1
|
Ge J, Liu B, Ma L, Su J, Ding Y. Daidzein and puerarin synergistically suppress gastric cancer proliferation via STAT3/FAK pathway Inhibition. Hereditas 2025; 162:58. [PMID: 40217305 PMCID: PMC11992880 DOI: 10.1186/s41065-025-00419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is the world's health is seriously threatened by a prevalent form of aggressive tumor with a dismal prognosis. The occurrence of gastric cancer poses a concern for public health since it is a malignant tumor with an enhanced incidence and fatality level. OBJECTIVE The purpose of this study was to determine if the natural drug Daidzein (DZN) and Puerarin (PRN) together effectively suppress the proliferation of GC cells by blocking the STAT3/FAK intervention signalling pathways in BGC-823 cells. MATERIALS AND METHODS Following a 24-hour treatment with the combination of DZN and PRN, the cells were examined for a number of assays. The MTT test was used to investigate the cytotoxicity of the DZN + PNR combination. Acridine orange/ethidium bromide (AO/EtBr) dual staining experiments were utilized to investigate apoptotic alterations, and Western blotting and flow cytometry were used to assess the protein expressions of the cell survival, cell cycle, proliferation, and apoptosis proteins. RESULTS Our findings showed that, DZN and PRN possessed anticancer properties by blocking the STAT3/FAK signaling cascade. Moreover, we discovered that the DZN and PRN combo reduced the protein levels of STAT3-FAK-dependent targeted genes, such as cyclin-D1, Bcl-2, Bax, MMP-2, prevented the phosphorylation and activation of STAT3, FAK. CONCLUSION The current study's findings suggest that the simultaneous administration of DZN and PNR can stop gastric cancer cells from proliferating, trigger apoptosis, and disrupt their cell cycle.
Collapse
Affiliation(s)
- Jun Ge
- Department of Gastroenterology, Shanghai Municipal Eighth People's Hospital, Shanghai, 200233, China
| | - Binguo Liu
- Department of Pharmacy, No. 983 Hospital of the Chinese People's Liberation Army, Tianjin, 300142, China
| | - Ling Ma
- Department of Gastroenterology, Yinchuan First People's Hospital, Yinchuan Ningxia, 750001, China
| | - Jianyong Su
- Department of Plastic Surgery, Shanghai Baoshan Hospital of Integrated Chinese and Western Medicine, Shanghai, 201900, China
| | - Ying Ding
- Department General Surgery, Shaanxi Provincial Rehabilitation Hospital, Xi'an Shaanxi, 710065, China.
| |
Collapse
|
2
|
Yapar EA, Ozdemir MN, Durgun ME, Dagıstan OA, Cavalu S, Ozsoy Y, Kartal M. Nanodelivery Approaches of Phytoactives for Skin Cancers: Current and Future Perspectives. Curr Pharm Biotechnol 2025; 26:631-653. [PMID: 38616742 DOI: 10.2174/0113892010300081240329033208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
In recent years, there has been an increase in skin cancers due to external factors, especially environmental factors, and studies on treatment alternatives have gained importance. Nanomaterials are common, from sunscreen formulas to formulations designed to treat skin cancers at various stages. Using bioactives has multiple effects in treating skin cancers, which provides many advantages. In this regard, many phytochemicals gain importance with their antioxidant, anti-proliferative, anti-inflammatory, antiangiogenic, and analgesic effects. Their delivery with nanocarriers is on the agenda for phytochemicals to gain the targeted stability, effectiveness, and toxicity/safety properties. This review presents types of skin cancers, phytochemicals effective in skin cancers, and their nanocarrier-loaded studies from an up-to-date perspective.
