of these chemical components was explored in gastric cancer cells, revealing that they inhibit cell cycle and DNA replication-related gene expression, leading to the effective suppression of tumor cell growth. Additionally, they induced unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, potentially resulting in DNA damage, autophagy, and cell death. Moracin P, an active monomer characterized as a 2-arylbenzofuran, was found to induce ER stress and promote apoptosis in gastric cancer cells, confirming its potential to inhibit tumor cell growth in vitro and in vivo. These findings highlight the therapeutic potential of Morus alba L. monomers in gastrointestinal cancers, especially focusing on Moracin P as a potent inducer of ER stress and apoptosis.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Okhlahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Liu X, Zhu Y, Wang D, Feng R, Chen Z, Zheng Z, Li Y, Xu L, Zheng H, Fan Y, Yin Y, Xiao S. The natural compound Sanggenon C inhibits PRRSV infection by regulating the TRAF2/NF-κB signalling pathway. Vet Res 2023; 54:114. [PMID: 38037100 PMCID: PMC10691163 DOI: 10.1186/s13567-023-01245-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a serious infectious disease and one of the major causes of death in the global pig industry. PRRS virus (PRRSV) strains have complex and diverse genetic characteristics and cross-protection between strains is low, which complicates vaccine selection; thus, the current vaccination strategy has been greatly compromised. Therefore, it is necessary to identify effective natural compounds for the clinical treatment of PRRS. A small molecule library composed of 720 natural compounds was screened in vitro, and we found that Sanggenon C (SC) was amongst the most effective natural compound inhibitors of PRRSV infection. Compared with ribavirin, SC more significantly inhibited PRRSV infection at both the gene and protein levels and reduced the viral titres and levels of protein expression and inflammatory cytokine secretion to more effectively protect cells from PRRSV infection and damage. Mechanistically, SC inhibits activation of the NF-κB signalling pathway by promoting TRAF2 expression, thereby reducing PRRSV replication. In conclusion, by screening natural compounds, we found that SC suppresses PRRSV infection by regulating the TRAF2/NF-κB signalling pathway. This study contributes to a deeper understanding of the therapeutic targets and pathogenesis of PRRSV infection. More importantly, our results demonstrate that SC has potential as a candidate for the treatment of PRRS.
Collapse
Affiliation(s)
- Xiao Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ran Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhihao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zifang Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Lele Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
6
|
Hu X, Pan G, Luo J, Gao X, Mu Y, Wang Z, Hu X, Li C, Abbas MN, Zhang K, Zheng Y, Cui H. Kuwanon H Inhibits Melanoma Growth through Cytotoxic Endoplasmic Reticulum Stress and Impaired Autophagy Flux. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13768-13782. [PMID: 37672659 DOI: 10.1021/acs.jafc.3c02257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Although great progress has been made recently in targeted and immune-based therapies, additional treatments are needed for most melanoma patients due to acquired chemoresistance, recurrence, or metastasis. Elevated autophagy is required for the pathogenesis of melanoma to attenuate metabolic stress, protecting cancer cells from chemotherapeutics or radiation. Thus, intervention with autophagy is a promising strategy for melanoma treatment. Here, we examined a novel antimelanoma natural compound named kuwanon H (KuH), which significantly inhibited melanoma cell growth in vitro/vivo. Mechanistically, KuH induced cytotoxic endoplasmic reticulum (ER) stress, which inhibited cell viability and induced apoptosis. Meanwhile, KuH-induced ER stress mediated autophagysome formation through the ATF4-DDIT3-TRIB3-AKT-MTOR axis. Importantly, KuH impaired autophagy flux, which contributed to the anticancer effects of KuH. Finally, our results showed that KuH enhanced the sensitivity of melanoma cells to cisplatin, both in vitro and in vivo, by impairing autophagy degradation of reactive oxygen species and damaged mitochondria. Our findings indicate that KuH is a promising candidate anticancer natural product for melanoma therapy.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangzhao Pan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Jili Luo
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Xinyue Gao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Yuhang Mu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Zhi Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Xiaosong Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Chongyang Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Ying Zheng
- The Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
7
|
Chang H, Hou J, Shao Y, Xu M, Weng X, Du Y, Shi J, Zhang L, Cui H. Sanggenon C inhibits cell proliferation and induces apoptosis by regulating the MIB1/DAPK1 axis in glioblastoma. MedComm (Beijing) 2023; 4:e281. [PMID: 37346933 PMCID: PMC10279945 DOI: 10.1002/mco2.281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 06/23/2023] Open
Abstract
Sanggenon C (SC), a herbal flavonoid extracted from Cortex Mori, has been mentioned to possess more than one treasured organic properties. However, the molecular mechanism of its anti-tumor impact in glioblastoma (GBM) remains unclear. In this study, we reported that SC displayed a GBM-suppressing impact in vitro and in vivo with no apparent organ toxicity. SC dramatically suppressed cell proliferation-induced cell apoptosis in GBM cells. Mechanistically, we unveiled that SC modulated the protein expression of death associated protain kinase 1 (DAPK1) by controlling the ubiquitination and degradation of DAPK1. Quantitative proteomic and Western blot analyses showed that SC improved DAPK1 protein degradation via decreasing the expression of E3 ubiquitin ligase Mindbomb 1 (MIB1). More importantly, the effects of SC on cell proliferation and apoptosis of GBM cells have been in part reversed through DAPK1 downregulation or MIB1 overexpression, respectively. These results indicated that SC might suppress cell proliferation and induce cell apoptosis by decreasing MIB1-mediated DAPK1 degradation. Furthermore, we found that SC acted synergistically with temozolomide (TMZ), an anti-cancer drug used in GBM, resulting in elevated chemotherapeutic sensitivity of GBM to TMZ. Collectively, our data suggest that SC might be a promising anti-cancer agent for GBM therapy.
