1
|
WANG JIAHUI, GE HONGCHENG, YU ZHENGYUAN, WU LINGZHI. Non-coding RNAs as potential mediators of resistance to lung cancer immunotherapy and chemotherapy. Oncol Res 2025; 33:1033-1054. [PMID: 40296912 PMCID: PMC12034021 DOI: 10.32604/or.2024.058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 04/30/2025] Open
Abstract
Lung cancer is a common cause of cancer-related death globally. The majority of lung cancer patients initially benefit from chemotherapy and immunotherapy. However, as the treatment cycle progresses and the disease evolves, the emergence of acquired resistance leads to treatment failure. Many researches have shown that non-coding RNAs (ncRNAs) not only influence lung cancer progression but also act as potential mediators of immunotherapy and chemotherapy resistance in lung cancer, mediating drug resistance by regulating multiple targets and pathways. In addition, the regulation of immune response by ncRNAs is dualistic, forming a microenvironment for inhibits/promotes immune escape through changes in the expression of immune checkpoints. The aim of this review is to understand the effects of ncRNAs on the occurrence and development of lung cancer, focusing on the role of ncRNAs in regulating drug resistance of lung cancer.
Collapse
Affiliation(s)
- JIAHUI WANG
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - HONGCHENG GE
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310018, China
| | - ZHENGYUAN YU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - LINGZHI WU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
2
|
Maharati A, Rajabloo Y, Moghbeli M. Molecular mechanisms of mTOR-mediated cisplatin response in tumor cells. Heliyon 2025; 11:e41483. [PMID: 39834411 PMCID: PMC11743095 DOI: 10.1016/j.heliyon.2024.e41483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic methods in cancer patients. Drug efflux, detoxifying systems, DNA repair mechanisms, and drug-induced apoptosis are involved in multidrug resistance in CDDP-resistant tumor cells. Mammalian target of rapamycin (mTOR), as a serine/threonine kinase has a pivotal role in various cellular mechanisms such as autophagy, metabolism, drug efflux, and cell proliferation. Although, mTOR is mainly activated by PI3K/AKT pathway, it can also be regulated by many other signaling pathways. PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable prognosis in different cancers. Regarding, the pivotal role of mTOR in CDDP response, in the present review we discussed the molecular mechanisms that regulate mTOR mediated CDDP response in tumor cells.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Barbato A, Piscopo F, Salati M, Pollastro C, Evangelista L, Ferrante L, Limongello D, Brillante S, Iuliano A, Reggiani-Bonetti L, Salatiello M, Iaccarino A, Pisapia P, Malapelle U, Troncone G, Indrieri A, Dominici M, Franco B, Carotenuto P. A MiR181/Sirtuin1 regulatory circuit modulates drug response in biliary cancers. Clin Exp Med 2024; 24:74. [PMID: 38598008 PMCID: PMC11006774 DOI: 10.1007/s10238-024-01332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Despite recent advances, biliary tract cancer (BTC) remains one of the most lethal tumor worldwide due to late diagnosis, limited therapeutic strategies and resistance to conventional therapies. In recent years, high-throughput technologies have enabled extensive genome, and transcriptome sequencing unveiling, among others, the regulatory potential of microRNAs (miRNAs). Compelling evidence shown that miRNA are attractive therapeutic targets and promising candidates as biomarkers for various therapy-resistant tumors. The analysis of miRNA profile successfully identified miR-181c and -181d as significantly downregulated in BTC patients. Low miR-181c and -181d expression levels were correlated with worse prognosis and poor treatment efficacy. In fact, progression-free survival analysis indicated poor survival rates in miR-181c and -181d low expressing patients. The expression profile of miR-181c and -181d in BTC cell lines revealed that both miRNAs were dysregulated. Functional in vitro experiments in BTC cell lines showed that overexpression of miR-181c and -181d affected cell viability and increased sensitivity to chemotherapy compared to controls. In addition, by using bioinformatic tools we showed that the miR-181c/d functional role is determined by binding to their target SIRT1 (Sirtuin 1). Moreover, BTC patients expressing high levels of miR-181 and low SIRT1 shown an improved survival and treatment response. An integrative network analysis demonstrated that, miR-181/SIRT1 circuit had a regulatory effect on several important metabolic tumor-related processes. Our study demonstrated that miR-181c and -181d act as tumor suppressor miRNA in BTC, suggesting the potential use as therapeutic strategy in resistant cancers and as predictive biomarker in the precision medicine of BTC.