Collapse
Affiliation(s)
- Evren Algın Yapar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Merve Nur Ozdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Türkiye
| | - Ozlem Akbal Dagıstan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Bihor, România
| | - Yıldız Ozsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakıf University, Istanbul, Türkiye
- Phytotheraphy Research Center, Bezmialem vakıf University, Istanbul, Türkiye
| |
Collapse
|
3
|
Zou Y, Jiang J, Li Y, Ding X, Fang F, Chen L. Quercetin Regulates Microglia M1/M2 Polarization and Alleviates Retinal Inflammation via ERK/STAT3 Pathway. Inflammation 2024; 47:1616-1633. [PMID: 38411775 DOI: 10.1007/s10753-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Retinal inflammation is a pivotal characteristic observed in various retinal degenerative disorders, notably age-related macular degeneration (AMD), primarily orchestrated by the activation of microglia. Targeting the inhibition of microglial activation has emerged as a therapeutic focal point. Quercetin (Qu), ubiquitously present in dietary sources and tea, has garnered attention for its anti-neuroinflammatory properties. However, the impact of Qu on retinal inflammation and the associated mechanistic pathways remains incompletely elucidated. In this study, retinal inflammation was induced in adult male C57BL/6 J mice through intraperitoneal administration of LPS. The results revealed that Qu pre-treatment induces a phenotypic shift in microglia from M1 phenotype to M2 phenotype. Furthermore, Qu attenuated retinal inflammation and stabilized the integrity of the blood-retina barrier (BRB). In vitro experiments revealed that Qu impedes microglial activation, proliferation, and migration, primarily via modulation the ERK/STAT3 signaling pathway. Notably, these actions of Qu significantly contributed to the preservation of photoreceptors. Consequently, Qu pre-treatment holds promise as an effective strategy for controlling retinal inflammation and preserving visual function.
Collapse
Affiliation(s)
- Yue Zou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Junliang Jiang
- Department of Orthopedics & Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yunqin Li
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Xinyi Ding
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Fang Fang
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Ling Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, China NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.
| |
Collapse
|
4
|
Liu XM, Wang ZH, Wei QX, Song Y, Ma XX. Equol exerts anti-tumor effects on choriocarcinoma cells by promoting TRIM21-mediated ubiquitination of ANXA2. Biol Direct 2024; 19:78. [PMID: 39242533 PMCID: PMC11378480 DOI: 10.1186/s13062-024-00519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024] Open
Abstract
Choriocarcinoma is a malignant cancer that belongs to gestational trophoblastic neoplasia (GTN). Herein, serum metabolomic analysis was performed on 29 GTN patients and 30 healthy individuals to characterize the metabolic variations during GTN progression. Ultimately 24 differential metabolites (DMs) were identified, of which, Equol was down-regulated in GTN patients, whose VIP score is the 3rd highest among the 24 DMs. As an intestinal metabolite of daidzein, the anticancer potential of Equol has been demonstrated in multiple cancers, but not choriocarcinoma. Hence, human choriocarcinoma cell lines JEG-3 and Bewo were used and JEG-3-derived subcutaneous xenograft models were developed to assess the effect of Equol on choriocarcinoma. The results suggested that Equol treatment effectively suppressed choriocarcinoma cell proliferation, induced cell apoptosis, and reduced tumorigenesis. Label-free quantitative proteomics showed that 136 proteins were significantly affected by Equol and 20 proteins were enriched in Gene Ontology terms linked to protein degradation. Tripartite motif containing 21 (TRIM21), a E3 ubiquitin ligase, was up-regulated by Equol. Equol-induced effects on choriocarcinoma cells could be reversed by TRIM21 inhibition. Annexin A2 (ANXA2) interacted with TRIM21 and its ubiquitination was modulated by TRIM21. We found that TRIM21 was responsible for proteasome-mediated degradation of ANXA2 induced by Equol, and the inhibitory effects of Equol on the malignant behaviors of choriocarcinoma cells were realized by TRIM21-mediated down-regulation of ANXA2. Moreover, β-catenin activation was inhibited by Equol, which also depended on TRIM21-mediated down-regulation of ANXA2. Taken together, Equol may be a novel candidate for the treatment for choriocarcinoma.