Collapse
Affiliation(s)
- Hongbo Chang
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Jianbing Hou
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Yaqian Shao
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Minghao Xu
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Xuelian Weng
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Yi Du
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Junbo Shi
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
| | - Li Zhang
- Department of Radiology and Nuclear MedicineThe First Hospital of HeBei Medical UniversityHebeiChina
| | - Hongjuan Cui
- State Key Laboratory of Resource InsectsMedical Research InstituteSouthwest UniversityChongqingChina
- Jinfeng LaboratoryChongqingChina
| |
Collapse
|
8
|
Nirmala C, Sridevi M, Aishwarya A, Perara R, Sathiyanarayanan Y. Pharmacological Prospects of Morin Conjugated Selenium Nanoparticles-Evaluation of Antimicrobial, Antioxidant, Thrombolytic, and Anticancer Activities. BIONANOSCIENCE 2023; 13:1-14. [PMID: 37361102 PMCID: PMC10169122 DOI: 10.1007/s12668-023-01116-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Abstract Selenium nanoparticles (SeNPs) have gained wide importance in the scientific community and have emerged as an optimistic therapeutic carrier agent for targeted drug delivery. In the present study, the effectiveness of nano selenium conjugated with Morin (Ba-SeNp-Mo) produced from endophytic bacteria Bacillus endophyticus reported in our earlier research was tested against various Gram-positive, Gram-negative bacterial pathogens and fungal pathogens that showed good zone of inhibition against all selected pathogens. Antioxidant activities of these NPs were studied by 1, 1-diphenyl-2- picrylhydrazyl (DPPH), 2,2'-Azino-bis-3-ethylbenzothiozoline-6-sulfonic acid (ABTS), hydrogen peroxide (H2O2), superoxide (O2-), and nitric oxide (NO) radical scavenging assays that exhibited dose-dependent free radical scavenging activity with IC50 values 6.92 ± 1.0, 16.85 ± 1.39, 31.60 ± 1.36, 18.87 ± 1.46, and 6.95 ± 1.27 μg/mL. The efficiency of DNA cleavage and thrombolytic activity of Ba-SeNp-Mo were also studied. The antiproliferative effect of Ba-SeNp-Mo was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in COLON-26 cell lines that resulted in IC50 value of 63.11 μg/mL. Further increased intracellular reactive oxygen species (ROS) levels up to 2.03 and significant early, late and necrotic cells were also observed in AO/EtBr assay. CASPASE 3 expression was upregulated to 1.22 (40 μg/mL) and 1.85 (80 μg/mL) fold. Thus, the current investigation suggested that the Ba-SeNp-Mo has offered remarkable pharmacological activity. Graphical Abstract
Collapse
Affiliation(s)
- C. Nirmala
- Department of Biotechnology, Paavai Engineering College, Paavai Institutions, Namakkal, Tamilnadu India
| | - M. Sridevi
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - A. Aishwarya
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - Richard Perara
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - Y. Sathiyanarayanan
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| |
Collapse
|
9
|
Li J, Cao X, Chu T, Lin K, Chen L, Lv J, Tan Y, Chen M, Li M, Wang K, Zheng Q, Li D. The circHMGCS1-miR-205-5p-ErBB3 axis mediated the Sanggenon C-induced anti-proliferation effects on human prostate cancer. Pharmacol Res 2023; 187:106584. [PMID: 36462326 DOI: 10.1016/j.phrs.2022.106584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Prostate cancer (PCa) is associated with a high incidence and metastasis rate globally, resulting in an unsatisfactory prognosis and a huge economic burden due to the current deficient of therapeutic strategies. As the most abundant component of Cortex Mori, Sanggenon C (SC) is well known to possess bioactivities in tumors, but its mechanism is poorly understood. Consequently, we attempted to investigate whether SC could modulate circular RNA(s) levels and hence anti-PCa development. We found that SC dramatically promoted cell apoptosis and induced G0/G1 phase arrest in PCa cell lines via the circHMGCS1-miR-205-5p-ErBB3 axis. In brief, circHMGCS1 is highly expressed in PCa and is positively correlated with the degree of malignancy. Over-expression of circHMGCS1 is not only associated with the proliferation of PCa cells but also blocks SC-induced pro-apoptotic effects. As a verified sponge of circHMGCS1, miR-205-5p is down-regulated in PCa tumors, which negatively regulates PCa cell proliferation by modulating ErBB3 expression. After miR-205-5p mimics or inhibitors were used to transfect PCa cells, the effects of circHMGCS1 OE and SC on PCa cells were completely diminished. Similar to miR-205-5p inhibitors, siErBB3 could oppose SC-triggered pro-apoptotic effects on PCa cells. All these results were confirmed in vivo. Together, SC exerts its anti-tumor effects on PCa by inhibiting circHMGCS1 expression and results in the latter losing the ability to sponge miR-205-5p. Subsequently, unfettered miR-205-5p could mostly down-regulate ErBB3 expression by binding to the 5'UTR of ErBB3 mRNA, which eventually resulted in PCa cell cycle arrest and pro-apoptosis.
Collapse
Affiliation(s)
- Jie Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Xinyue Cao
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Ting Chu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Kehao Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Lei Chen
- School of Nursing, Binzhou Medical University, 264003, Yantai, China
| | - Junlin Lv
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Yujun Tan
- Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., 273400, Linyi, China
| | - Miaomiao Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Kejun Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| |
Collapse
|
10
|
Chen XJ, Cui QX, Wang GL, Li XL, Zhou XL, Zhao HJ, Zhang MQ, Li MJ, He XJ, Zheng QS, Wang YL, Li D, Hong P. Sanggenon C Suppresses Tumorigenesis of Gastric Cancer by Blocking ERK-Drp1-Mediated Mitochondrial Fission. JOURNAL OF NATURAL PRODUCTS 2022; 85:2351-2362. [PMID: 36256535 DOI: 10.1021/acs.jnatprod.2c00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sanggenon C is a flavonoid extracted from the root bark of white mulberry, which is a traditional Chinese medicine with anti-inflammatory, antioxidative, and antitumor pharmacological effects. In this study, sanggenon C was found to inhibit human gastric cancer (GC) cell proliferation and colony formation, induce GC cell cycle arrest in the G0-G1 phase, and promote GC cell apoptosis. Moreover, sanggenon C was found to decrease the level of mitochondrial membrane potential in GC cells and inhibit mitochondrial fission. Mechanistically, RNA sequencing, bioinformatics analysis, and a series of functional analyses confirmed that sanggenon C inhibited mitochondrial fission to induce apoptosis by blocking the extracellular regulated protein kinases (ERK) signaling pathway, and constitutive activation of ERK significantly abrogated these effects. Finally, sanggenon C was found to suppress the growth of tumor xenografts in nude mice without obvious side effects to the vital organs of animals. This study reveals that sanggenon C could be a novel therapeutic strategy for GC treatment.