Collapse
Affiliation(s)
- Anna Barbato
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiola Piscopo
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Carla Pollastro
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Lorenzo Evangelista
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Luigi Ferrante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Davide Limongello
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Brillante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Antonella Iuliano
- Department of Mathematics, Computer Science and Economics (DIMIE), University of Basilicata, 85100, Potenza, Italy
| | - Luca Reggiani-Bonetti
- Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, 41125, Modena, Italy
| | - Maria Salatiello
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Alessia Indrieri
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, 80078, Naples, Italy
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
4
|
Wu JJ, Zhang PA, Chen MZ, Zhang Y, Du WS, Li XN, Ji GC, Jiang LD, Jiao Y, Li X. Analysis of Key Genes and miRNA-mRNA Networks Associated with Glucocorticoids Treatment in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:589-605. [PMID: 38435123 PMCID: PMC10909375 DOI: 10.2147/copd.s441716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Some patients with chronic obstructive pulmonary disease (COPD) benefit from glucocorticoid (GC) treatment, but its mechanism is unclear. Objective With the help of the Gene Expression Omnibus (GEO) database, the key genes and miRNA-mRNA related to the treatment of COPD by GCs were discussed, and the potential mechanism was explained. Methods The miRNA microarray dataset (GSE76774) and mRNA microarray dataset (GSE36221) were downloaded, and differential expression analysis were performed. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the differentially expressed genes (DEGs). The protein interaction network of the DEGs in the regulatory network was constructed with the STRING database, and the key genes were screened through Cytoscape. Potential downstream target genes regulated by differentially expressed miRNAs (DEMs) were predicted by the miRWalk3.0 database, and miRNA-mRNA regulatory networks were constructed. Finally, some research results were validated. Results ① Four DEMs and 83 DEGs were screened; ② GO and KEGG enrichment analysis mainly focused on the PI3K/Akt signalling pathway, ECM receptor interaction, etc.; ③ CD2, SLAMF7, etc. may be the key targets of GC in the treatment of COPD; ④ 18 intersection genes were predicted by the mirwalk 3.0 database, and 9 pairs of miRNA-mRNA regulatory networks were identified; ⑤ The expression of miR-320d-2 and TFCP2L1 were upregulated by dexamethasone in the COPD cell model, while the expression of miR-181a-2-3p and SLAMF7 were downregulated. Conclusion In COPD, GC may mediate the expression of the PI3K/Akt signalling pathway through miR-181a-2-3p, miR-320d-2, miR-650, and miR-155-5p, targeting its downstream signal factors. The research results provide new ideas for RNA therapy strategies of COPD, and also lay a foundation for further research.
Collapse
Affiliation(s)
- Jian-Jun Wu
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ping-An Zhang
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ming-Zhe Chen
- Infectious Disease Department, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Yi Zhang
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wei-Sha Du
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiao-Ning Li
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guo-Chao Ji
- Respiratory Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Liang-Duo Jiang
- Respiratory Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yang Jiao
- Respiratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xin Li
- Glaucoma Department, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Liu J, Zhang F, Wang J, Wang Y. MicroRNA‑mediated regulation in lung adenocarcinoma: Signaling pathways and potential therapeutic implications (Review). Oncol Rep 2023; 50:211. [PMID: 37859595 PMCID: PMC10603552 DOI: 10.3892/or.2023.8648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Lung adenocarcinoma (LUAD) poses a significant global health burden owing to its high incidence rate and unfavorable prognosis, driven by frequent recurrence and drug resistance. Understanding the biological mechanisms underlying LUAD is imperative to developing advanced therapeutic strategies. Recent research has highlighted the role of dysregulated microRNAs (miRNAs) in LUAD progression through diverse signaling pathways, including the Wnt and AKT pathways. Of particular interest is the novel pathological mechanism involving the interaction between competing endogenous RNAs (ceRNAs) and miRNAs. This review critically analyzed the impact of aberrant miRNA expression on LUAD development, shedding light on the associated signaling pathways. It also highlighted the emerging significance of ceRNA‑miRNA interactions in LUAD pathogenesis. Elucidating the intricate regulatory networks involving miRNAs and ceRNAs presents a promising avenue for the development of potential therapeutic interventions and diagnostic biomarkers in LUAD. Further research in this area is essential to advance precision medicine approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Jiye Liu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
- Department of Rehabilitation Medicine, Huludao Central Hospital, Huludao, Liaoning 125000, P.R. China
| | - Fei Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yibing Wang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
6
|
Tolue Ghasaban F, Maharati A, Akhlaghipour I, Moghbeli M. MicroRNAs as the critical regulators of autophagy-mediated cisplatin response in tumor cells. Cancer Cell Int 2023; 23:80. [PMID: 37098542 PMCID: PMC10127417 DOI: 10.1186/s12935-023-02925-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/27/2023] Open
Abstract