Collapse
Affiliation(s)
- Xiao-Mei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zi-Hao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Qian-Xue Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Yang Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiao-Xin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
5
|
Li J, Xiao F, Wang S, Fan X, He Z, Yan T, Zhang J, Yang M, Yang D. LncRNAs are involved in regulating ageing and age-related disease through the adenosine monophosphate-activated protein kinase signalling pathway. Genes Dis 2024; 11:101042. [PMID: 38966041 PMCID: PMC11222807 DOI: 10.1016/j.gendis.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/15/2023] [Indexed: 07/06/2024] Open
Abstract
A long noncoding RNA (lncRNA) is longer than 200 bp. It regulates various biological processes mainly by interacting with DNA, RNA, or protein in multiple kinds of biological processes. Adenosine monophosphate-activated protein kinase (AMPK) is activated during nutrient starvation, especially glucose starvation and oxygen deficiency (hypoxia), and exposure to toxins that inhibit mitochondrial respiratory chain complex function. AMPK is an energy switch in organisms that controls cell growth and multiple cellular processes, including lipid and glucose metabolism, thereby maintaining intracellular energy homeostasis by activating catabolism and inhibiting anabolism. The AMPK signalling pathway consists of AMPK and its upstream and downstream targets. AMPK upstream targets include proteins such as the transforming growth factor β-activated kinase 1 (TAK1), liver kinase B1 (LKB1), and calcium/calmodulin-dependent protein kinase β (CaMKKβ), and its downstream targets include proteins such as the mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1), hepatocyte nuclear factor 4α (HNF4α), and silencing information regulatory 1 (SIRT1). In general, proteins function relatively independently and cooperate. In this article, a review of the currently known lncRNAs involved in the AMPK signalling pathway is presented and insights into the regulatory mechanisms involved in human ageing and age-related diseases are provided.
Collapse
Affiliation(s)
- Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jia Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610017, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
6
|
Laddha AP, Kulkarni YA. Daidzein ameliorates peripheral neuropathy in Sprague Dawley rats. Front Pharmacol 2024; 15:1385419. [PMID: 39166118 PMCID: PMC11333240 DOI: 10.3389/fphar.2024.1385419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Neuropathy is the most common disorder comprising peripheral nerve damage in diabetic patients. Prolonged hyperglycaemia and oxidative stress cause metabolic imbalance and are the key reasons for the development of diabetic neuropathy. Daidzein, a soy isoflavone possesses potent anti-hyperglycaemic and antioxidant activity. The present study aims to check the protective effect of Daidzein in diabetic neuropathy in rats. The experimental animal model involved induction of diabetes in rats by intraperitoneal injection of streptozotocin (55 mg/kg). Following confirmation of diabetes, the diabetic rats were subjected to oral treatment with varying doses of Daidzein (25, 50, and 100 mg/kg) and pregabalin (30 mg/kg) for a duration of 4 weeks, initiated 6 weeks after diabetes induction. Results indicated that Daidzein treatment led to a significant reduction in plasma glucose levels and an improvement in body weight among diabetic animals. Moreover, Daidzein demonstrated a positive impact on sensory functions, as evidenced by the effect on tail withdrawal and response latency. Mechanical hyperalgesia and allodynia, common symptoms of diabetic neuropathy, were also significantly reduced with both Daidzein and pregabalin treatment. Notably, nerve conduction velocities exhibited improvement following the administration of Daidzein and pregabalin. Further investigation into the molecular mechanisms revealed that Daidzein treatment resulted in a notable enhancement of antioxidant enzyme levels and a reduction in the overexpression of NOX-4 in the sciatic nerve. This suggests that Daidzein's therapeutic effect is associated with the inhibition of oxidative stress via NOX-4. In summary, the findings of study suggests that, Daidzein treatment significantly attenuated diabetic neuropathy by inhibiting oxidative stress via NOX-4 inhibition.