Collapse
Affiliation(s)
- Xiao-Jie Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Qi-Xiao Cui
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Guo-Li Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Xiao-Li Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Xiao-Lin Zhou
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Hui-Jie Zhao
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Ming-Qian Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Min-Jing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Xiao-Juan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qiu-Sheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Yu-Liang Wang
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| | - Pan Hong
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, People's Republic of China
| |
Collapse
|
11
|
Hu X, Zhang K, Pan G, Wang Y, Shen Y, Peng C, Deng L, Cui H. Cortex Mori extracts induce apoptosis and inhibit tumor invasion via blockage of the PI3K/AKT signaling in melanoma cells. Front Pharmacol 2022; 13:1007279. [PMID: 36339598 PMCID: PMC9627489 DOI: 10.3389/fphar.2022.1007279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 08/22/2023] Open
Abstract
Melanoma, the most aggressive and deadliest form of skin cancer, has attracted increased attention due to its increasing incidence worldwide. The Cortex Mori (CM) has long been used as a classical traditional Chinese medicine (TCM) to treat various diseases, including cancer. The bioactive components and underlying mechanisms, however, remain largely unknown. The current study aims to investigate the anti-melanoma effects of CM and potential mechanisms through combined network pharmacology and bioinformatic analyses, and validated by in vitro and in vivo experiments. We report here that CM has anti-melanoma activity both in vitro and in vivo. Furthermore, 25 bioactive compounds in CM were found to share 142 melanoma targets, and network pharmacology and enrichment analyses suggested that CM inhibits melanoma through multiple biological processes and signaling pathways, particularly the PI3K-AKT signaling inhibition and activation of apoptotic pathways, which were further confirmed by biochemical and histological examinations. Finally, partial CM-derived bioactive compounds were found to show anti-melanoma effects, validating the anti-melanoma potential of bioactive ingredients of CM. Taken together, these results reveal bioactive components and mechanisms of CM in inhibiting melanoma, providing them as potential anti-cancer natural products for the treatment of melanoma.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Yinggang Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Yue Shen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| | - Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, China
- Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, Chongqing, China
| |
Collapse
|
12
|
Luo SY, Zhu JY, Zou MF, Yin S, Tang GH. Mulberry Diels-Alder-type adducts: isolation, structure, bioactivity, and synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:31. [PMID: 36050566 PMCID: PMC9436459 DOI: 10.1007/s13659-022-00355-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Mulberry Diels-Alder-type adducts (MDAAs) are unique phenolic natural products biosynthetically derived from the intermolecular [4 + 2]-cycloaddition of dienophiles (mainly chalcones) and dehydroprenylphenol dienes, which are exclusively distributed in moraceous plants. A total of 166 MDAAs with diverse skeletons have been isolated and identified since 1980. Structurally, the classic MDAAs characterized by the chalcone-skeleton dienophiles can be divided into eight groups (Types A - H), while others with non-chalcone dienophiles or some variations of classic MDAAs are non-classic MDAAs (Type I). These compounds have attracted significant attention of natural products and synthetic chemists due to their complex architectures, remarkable biological activities, and synthetic challenges. The present review provides a comprehensive summary of the structural properties, bioactivities, and syntheses of MDAAs. Cited references were collected between 1980 and 2021 from the SciFinder, Web of Science, and China National Knowledge Internet (CNKI).
Collapse
Affiliation(s)
- Si-Yuan Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jun-Yu Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ming-Feng Zou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
13
|
Selenium Nanoparticles Biosynthesized by Pantoea agglomerans and Their Effects on Cellular and Physiological Parameters in the Rainbow Trout Oncorhynchus mykiss. BIOLOGY 2022; 11:biology11030463. [PMID: 35336836 PMCID: PMC8945037 DOI: 10.3390/biology11030463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary Nanoparticles (Nps), new biotechnological tools, possess unique physical and chemical properties and are increasingly being used in several fields, such as manufacture, medicine and veterinary medicine. In this work, we evaluated the effects of selenium (Se) nanoparticles stabilized with L-Cysteine (Se0Nps/L-Cys) as a nutritional supplement, to modulate immunological, oxidative status, and productive parameters in O. mykiss. The results demonstrated that Se0Nps/L-Cys showed less toxicity and higher antioxidant activity than Se0Nps and Na2SeO3. The Se0Nps/L-Cys, as a dietary supplement, had a significantly better effect on both immunological and physiological parameters, causing improvements at the productive level of O. mykiss when compared with Se0Nps and Na2SeO3. We concluded that Se0Nps sythetised by P. agglomerans, used as dietary supplement, is an environmentally friendly and promising alternative for nutritional supplementation for O. mykiss. Abstract The applications of nanoparticles (Nps) as food additives, health enhancers, and antimicrobials in animal production are increasing. The aim of this study was to evaluate the effect of selenium (Se) nanoparticles (Se0Nps) stabilized with L-cysteine (Se0Nps/L-Cys), as a nutritional supplement, on immunological, oxidative status, and productive parameters in O. mykiss. TEM and SEM-EDS showed the accumulation of spherical Se0Nps entirely composed by elemental selenium (Se0) as intracellular and extracellular deposits in Pantoea agglomerans UC-32 strain. The in vitro antioxidant capacity of Se0Nps/L-Cys was significant more efficient ROS scavengers than Se0Nps and Na2SeO3. We also evaluate the effect of Se0Nps/L-Cys on cell viability and oxidative stress in RTgill-W1, RTS-11, or T-PHKM Oncorhynchus mykiss cell lines. Se0Nps/L-Cys showed less toxic and high antioxidant activity than Se0Nps and Na2SeO3. Finally, the dietary Se0Nps/L-Cys had a significant better effect on both plasma lysozyme and respiratory burst activity (innate immune response), on tissular Gpx activity (oxidative status), and on well-being (productive parameter) of O. mykiss when it is compared to Se0Nps and Na2SeO3. Se0Nps/L-Cys is a promising alternative for nutritional supplement for O. mykiss with better performance than Na2SeO3 and Se0Nps, ease to implementation, and reduced environmental impact.