Collapse
Affiliation(s)
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| |
Collapse
|
7
|
Choudhury SD, Kumar P, Choudhury D. Bioactive nutraceuticals as G4 stabilizers: potential cancer prevention and therapy-a critical review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3585-3616. [PMID: 38019298 DOI: 10.1007/s00210-023-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
G-quadruplexes (G4) are non-canonical, four-stranded, nucleic acid secondary structures formed in the guanine-rich sequences, where guanine nucleotides associate with each other via Hoogsteen hydrogen bonding. These structures are widely found near the functional regions of the mammalian genome, such as telomeres, oncogenic promoters, and replication origins, and play crucial regulatory roles in replication and transcription. Destabilization of G4 by various carcinogenic agents allows oncogene overexpression and extension of telomeric ends resulting in dysregulation of cellular growth-promoting oncogenesis. Therefore, targeting and stabilizing these G4 structures with potential ligands could aid cancer prevention and therapy. The field of G-quadruplex targeting is relatively nascent, although many articles have demonstrated the effect of G4 stabilization on oncogenic expressions; however, no previous study has provided a comprehensive analysis about the potency of a wide variety of nutraceuticals and some of their derivatives in targeting G4 and the lattice of oncogenic cell signaling cascade affected by them. In this review, we have discussed bioactive G4-stabilizing nutraceuticals, their sources, mode of action, and their influence on cellular signaling, and we believe our insight would bring new light to the current status of the field and motivate researchers to explore this relatively poorly studied arena.
Collapse
Affiliation(s)
- Satabdi Datta Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, 175005, India
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre for Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
8
|
Ubaid M, Salauddin, Shadani MA, Kawish SM, Albratty M, Makeen HA, Alhazmi HA, Najmi A, Zoghebi K, Halawi MA, Ali A, Alam MS, Iqbal Z, Mirza MA. Daidzein from Dietary Supplement to a Drug Candidate: An Evaluation of Potential. ACS OMEGA 2023; 8:32271-32293. [PMID: 37780202 PMCID: PMC10538961 DOI: 10.1021/acsomega.3c03741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Daidzein (DDZ) is a well-known nutraceutical supplement belonging to the class of isoflavones. It is isolated from various sources such as alfalfa, soybean, and red clover. It demonstrates a broad array of pharmacological/beneficial properties such as cardiovascular exercise, cholesterol reduction, and anticancer, antifibrotic, and antidiabetic effects, which make it effective in treating a wide range of diseases. Its structure and operation are the same as those of human estrogens, which are important in preventing osteoporosis, cancer, and postmenopausal diseases. It is thus a promising candidate for development as a phytopharmaceutical. Addressing safety, efficacy, and physicochemical properties are the primary prerequisites. DDZ is already ingested every day in varying amounts, so there should not be a significant safety risk; however, each indication requires a different dose to be determined. Some clinical trials are already being conducted globally to confirm its safety, efficacy, and therapeutic potential. Furthermore, as a result of its therapeutic influence on health, in order to establish intellectual property, patents are utilized. In light of the vast potential of eugenol, this review presents a detailed data collection on DDZ to substantiate the claim to develop it in the therapeutic category.
Collapse
Affiliation(s)
- Mohammed Ubaid
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Salauddin
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Md Andalib Shadani
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - S. M. Kawish
- School
of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Albratty
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hafiz A. Makeen
- Pharmacy
Practice Research Unit, Department of Clinical Pharmacy, College of
Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A. Alhazmi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance
Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
- Medical
Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A. Halawi
- Pharmacy
Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Department
of Haematology, Division of Cancer & Genetics School of Medicine, Cardiff University, Cardiff, Wales CF14 4XN, U.K.
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Md Shamsher Alam
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
9
|
Wei PL, Prince GMSH, Batzorig U, Huang CY, Chang YJ. ALDH2 promotes cancer stemness and metastasis in colorectal cancer through activating β-catenin signaling. J Cell Biochem 2023. [PMID: 37183314 DOI: 10.1002/jcb.30418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Colorectal cancer (CRC) is the primary cause of death from gastrointestinal cancers. Aldehyde dehydrogenase 2 (ALDH2), a crucial mitochondrial enzyme for the oxidative pathway of alcohol metabolism, plays a dual role in cancer progression. In some cancers, it is tumor suppressive; in others, it drives cancer progression. However, whether targeting ALDH2 has any therapeutic implications or prognostic value in CRC is still unclear. Here, we investigated the role of ALDH2 in CRC progression by targeting its enzymatic activity rather than gene expression. We found that inhibiting ALDH2 by CVT-10216 and daidzein significantly decrease migration and stemness properties of both DLD-1 and HCT 116 cells, whereas activating ALDH2 by Alda-1 enhances migration rate. Concomitantly, ALDH2 inhibition by both CVT-10216 and daidzein downregulates the mRNA levels of fibronectin, snail, twist, MMP7, CD44, c-Myc, SOX2, and OCT-4, which are oncogenic in the advanced stage of CRC. Furthermore, Gene Set Enrichment Analysis (GSEA) on ALDH2 co-expressed genes from The Cancer Genome Atlas (TCGA) revealed that MYC target gene sets are upregulated. We found that ALDH2 inhibition decreased the nuclear protein levels of pGSK3β serine 9 and c-Myc. This suggests that ALDH2 probably targets β-catenin signaling in CRC cells. Together, our results demonstrate the prognostic value of ALDH2 in CRC as it regulates both CRC stemness and migration. Our findings also propose that the plant-derived isoflavone daidzein could be a potential chemotherapeutic drug targeting ALDH2 in CRC.
Collapse
Affiliation(s)
- Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - G M Shazzad Hossain Prince
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Zhu Y, Yang Z, Xie Y, Yang M, Zhang Y, Deng Z, Cai L. Investigation of inhibition effect of daidzein on osteosarcoma cells based on experimental validation and systematic pharmacology analysis. PeerJ 2021; 9:e12072. [PMID: 34540371 PMCID: PMC8415282 DOI: 10.7717/peerj.12072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objective This study aims to explore the effect of daidzein, which is a natural isoflavone compound mainly extracted from soybeans, on osteosarcoma and the potential molecular mechanism. Material and Methods 143B and U2OS osteosarcoma cells were treated with gradient concentrations of daidzein, and MTT assay was used to determine the cell proliferation capacity and IC50. Hoechst 33342 staining and Annexin V-FITC/PI detection were used to determine apoptosis. Cell cycle was analyzed by flow cytometry, and migration ability were detected by transwell assays and scratch wound assay. An osteosarcoma xenograft mice model was applied to investigate the effect of daidzein on osteosarcoma in vivo. Systematic pharmacology and molecular modeling analysis were applied to predict the target of daidzein to osteosarcoma, and the target Src was verified by western blotting. We also observed the effect of daidzein on cell proliferation and apoptosis of Src-overexpressing osteosarcoma cells. Results In vitro, daidzein significantly inhibited 143B and U2OS osteosarcoma cell proliferation and migration, and induced cell cycle arrest. In vivo, daidzein exerts antitumor effects in osteosarcoma xenograft mice. After systematic screening and analysis, Src-MAPK signaling pathway was predicted as the highest-ranked pathway. Western blot demonstrated that daidzein inhibited phosphorylation of the Src-ERK pathway in osteosarcoma cells. Also, overexpression of Src could partially reverse the inhibitory effects of daidzein on osteosarcoma cell proliferation. Conclusion Daidzein exerts an antitumor effect on osteosarcoma, and the mechanism may be through the Src-ERK pathway.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhiqiang Yang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuanlong Xie
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Min Yang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yufeng Zhang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhouming Deng
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Cai
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
11
|
Zhang K, Zhai Z, Yu S, Tao Y. DNA methylation mediated down-regulation of ANGPTL4 promotes colorectal cancer metastasis by activating the ERK pathway. J Cancer 2021; 12:5473-5485. [PMID: 34405010 PMCID: PMC8364648 DOI: 10.7150/jca.52338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Colorectal cancer (CRC) imposes significant health burden and is increasing in incidence. NGPTL4 has been implicated in the development of CRC. The present study aimed to investigate the molecular mechanisms by which ANGPTL4 expression might regulate epithelial-mesenchymal transition (EMT) and the tumor microenvironment in CRC. Methods: CRC and para-carcinoma tissues were collected from 67 CRC patients. ANGPTL4 expression levels and DNA methylation of ANGPTL4 promoter region were determined. Next, the migration and invasion capacities of CRC cells were assessed. Immunofluorescence and Western blot were used to identify the signaling pathways by which ANGPTL4 mediated tumor metastasis. A tumorigenesis mice model with transplanted fibroblast cells and ANGPTL4 overexpressed CRC cells was established to investigate the effects of ANGPTL4 on the metastasis of cancer cells in vivo. Results: ANGPTL4 was significantly decreased in CRC tissues and DNA hypermethylation was involved in the regulation of ANGPTL4. Mechanistically, ANGPTL4 induced activation of cancer-associated fibroblasts in the tumor microenvironment and promoted EMT in CRC cells through the ERK signaling pathway. In vivo, the overexpression of ANGPTL4 was found to inhibit the metastasis of tumor cells in lung tissues. Conclusion: DNA hypermethylation induced ANGPTL4 downregulation promoted the activation of cancer-associated fibroblasts and epithelial mesenchymal transformation of CRC cells via the ERK signaling pathway, thereby promoting invasion and metastasis in CRC.