Collapse
|
14
|
Situmorang H, Hestiantoro A, Purbadi S, Flamandita D, Sahlan M. IN-SILICO dynamic analysis of Sulawesi propolis as anti-endometriosis drug: Interaction study with TNF alpha receptor, NF-kB, estrogen receptor, progesterone receptor and prostaglandin receptor. Ann Med Surg (Lond) 2021; 67:102459. [PMID: 34194730 PMCID: PMC8237281 DOI: 10.1016/j.amsu.2021.102459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Endometriosis is a disease that impacts around 10% of all women in reproductive age, with pelvic pain and infertility as its main clinical features. Current medical treatment targeting lowering estrogen activity has not shown sufficient result due its side effects and reproductive function suppression. Propolis has been widely studied, showing anti inflammation and pro-apoptosis property, that could potentially be used in the treatment of endometriosis. This study investigates the interaction between Sulawesi Propolis' active components and receptors and protein related to endometriosis pathogenesis. METHODS Active components of Sulawesi Propolis were initially identified with their targeted protein receptors. Lipinski rules were used to screen potential components. The ligands and proteins were tested using Autodock program to predict the most active compound and possible binding sites between propolis and some target proteins associated with inflammatory and apoptotic activity in endometriosis models. Receptor modelling is then performed using Swiss-Model. RESULTS These active components of Sulawesi Propolis showed a strong binding potential towards TNF- α, NF-kb, Estrogen-α, Estrogen-β, progesterone B, PGE2 EP2 and EP3 subtype respectively: Sanggenon C, Sanggenon H, Epicryptoacetalide, Chrysin-7-O-β-D-glucopyranodside, Irilone, Polydatin and Epicryptoacetalide. Compared to its negative ligand, Sulawesi Propolis displayed a stronger binding capacity to TNF-α, Estrogen-α, and Progesterone B receptors. CONCLUSION Sulawesi Propolis has the ability to interact with receptors related to reproductive function, apoptotic reactions and inflammatory processes, a significant factor associated with the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Herbert Situmorang
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Indonesia – Dr Cipto Mangunkusumo National Referral Hospital, Jl. Salemba Raya No. 6, Central Jakarta, Jakarta Capital Special Region, 10430, Indonesia
| | - Andon Hestiantoro
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Indonesia – Dr Cipto Mangunkusumo National Referral Hospital, Jl. Salemba Raya No. 6, Central Jakarta, Jakarta Capital Special Region, 10430, Indonesia
| | - Sigit Purbadi
- Department of Obstetrics and Gynecology Faculty of Medicine Universitas Indonesia – Dr Cipto Mangunkusumo National Referral Hospital, Jl. Salemba Raya No. 6, Central Jakarta, Jakarta Capital Special Region, 10430, Indonesia
| | - Darin Flamandita
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Jl. Fuad Hasan, Pancoran MAS, Kukusan, Beji, Depok City, West Java, 16424, Indonesia
| | - Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Jl. Fuad Hasan, Pancoran MAS, Kukusan, Beji, Depok City, West Java, 16424, Indonesia
| |
Collapse
|
15
|
Sanggenon C Ameliorates Cerebral Ischemia-Reperfusion Injury by Inhibiting Inflammation and Oxidative Stress through Regulating RhoA-ROCK Signaling. Inflammation 2021; 43:1476-1487. [PMID: 32240450 PMCID: PMC7378107 DOI: 10.1007/s10753-020-01225-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sanggenon C (SC), a natural flavonoid extracted from Cortex Mori (Sang Bai Pi), is reported to possess anti-inflammatory and antioxidant properties in hypoxia. The present study aimed to investigate the therapeutic potential and the underlying mechanisms of SC in cerebral ischemia-reperfusion (I/R) injury. A rat model of reversible middle cerebral artery occlusion (MCAO) was used to induce cerebral I/R injury in vivo, and SC was administrated intragastrically. Brain injuries were evaluated using Bederson scores, brain water content, and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. The levels of inflammatory factors and oxidative stress were examined using corresponding kits. Cell apoptosis was evaluated by TUNEL. Moreover, the expressions of apoptosis-related and RhoA/ROCK signaling-related proteins were detected through western blotting. In vitro, RhoA was overexpressed in oxygen-glucose deprivation and reperfusion (OGD/R)-induced PC12 cells to confirm the contribution of RhoA-ROCK signaling inhibition by SC to the neuroprotective effects post OGD/R. Pretreatment with SC significantly ameliorated the neurologic impairment, brain edema, and cerebral infarction post MCAO-reperfusion, associated with reductions of inflammation, oxidative stress, and cell apoptosis in the brain. Furthermore, SC remarkably downregulated the expression of RhoA/ROCK signaling-related proteins post MCAO-reperfusion in rats, while overexpression of RhoA reversed the beneficial effects of SC on protecting against inflammation and oxidative stress in OGD/R-induced PC12 cells. Taken together, these findings demonstrated that SC exerts neuroprotective effects after cerebral I/R injury via inhibiting inflammation and oxidative stress through regulating RhoA-ROCK signaling, suggesting a therapeutic potential of SC in cerebral I/R injury.
Collapse
|
16
|
Senavirathna L, Ma C, Chen R, Pan S. Proteomic Investigation of Glyceraldehyde-Derived Intracellular AGEs and Their Potential Influence on Pancreatic Ductal Cells. Cells 2021; 10:cells10051005. [PMID: 33923186 PMCID: PMC8145644 DOI: 10.3390/cells10051005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-derived advanced glycation end products (AGEs) play an important role in the pathogenesis of many diseases including cancer. Accumulation of intracellular AGEs could stimulate cancer induction and facilitate cancer progression. We evaluated the toxic effect of glyceraldehyde-derived intracellular AGEs on normal and malignant pancreatic ductal cells by assessing the cell viability, toxicity, and oxidative stress, followed by proteomic analysis. Our functional studies showed that pancreatic cancer cells (PANC-1 and MIA PaCa-2) were more resistant to glyceraldehyde treatment compared to normal pancreatic ductal epithelial cells (HPDE), while cytotoxicity effects were observed in all cell types. Furthermore, using 13C isotopic labeled glyceraldehyde, the proteomic data revealed a dose-dependent increment of the number of glycation adducts in both these cell types. HPDE cells showed a higher number of intracellular AGEs compared to cancer cells. At a molecular level, the glycations in the lysine residues of proteins showed a concurrent increase with the concentration of the glyceraldehyde treatment, while the arginine glycations appeared to be less affected by the glyceraldehyde doses. Further pathway analysis of these glycated proteins suggested that the glycated proteins participate in important biological processes that are major hallmarks of cancer initiation and progression, including metabolic processes, immune response, oxidative stress, apoptosis, and S100 protein binding.
Collapse
Affiliation(s)
- Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
| | - Cheng Ma
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
| | - Ru Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.S.); (C.M.)