Collapse
Affiliation(s)
- Kunning Zhang
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Zhiwei Zhai
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Sanshui Yu
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yu Tao
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
12
|
AL-Ishaq RK, Liskova A, Kubatka P, Büsselberg D. Enzymatic Metabolism of Flavonoids by Gut Microbiota and Its Impact on Gastrointestinal Cancer. Cancers (Basel) 2021; 13:3934. [PMID: 34439088 PMCID: PMC8394324 DOI: 10.3390/cancers13163934] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevalent global health disease with a massive burden on health care providers. Internal and external factors such as obesity, smoking, diet (red meat), low socioeconomic status and infection with Helicobacter pylori are the critical risk factors of GI cancers. Flavonoids are natural phenolic compounds found abundantly in fruits and vegetables. Upon ingestion, 90% of flavonoids consumed require further enzymatic metabolism by the gut microbiome to enhance their bioavailability and absorption. Several epidemiological studies reported that consumption of flavonoids and their enzymatic conversion by gut microbes is strongly associated with the reduced risk of GI cancer development. This review summarizes the current knowledge on the enzymatic conversion of flavonoids by the human gut microbiome. It also addresses the underlying anti-GI cancer effects on metabolic pathways such as apoptosis and cellular proliferation. Overall, metabolites produced from flavonoid's enzymatic conversion illustrate anti-GI cancer effects, but the mechanisms of action need further clarification.
Collapse
Affiliation(s)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
13
|
Wang QS, Wang YL, Zhang WY, Li KD, Luo XF, Cui YL. Puerarin from Pueraria lobata alleviates the symptoms of irritable bowel syndrome-diarrhea. Food Funct 2021; 12:2211-2224. [PMID: 33595580 DOI: 10.1039/d0fo02848g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a functional bowel disorder, irritable bowel syndrome (IBS), especially IBS-diarrhea (IBS-D), affects approximately 9-20% of the population worldwide. Classical treatments for IBS usually result in some side effects and intestinal microbial disorders, which inhibit the clinical effects. Natural edible medicines with beneficial effects and few side effects have received more attention in recent years. Puerarin is the main active ingredient in pueraria and has been used in China to treat splenasthenic diarrhea and as a natural food in folk medicine for hundreds of years. However, there have been no reports of using puerarin in the treatment of IBS-D, and the underlying mechanism is also still unclear. In this study, a comprehensive model that could reflect the symptoms of IBS-D was established by combining neonatal maternal separation (NMS) and adult colonic acetic acid stimulation (ACAAS) in rats. The results showed that puerarin could reverse the abdominal pain and diarrhea in IBS-D rats. The therapeutic effect was realized by regulating the richness of the gut microbiota to maintain the stabilization of the intestinal micro-ecology. Furthermore, the possible mechanism might be related to the activity of the hypothalamic-pituitary-adrenal (HPA) axis by the suppressed expression of corticotropin-releasing hormone receptor (CRF) 1. At the same time, intestinal function was improved by enhancing the proliferation of colonic epithelial cells by upregulating the expression of p-ERK/ERK and by repairing the colonic mucus barrier by upregulating occludin expression. All these results suggest that puerarin could exert excellent therapeutic effects on IBS-D.
Collapse
Affiliation(s)
- Qiang-Song Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yi-Lun Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Wen-Yan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Kuang-Dai Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| | - Xiong-Fei Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| |
Collapse
|
14
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
15
|
Bharti R, Chopra BS, Raut S, Khatri N. Pueraria tuberosa: A Review on Traditional Uses, Pharmacology, and Phytochemistry. Front Pharmacol 2021; 11:582506. [PMID: 33708108 PMCID: PMC7941752 DOI: 10.3389/fphar.2020.582506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pueraria tuberosa (Roxb. ex Willd.) DC. (Fabaceae), also known as Indian Kudzu (vidari kand), is a perennial herb distributed throughout India and other Asian countries. Traditionally, tuber and leaves of this plant have extensively been reported for nutritional and medicinal properties in Ayurveda as well as in Chinese traditional practices. The objective of the present review is to compile and update the published data on traditional uses, pharmacological potential, and phytochemistry of compounds isolated from the plant Pueraria tuberosa. P. tuberosa extracts and its purified compounds possess multiple activities such as anticancer, anticonvulsant, antidiabetic, antifertility, anti-inflammatory, antioxidant, anti-stress, antiulcerogenic, cardioprotective, hypolipidemic, hepatoprotective, immunomodulatory, nephroprotective, nootropic, neuroprotective, and wound healing. Tuber and leaf extracts of P. tuberosa contain several bioactive constituents such as puerarin, daidzein, genistein, quercetin, irisolidone, biochanin A, biochanin B, isoorientin, and mangiferin, which possess an extensive range of pharmacological activities. The extensive range of pharmacological properties of P. tuberosa provides opportunities for further investigation and presents a new approach for the treatment of ailments. Many phytochemicals have been identified and characterized from P. tuberosa; however, some of them are still unexplored, and there is no supporting data for their activities and exact mechanisms of action. Therefore, further investigations are warranted to unravel the mechanisms of action of individual constituents of this plant.
Collapse
Affiliation(s)
- Ram Bharti
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhupinder Singh Chopra
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sachin Raut
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Neeraj Khatri
- IMTECH Centre for Animal Resources & Experimentation (iCARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Sabran A, Kumolosasi E, Jantan I, Jamal JA, Azmi N, Jasamai M. Induction of cell death and modulation of Annexin A1 by phytoestrogens in human leukemic cell lines. Saudi Pharm J 2020; 29:73-84. [PMID: 33603542 PMCID: PMC7873750 DOI: 10.1016/j.jsps.2020.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background Phytoestrogens are polyphenolic plant compounds which are structurally similar to the endogenous mammalian estrogen, 17β-estradiol. Annexin A1 (ANXA1) is an endogenous protein which inhibits cyclo-oxygenase 2 (COX-2) and phospholipase A2, signal transduction, DNA replication, cell transformation, and mediation of apoptosis. Objective This study aimed to determine the effects of selected phytoestrogens on annexin A1 (ANXA1) expression, mode of cell death and cell cycle arrest in different human leukemic cell lines. Methods Cells viability were examined by MTT assay and ANXA1 quantification via Enzyme-linked Immunosorbent Assay. Cell cycle and apoptosis were examined by flow cytometer and phagocytosis effect was evaluated using haematoxylin-eosin staining. Results Coumestrol significantly (p < 0.05) reduced the total level of ANXA1 in both K562 and U937 cells and genistein significantly (p < 0.05) reduced it in K562, Jurkat and U937 cells, meanwhile estradiol and daidzein induced similar reduction in U937 and Jurkat cells. Coumestrol and daidzein induced apoptosis in K562 and Jurkat cells, while genistein and estradiol induced apoptosis in all tested cells. Coumestrol and estradiol induced cell cycle arrest at G2/M phase in K562 and Jurkat cells with an addition of U937 cells for estradiol. Genistein induced cell cycle arrest at S phase for both K562 and Jurkat cells. However, daidzein induced cell cycle arrest at G0/G1 phase in K562, and G2/M phase of Jurkat cells. Coumestrol, genistein and estradiol induced phagocytosis in all tested cells but daidzein induced significant (p < 0.05) phagocytosis in K562 and Jurkat cells only. Conclusion The selected phytoestrogens induced cell cycle arrest, apoptosis and phagocytosis and at the same time they reduced ANXA1 level in the tested cells. The IC50 value of phytoestrogens was undetectable at the concentrations tested, their ability to induce leukemic cells death may be related with their ability to reduce the levels of ANXA1. These findings can be used as a new approach in cancer treatment particularly in leukemia.