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
17
|
Jung HJ, Seo I, Jha BK, Suh SI, Baek WK. Miconazole induces autophagic death in glioblastoma cells via reactive oxygen species-mediated endoplasmic reticulum stress. Oncol Lett 2021; 21:335. [PMID: 33692867 PMCID: PMC7933777 DOI: 10.3892/ol.2021.12596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Miconazole is an antifungal agent that is used for the treatment of superficial mycosis. However, recent studies have indicated that miconazole also exhibits potent anticancer effects in various types of cancer via the activation of apoptosis. The main aim of the present study was to observe the effect of miconazole on autophagic cell death of cancer cells. Cytotoxicity was measured by viable cell counting after miconazole treatment in glioblastoma cell lines (U343MG, U87MG and U251MG). Induction of autophagy was analyzed by examining microtubule-associated protein light chain 3 (LC3)-II expression levels using western blotting and by detecting GFP-LC3 translocation using a fluorescence microscope. Intracellular ROS production was measured using a fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate. It was found that miconazole induced autophagic cell death in the U251MG glioblastoma cell line via the generation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress response. An association between miconazole-induced ROS production and autophagy was also identified; in particular, pretreatment of the cells with a ROS scavenger resulted in a reduction in the levels of LC3-II. Miconazole-induced ER stress was associated with increases in binding immunoglobulin protein (BiP), inositol-requiring enzyme 1α (IRE1α) and CHOP expression, and phospho-eIF2α levels. The inhibition of ER stress via treatment with 4-phenylbutyric acid or BiP knockdown reduced miconazole-induced autophagy and cell death. These findings suggest that miconazole induces autophagic cell death by inducing an ROS-dependent ER stress response in U251MG glioma cancer cells and provide new insights into the potential antiproliferative effects of miconazole.
Collapse
Affiliation(s)
- Hui-Jung Jung
- Department of Microbiology, School of Medicine, Keimyung University, Dalseogu, Daegu 42601, Republic of Korea
| | - Incheol Seo
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Seong-Il Suh
- Department of Microbiology, School of Medicine, Keimyung University, Dalseogu, Daegu 42601, Republic of Korea
| | - Won-Ki Baek
- Department of Microbiology, School of Medicine, Keimyung University, Dalseogu, Daegu 42601, Republic of Korea.,Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseogu, Daegu 42601, Republic of Korea
| |
Collapse
|
18
|
Hegazy MM, Sakr AEAM, Abd El-Aziz AH, Swelum AA. Effect of adding different concentrations of L-arginine to Tris-yolk extender on the quality of sub-fertile ejaculates in buffalo. Trop Anim Health Prod 2021; 53:103. [PMID: 33417110 DOI: 10.1007/s11250-020-02499-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
To investigate the effect of supplementation of L-arginine (AR) on sub-fertile buffalo-bulls' ejaculates, 25 ejaculates of poor motility (40 to 55%) were collected by artificial vagina from 5 buffalo-bulls and extended with Tris-yolk extender (1:10) supplemented with different concentrations of AR (0, 3, 4, 5, and 6 mM). Semen was cooled gradually to 4 °C within 2 h and incubated at 4 °C for additional 2 h. Incubated semen samples were evaluated by computer-assisted semen analysis. Results showed that addition of 5 mM AR increased (P < 0.05) total sperm motility and rapid progressive motility percentages, while decreased (P < 0.05) non-motile sperm and static sperm percentages compared with AR-free (control) extender. Increasing the AR level to 6 mM increased (P < 0.05) the percentages of sperm progressive motility and rapid and slow progressive motilities, while decreased (P < 0.05) the non-progressive sperm motility percentages compared with AR-free extender. Supplementation of 5 mM AR improved (P < 0.05) sperm straight linear, curve linear, and average path velocities (36 ± 0.13, 20.6 ± 5.3, and 33.2 ± 8.5, respectively) in comparing with control and other AR treatments. Addition of AR (5 and 6 mM) improved (P < 0.05) the percentages of vitality (89.8 ± 1.9 and 80.0 ± 3.4, respectively), normality (44.3 ± 3.6 and 44.8 ± 1.5, respectively), and functional sperm (20.4 ± 8.6 and 21.0 ± 0.61, respectively), and decreased abnormal neck and tail percentages compared with AR-free extender. All AR levels decreased (P < 0.05) the abnormal neck and tail percentages. Addition of all AR levels had no significant (P > 0.05) effect on the activity of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase in semen extender. Supplementation of Tris-yolk extender with L-arginine (5 or 6 mM) can improve sperm motility, velocity, vitality, and functional sperm and can decrease tail and neck abnormalities of sub-fertile buffalo ejaculate after 4 h incubation at cool temperature.
Collapse
Affiliation(s)
- Mohamed M Hegazy
- Agricultural Research Center, Animal Production Research Institute, Dokki, Egypt
| | - Abd El-Aziz M Sakr
- Agricultural Research Center, Animal Production Research Institute, Dokki, Egypt
| | - Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, 44519, Egypt. .,Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
19
|
Phan TN, Kim O, Ha MT, Hwangbo C, Min BS, Lee JH. Albanol B from Mulberries Exerts Anti-Cancer Effect through Mitochondria ROS Production in Lung Cancer Cells and Suppresses In Vivo Tumor Growth. Int J Mol Sci 2020; 21:ijms21249502. [PMID: 33327489 PMCID: PMC7764986 DOI: 10.3390/ijms21249502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
Albanol B (ABN-B), an arylbenzofuran derivative isolated from mulberries, has been shown to have anti-Alzheimer’s disease, anti-bacterial and antioxidant activities. The aim of this study was to investigate the anti-cancer effect of this compound against lung cancer cells. The results show that ABN-B inhibited the proliferation of four human lung cancer cell lines (A549, BZR, H1975, and H226) and induced apoptosis, based on the cleavage of caspase-7 and PARP (poly (ADP-ribose) polymerase), as well as the downregulation of Bcl-2. ABN-B also induced cell cycle arrest at G2/M by down-regulating the expression of CKD1 (cyclin-dependent kinase 1) and cyclin B1, but up-regulating p21 (cyclin-dependent kinase inhibitor 1) expression. Notably, ABN-B increased the production of mitochondrial reactive oxygen species (ROS); however, treatment with mito-TEMPO (a specific mitochondrial antioxidant) blocked ABN-B-induced cell cycle arrest at G2/M and apoptosis, as well as the up-regulation of p21 and down-regulation of CDK1 and cyclin B1 induced by ABN-B. At the molecular level, ABN-B-induced mitochondrial ROS production increased the phosphorylation levels of AKT (protein kinase B) and ERK1/2 (extracellular signal-regulated kinase 1/2), while the inhibition of these kinases blocked the ABN-B-induced up-regulation of p21 and down-regulation of CDK1 and cyclin B1. Moreover, ABN-B significantly suppressed tumor growth in Ex-3LL (Lewis lung carcinoma) tumor-bearing mice. Taken together, these results suggest that ABN-B can exert an anti-cancer effect by inducing apoptosis and cell cycle arrest at G2/M through mitochondrial ROS production in lung cancer cells.
Collapse
Affiliation(s)
- Thanh Nam Phan
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24414, Korea; (T.N.P.); (O.K.)
| | - Okwha Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24414, Korea; (T.N.P.); (O.K.)
| | - Manh Tuan Ha
- College of Pharmacy, Catholic University of Daegu, Gyeongbuk 38430, Korea; (M.T.H.); (B.-S.M.)
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Byung-Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongbuk 38430, Korea; (M.T.H.); (B.-S.M.)
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24414, Korea; (T.N.P.); (O.K.)
- Correspondence: ; Tel.: +82-33-250-8519; Fax: +82-33-259-5664
| |
Collapse
|
20
|
Zhang H, Zhao F, Peng A, Guo S, Wang M, Elsabagh M, Loor JJ, Wang H. l-Arginine Inhibits Apoptosis of Ovine Intestinal Epithelial Cells through the l-Arginine-Nitric Oxide Pathway. J Nutr 2020; 150:2051-2060. [PMID: 32412630 DOI: 10.1093/jn/nxaa133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In nonruminants, many of the biological roles of l-arginine (Arg) at the intestinal level are mediated through the Arg-nitric oxide (Arg-NO) pathway. Whether the Arg-NO pathway is involved in controlling the immune response and viability in ovine intestinal epithelial cells (IOECs) is unclear. OBJECTIVES The current study aimed to examine the role of the Arg-NO pathway in apoptosis, antioxidant capacity, and mitochondrial function of IOECs. METHODS The IOECs were incubated in Arg-free DMEM supplemented with 150 μM Arg (CON) or 300 μM Arg (ARG) alone or with 350 μM Nw-nitro-l-arginine methyl ester hydrochloride (l-NAME) (CON + NAME, ARG + NAME) for 24 h. The reactive oxygen species (ROS) concentration, antioxidant capacity, and cell apoptotic percentage were determined. RESULTS Arg supplementation decreased (P < 0.05) the ROS concentration (38.9% and 22.7%) and apoptotic cell percentage (57.2% and 54.8%) relative to the CON and CON + NAME groups, respectively. Relative to the CON and ARG treatments, the l-NAME administration decreased (P < 0.05) the mRNA abundance of superoxide dismutase 2 (32% and 21.3%, respectively) and epithelial NO synthase (36% and 29.1%, respectively). Arg supplementation decreased (P < 0.05) the protein abundance of apoptosis antigen 1 (FAS) (52.0% and 43.9%) but increased (P < 0.05) those of nuclear respiratory factor 1 (31.3% and 22.9%) and inducible NO synthase (35.2% and 41.8%) relative to the CON and CON + NAME groups, respectively. CONCLUSIONS The inhibition of apoptosis in IOECs due to the increased supply of Arg is associated with the mitochondria- and FAS-dependent pathways through the activity of the Arg-NO pathway. The findings help elucidate the role of the Arg-NO pathway in IOEC growth and apoptosis.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Fangfang Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Along Peng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Shuang Guo
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey.,Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
21
|
Mármol I, Quero J, Rodríguez-Yoldi MJ, Cerrada E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers (Basel) 2019; 11:cancers11060780. [PMID: 31195711 PMCID: PMC6628079 DOI: 10.3390/cancers11060780] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the increasing incidence and high mortality associated with colorectal cancer (CRC), novel therapeutic strategies are urgently needed. Classic chemotherapy against CRC is based on oxaliplatin and other cisplatin analogues; however, platinum-based therapy lacks selectivity to cancer cells and leads to deleterious side effects. In addition, tumor resistance to oxaliplatin is related to chemotherapy failure. Gold(I) derivatives are a promising alternative to platinum complexes, since instead of interacting with DNA, they target proteins overexpressed on tumor cells, thus leading to less side effects than, but a comparable antitumor effect to, platinum derivatives. Moreover, given the huge potential of gold nanoparticles, the role of gold in CRC chemotherapy is not limited to gold(I) complexes. Gold nanoparticles have been found to be able to overcome multidrug resistance along with reduced side effects due to a more efficient uptake of classic drugs. Moreover, the use of gold nanoparticles has enhanced the effect of traditional therapies such as radiotherapy, photothermal therapy, or photodynamic therapy, and has displayed a potential role in diagnosis as a consequence of their optic properties. Herein, we have reviewed the most recent advances in the use of gold(I) derivatives and gold nanoparticles in CRC therapy.
Collapse
Affiliation(s)
- Inés Mármol
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Javier Quero
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Elena Cerrada
- Deparment of Inorganic Chemistry, University of Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, University of Zaragoza-CSIC, 50009 Zaragoza, Spain.
| |
Collapse
|
22
|
|
23
|
Kim ME, Jung I, Na JY, Lee Y, Lee J, Lee JS, Lee JS. Pseudane-VII Regulates LPS-Induced Neuroinflammation in Brain Microglia Cells through the Inhibition of iNOS Expression. Molecules 2018; 23:molecules23123196. [PMID: 30518111 PMCID: PMC6320864 DOI: 10.3390/molecules23123196] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
We previously isolated pseudane-VII from the secondary metabolites of Pseudoalteromonas sp. M2 in marine water, and demonstrated its anti-inflammatory efficacy on macrophages. However, the molecular mechanism by which pseudane-VII suppresses neuroinflammation has not yet been elucidated in brain microglia. Microglia is activated by immunological stimulation or brain injury. Activated microglia secrete proinflammatory mediators which damage neurons. Neuroinflammation appears to be associated with certain neurological diseases, including Parkinson’s disease and Alzheimer’s disease. Natural compounds that suppress microglial inflammatory responses could potentially be used to prevent neurodegenerative diseases or slow their progression. In the present study, we found that pseudane-VII suppresses neuroinflammation in lipopolysaccaride (LPS)-stimulated BV-2 microglial cells and brain. Pseudane-VII was shown to inhibit the LPS-stimulated NO, ROS production and the expression of iNOS and COX-2. To identify the signaling pathway targeted by pseudane-VII, we used western blot analysis to assess the LPS-induced phosphorylation state of p38, ERK1/2, JNK1/2, and nuclear factor-kappaB (NF-κB). We found that pseudane-VII attenuated LPS-induced phosphorylation of MAPK and NF-κB. Moreover, administration of pseudane-VII in mice significantly reduced LPS-induced iNOS expression and microglia activation in brain. Taken together, our findings suggest that pseudane-VII may represent a potential novel target for treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Mi Eun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea; (M.E.K.); (I.J.); (J.Y.N.)
| | - Inae Jung
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea; (M.E.K.); (I.J.); (J.Y.N.)
| | - Ju Yong Na
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea; (M.E.K.); (I.J.); (J.Y.N.)
| | - Yujeong Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Korea; (Y.L.); (J.L.)