Collapse
Affiliation(s)
- Affidah Sabran
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Jamia Azdina Jamal
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norazrina Azmi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Malina Jasamai
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Ono M, Takeshima M, Nishi A, Higuchi T, Nakano S. Genistein Suppresses v-Src-Driven Proliferative Activity by Arresting the Cell-Cycle at G2/M through Increasing p21 Level in Src-Activated Human Gallbladder Carcinoma cells. Nutr Cancer 2020; 73:1471-1479. [DOI: 10.1080/01635581.2020.1797835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Misaki Ono
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Mikako Takeshima
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Asuka Nishi
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Takako Higuchi
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Shuji Nakano
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| |
Collapse
|
18
|
Rawat S, Pathak S, Gupta G, Singh SK, Singh H, Mishra A, Gilhotra R. Recent updates on daidzein against oxidative stress and cancer. EXCLI JOURNAL 2019; 18:950-954. [PMID: 31762721 PMCID: PMC6868922 DOI: 10.17179/excli2019-1847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Sarita Rawat
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Sachchidanand Pathak
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Santosh Kumar Singh
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Himmat Singh
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| |
Collapse
|
19
|
Ji L, Li X. Retracted
: Long noncoding RNA MEG3 is a tumor suppressor in choriocarcinoma by upregulation of microRNA‐211. J Cell Physiol 2019; 234:22911-22920. [DOI: 10.1002/jcp.28853] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Li Ji
- Department of Obstetrics Jining No.1 People's Hospital Jining China
| | - Xue Li
- Department of Obstetrics Jining No.1 People's Hospital Jining China
| |
Collapse
|
20
|
Zheng W, Liu T, Sun R, Yang L, An R, Xue Y. Daidzein induces choriocarcinoma cell apoptosis in a dose-dependent manner via the mitochondrial apoptotic pathway. Mol Med Rep 2018; 17:6093-6099. [PMID: 29436666 DOI: 10.3892/mmr.2018.8604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/26/2018] [Indexed: 11/06/2022] Open
Abstract
Choriocarcinoma is a malignant gestational trophoblastic disease and relapse or drug resistance occurs in ~25% of gestational trophoblastic tumors. Cell apoptosis serves a role in the progression from hydatidiform mole to persistent gestational trophoblastic disease. It has been demonstrated that daidzein [7‑hydroxy‑3‑(4‑hydroxyphenyl)‑4H‑chromen‑4‑one] may induce apoptosis in a number of cancer types via the mitochondrial apoptotic pathway by altering the B‑cell lymphoma (Bcl)‑2/Bcl‑2 associated X, apoptosis regulator (Bax) ratio, and activating the caspase cascade. Daidzein also serves a role in regulation of production of human chorionic gonadotropin in trophoblast cells and inhibition of cell proliferation. However, few reports have been published regarding the effect of daidzein on apoptosis in choriocarcinoma. Therefore, in the present study, JAR and JEG‑3 human gestational choriocarcinoma cells were used to investigate the effect of daidzein on apoptosis of choriocarcinoma cells. Treatment with daidzein for 48 h reduced cell viability in a dose‑dependent manner. The percentages of early and late apoptotic cells also increased following treatment with daidzein in a dose‑dependent manner, with the number of late apoptotic cells increasing more prominently. Furthermore, treatment with daidzein led to apoptosis‑associated alterations in nuclear morphology of JAR and JEG-3 cells. Expression levels of cleaved poly(ADP‑ribose) polymerase, cleaved caspase‑3 and cleaved caspase‑9 increased following treatment with daidzein, whereas the Bcl‑2/Bax ratio decreased in a dose‑dependent manner. In conclusion, the results of the present study demonstrate that daidzein may induce apoptosis of choriocarcinoma cells in a dose‑dependent manner via the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Teng Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Medical College of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Rong Sun
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200012, P.R. China
| | - Lei Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ruifang An
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Xue
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|