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Korea; (Y.L.); (J.L.)
| | - Jong Suk Lee
- Biocenter, GyeonggidoBusiness & Science Accelerator (GBSA), Suwon, Gyeonggi-do 16229, Korea
- Correspondence: (J.S.L.); (J.S.L.); Tel.: +82-31-888-6930 (J.S.L.); +82-62-230-6651 (J.S.L.); Fax: +82-31-888-6938 (J.S.L.); +82-62-230-6650 (J.S.L.)
| | - Jun Sik Lee
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea; (M.E.K.); (I.J.); (J.Y.N.)
- Correspondence: (J.S.L.); (J.S.L.); Tel.: +82-31-888-6930 (J.S.L.); +82-62-230-6651 (J.S.L.); Fax: +82-31-888-6938 (J.S.L.); +82-62-230-6650 (J.S.L.)
| |
Collapse
|
24
|
Guo YX, Zhang GM, Yao XL, Tong R, Cheng CY, Zhang TT, Wang ST, Yang H, Wang F. Effects of nitric oxide on steroidogenesis and apoptosis in goat luteinized granulosa cells. Theriogenology 2018; 126:55-62. [PMID: 30530158 DOI: 10.1016/j.theriogenology.2018.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/10/2018] [Accepted: 12/02/2018] [Indexed: 12/30/2022]
Abstract
The aim of this study was to investigate effects of nitric oxide (NO) on steroidogenesis and apoptosis in goat luteinized granulosa cells (LGCs). We cultured goat LGCs from healthy follicles in culture medium supplemented with the NO donor sodium nitroprusside (SNP) or the NO synthase inhibitor Nω-Nitro-l-arginine methyl ester hydrochloride (l-NAME), then examined steroid synthesis, oxidative stress and apoptosis in vitro. The results showed that SNP treatment significantly increased the cGMP concentration in the LGCs (P < 0.05), whereas the l-NAME treatment significantly decreased cGMP concentration (P < 0.05). Then Inhibition of NO production significantly inhibited the expression of CYP19A1, a key gene that is involved in sex steroid hormones synthesis and is responsible for the decrease of E2. Inhibition of NO production resulted in an increased percentage of apoptosis, which was accompanied by upregulating expression levels of apoptosis-related markers BAX, CASP3 and CASP9. These data indicate that NO is required for goat LGCs steroidogenesis and cell survival. Furthermore, Inhibition of NO production decreased the expression of mitochondrial biogenesis related genes and proteins (PPARGC1A, NRF-1 and TFAM) and the mtDNA copy number. Simultaneously, inhibition of NO production suppressed the transcription and translation of SOD, GPX1, and CAT, and decreased the glutathione level and increased the 8-OHdG level. However, SNP treatment increased the expression of genes involved in mitochondrial function and biogenesis, and elevated the anti-oxidant stress system and steroid synthesis. Together, our results indicate that NO may up-regulate the expression of PPARGC1A and its downstream factors through the cGMP pathway, thereby decreasing granulosa cell apoptosis, and may participate in the regulation of granulocyte steroid production through the mitochondrial-dependent pathway.
Collapse
Affiliation(s)
- Yi-Xuan Guo
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Lei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Tong
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Yu Cheng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting-Ting Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu-Ting Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Li X, Ren Z, Wu Z, Fu Z, Xie H, Deng L, Jiang X, Chen D. Steric Effect of Antioxidant Diels-Alder-Type Adducts: A Comparison of Sanggenon C with Sanggenon D. Molecules 2018; 23:molecules23102610. [PMID: 30314378 PMCID: PMC6222520 DOI: 10.3390/molecules23102610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
Sanggenons C and D are two Diels-Alder-type adducts from Chinese crude drug Sang-bai-pi. Structurally, both sanggenons construct stereoisomers. In the study, they were comparatively determined using four antioxidant assays, including ferric ion reducing antioxidant power (FRAP) assay, Cu2+-reducing assay, 1,1-diphenyl-2-picryl-hydrazl (DPPH•)-scavenging assay, and 2,2′-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid radical (ABTS•+)-scavenging assay. Their Fe2+-binding reactions were explored using UV-Vis spectra. Finally, their cytoprotective effects were evaluated using flow cytometry. In electron transfer (ET)-based FRAP and Cu2+-reducing assays, sanggenon D was found to have lower IC50 values than sanggenon C; however, in multi-pathway-based DPPH•-scavenging and ABTS•+-scavenging assays, sanggenon C possessed lower IC50 values than sanggenon D. UV-Vis spectra suggested that sanggenon C generated a bathochromic-shift (286 nm → 302 nm) and displayed stronger UV absorption than sanggenon D. In flow cytometry, sanggenon C and sanggenon D, respectively, exhibited 31.1% and 42.0% early apoptosis-percentages towards oxidative-stressed mesenchymal stem cells (MSCs). In conclusion, both sanggenons may undergo multiple pathways (e.g., ET and Fe2+-binding) to protect MSCs against oxidative stress. In the mere ET aspect, sanggenon D possesses a higher level than sanggenon C, while in multi-pathway-based radical-scavenging, Fe2+-binding, and cytoprotection aspects, sanggenon C is more active than sanggenon D. These discrepancies can conclusively be attributed to the steric effect.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou 510006, China.
| | - Zhenxing Ren
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zimei Wu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhen Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Langyu Deng
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiaohua Jiang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China.
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
26
|
Wang H, Feng T, Guo D, Zhang M, Chen L, Zhou Y. Sanggenon C Stimulates Osteoblastic Proliferation and Differentiation, Inhibits Osteoclastic Resorption, and Ameliorates Prednisone-Induced Osteoporosis in Zebrafish Model. Molecules 2018; 23:molecules23092343. [PMID: 30217005 PMCID: PMC6225409 DOI: 10.3390/molecules23092343] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Sanggenon C (SC), which is a natural flavonoid found in the stem bark of Cortex Mori, has been discovered to have the antioxidant, anti-inflammatory, and antitumor properties. However, its effect in osteoporosis has not yet been reported. In this research, the effect of SC on the proliferation of MC3T3-E1 cells was evaluated by using the MTT assay. Alkaline phosphatase (ALP) activity and the mRNA expression of Runx2, Collagen I, OPG, and RANKL were examined. TRAP-positive cell counting and bone resorption pits were adopted to observe the effect of SC on the formation and function of osteoclasts. Next, the mRNA level of TRAP, CTSK, NFATc1, and TRAF6 of osteoclasts were measured by real-time qPCR. In addition, the anti-osteoporosis activity of SC in vivo was evaluated in the zebrafish model. Our study indicated that SC exhibited a significant stimulatory effect on MC3T3-E1 cell proliferation at 1 to 10 μM and caused an increase in ALP activity at 0.3 to 10 μM. It could upregulate the expression of Runx2, Collagen I, and increases the OPG/RANKL ratio. Furthermore, SC was found to inhibit the formation and function of osteoclasts, which is demonstrated by a lower number of TRAP-positive multinuclear cells and a fewer area of bone resorption pits compared to the control group. TRAP, CTSK, and NFATc1 were downregulated in 0.3 to 10 μM SC treated groups. In addition, 3 to 10 μM SC also inhibited the expression of TRAF6 mRNA. When prednisone-induced zebrafish was treated with 0.3, 1, 3, and 10 μM SC, higher mineralization of vertebrate column was discovered in a dose-dependent pattern, which suggests that SC could reverse the bone loss of zebrafish caused by prednisone. In summary, these findings indicated that SC has the potential to prevent or treat osteoporosis.
Collapse
Affiliation(s)
- Huijuan Wang
- Guizhou Engineering Research Center for the Exploitation and Utilization Technology of Medicine and Food Dual-Use Resources, Guizhou University, Guiyang 550025, China.
| | - Tingting Feng
- College of Pharmacy, Guizhou University of Chinese Medicine, Guiyang 550025, China.
| | - Donggui Guo
- School of Food and Pharmaceutical Manufacture Engineering, Guizhou Institute of Technology, Guiyang 550003, China.
| | - Min Zhang
- Guizhou Engineering Research Center for the Exploitation and Utilization Technology of Medicine and Food Dual-Use Resources, Guizhou University, Guiyang 550025, China.
| | - Lin Chen
- Guizhou Engineering Research Center for the Exploitation and Utilization Technology of Medicine and Food Dual-Use Resources, Guizhou University, Guiyang 550025, China.
| | - Ying Zhou
- Guizhou Engineering Research Center for the Exploitation and Utilization Technology of Medicine and Food Dual-Use Resources, Guizhou University, Guiyang 550025, China.
- College of Pharmacy, Guizhou University of Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
27
|
Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech 2018; 11:11/8/dmm033332. [PMID: 30082427 PMCID: PMC6124554 DOI: 10.1242/dmm.033332] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is a signaling molecule that plays important roles in diverse biological processes and thus its dysregulation is involved in the pathogenesis of various disorders. In cancer, NO has broad and sometimes dichotomous roles; it is involved in cancer initiation and progression, but also restricts cancer proliferation and invasion, and contributes to the anti-tumor immune response. The importance of NO in a range of cellular processes is exemplified by its tight spatial and dosage control at multiple levels, including via its transcriptional, post-translational and metabolic regulation. In this Review, we focus on the regulation of NO via the synthesis and availability of its precursor, arginine, and discuss the implications of this metabolic regulation for cancer biology and therapy. Despite the established contribution of NO to cancer pathogenesis, the implementation of NO-related cancer therapeutics remains limited, likely due to the challenge of targeting and inducing its protective functions in a cell- and dosage-specific manner. A better understanding of how arginine regulates the production of NO in cancer might thus support the development of anti-cancer drugs that target this key metabolic pathway, and other metabolic pathways involved in NO production.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
28
|
Zhang YZ, Wang CF, Zhang LF. Cucurbitacin D impedes gastric cancer cell survival via activation of the iNOS/NO and inhibition of the Akt signalling pathway. Oncol Rep 2018; 39:2595-2603. [PMID: 29658590 PMCID: PMC5983931 DOI: 10.3892/or.2018.6361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Cucurbitacin D (CuD), isolated from plants from the Cucurbitaceae family, is a potential antitumour agent since it inhibits proliferation, migration and metastasis of cancer cells. Despite CuD antitumour activity in cancer cells, the effects of CuD on gastric cancer cell lines remain unclear. The present study aimed to investigate the effects of CuD on gastric cancer cell growth and death. Human gastric cancer cell lines (AGS, SNU1 and Hs746T) were cultured and treated with different concentrations of CuD (0, 0.25, 0.5, 1 and 2 µM). Cell proliferation was assessed using Cell Counting Kit-8 assay. Oxidative stress was evaluated by generation of reactive oxygen species (ROS). Cell apoptosis was assessed by terminal deoxynucleotidyl transferase 2′-deoxyuridine-5′-triphosphate nick-end labelling (TUNEL) staining. Levels of intracellular Ca2+ and adenosine triphosphate (ATP) were also assessed. In the present study, CuD effectively inhibited cell proliferation, triggered ROS generation and induced apoptosis in gastric cancer cells (AGS, SNU1 and Hs746T). Treatment with CuD increased intracellular Ca2+ and ATP levels. CuD also stimulated the expression of inducible nitric oxide synthase (iNOS), which augmented nitric oxide production. In addition, CuD activated the mitochondrial apoptosis pathway, which increased the expression of Bax and the release of cleaved caspace-9 (C-caspase-9) and cytochrome c, decreased the expression of B-cell lymphoma 2 (Bcl-2). The mechanism of action of CuD involved the regulation of the protein kinase B/mechanistic target of rapamycin (Akt/mTOR) pathway. We confirmed the effects of CuD on gastric tumours via an in vivo xenograft gastric tumour model. In conclusion, CuD inhibited Akt and activated the iNOS pathway, leading to higher ROS and nitric oxide production, which accelerated gastric cancer cell apoptosis.
Collapse
Affiliation(s)
- Yan Zhen Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chun Feng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lian Feng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|