Chemotherapy is one of the most common therapeutic methods in advanced and metastatic tumors. Cisplatin (CDDP) is considered as one of the main first-line chemotherapy drugs in solid tumors. However, there is a high rate of CDDP resistance in cancer patients. Multi-drug resistance (MDR) as one of the main therapeutic challenges in cancer patients is associated with various cellular processes such as drug efflux, DNA repair, and autophagy. Autophagy is a cellular mechanism that protects the tumor cells toward the chemotherapeutic drugs. Therefore, autophagy regulatory factors can increase or decrease the chemotherapy response in tumor cells. MicroRNAs (miRNAs) have a pivotal role in regulation of autophagy in normal and tumor cells. Therefore, in the present review, we discussed the role of miRNAs in CDDP response through the regulation of autophagy. It has been reported that miRNAs mainly increased the CDDP sensitivity in tumor cells by inhibition of autophagy. PI3K/AKT signaling pathway and autophagy-related genes (ATGs) were the main targets of miRNAs in the regulation of autophagy-mediated CDDP response in tumor cells. This review can be an effective step to introduce the miRNAs as efficient therapeutic options to increase autophagy-mediated CDDP sensitivity in tumor cells.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Mondal P, Meeran SM. Emerging role of non-coding RNAs in resistance to platinum-based anti-cancer agents in lung cancer. Front Pharmacol 2023; 14:1105484. [PMID: 36778005 PMCID: PMC9909610 DOI: 10.3389/fphar.2023.1105484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Platinum-based drugs are the first line of therapeutics against many cancers, including lung cancer. Lung cancer is one of the leading causes of cancer-related death worldwide. Platinum-based agents target DNA and prevent replication, and transcription, leading to the inhibition of cell proliferation followed by cellular apoptosis. About twenty-three platinum-based drugs are under different stages of clinical trials, among cisplatin, carboplatin, and oxaliplatin are widely used for the treatment of various cancers. Among them, cisplatin is the most commonly used drug for cancer therapy, which binds with RNA, and hinders the cellular RNA process. However, long-term use of platinum-based drugs can cause different side effects and has been shown to develop chemoresistance, leading to poor clinical outcomes. Chemoresistance became an important challenge for cancer treatment. Platinum-based chemoresistance occurs due to the influence of intrinsic factors such as overexpression of multidrug resistance proteins, advancement of DNA repair mechanism, degradation, and deactivation of intracellular thiols. Recently, epigenetic modifications, especially non-coding RNAs (ncRNAs) mediated gene regulation, grasp the attention for reversing the sensitivity of platinum-based drugs due to their reversible nature without altering genome sequence. ncRNAs can also modulate the intrinsic and non-intrinsic mechanisms of resistance in lung cancer cells. Therefore, targeting ncRNAs could be an effective approach for developing novel therapeutics to overcome lung cancer chemoresistance. The current review article has discussed the role of ncRNA in chemoresistance and its underlying molecular mechanisms in human lung cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Syed Musthapa Meeran, ,
| |
Collapse
|
8
|
Jimenez MT, Clark ML, Wright JM, Michieletto MF, Liu S, Erickson I, Dohnalova L, Uhr GT, Tello-Cajiao J, Joannas L, Williams A, Gagliani N, Bewtra M, Tomov VT, Thaiss CA, Henao-Mejia J. The miR-181 family regulates colonic inflammation through its activity in the intestinal epithelium. J Exp Med 2022; 219:213450. [PMID: 36074090 PMCID: PMC9462864 DOI: 10.1084/jem.20212278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
The intestinal epithelium is a key physical interface that integrates dietary and microbial signals to regulate nutrient uptake and mucosal immune cell function. The transcriptional programs that regulate intestinal epithelial cell (IEC) quiescence, proliferation, and differentiation have been well characterized. However, how gene expression networks critical for IECs are posttranscriptionally regulated during homeostasis or inflammatory disease remains poorly understood. Herein, we show that a conserved family of microRNAs, miR-181, is significantly downregulated in IECs from patients with inflammatory bowel disease and mice with chemical-induced colitis. Strikingly, we showed that miR-181 expression within IECs, but not the hematopoietic system, is required for protection against severe colonic inflammation in response to epithelial injury in mice. Mechanistically, we showed that miR-181 expression increases the proliferative capacity of IECs, likely through the regulation of Wnt signaling, independently of the gut microbiota composition. As epithelial reconstitution is crucial to restore intestinal homeostasis after injury, the miR-181 family represents a potential therapeutic target against severe intestinal inflammation.
Collapse
Affiliation(s)
- Monica T Jimenez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Megan L Clark
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jasmine M Wright
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Suying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Isabel Erickson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lenka Dohnalova
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Giulia T Uhr
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Tello-Cajiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adam Williams
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nicola Gagliani
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Meenakshi Bewtra
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Vesselin T Tomov
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Christoph A Thaiss
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
9
|
Hu J, Zhang PJ, Zhang D, Chen ZH, Cao XC, Yu Y, Ge J. An autophagy-associated lncRNAs model for predicting the survival in non-small cell lung cancer patients. Front Genet 2022; 13:919857. [PMID: 36118862 PMCID: PMC9479339 DOI: 10.3389/fgene.2022.919857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can influence the proliferation, autophagy, and apoptosis of non-small cell lung cancer (NSCLC). LncRNAs also emerge as valuable prognostic factors for NSCLC patients. Consequently, we set out to discover more autophagy-associated lncRNAs. We acquired autophagy-associated genes and information on lncRNAs from The Cancer Genome Atlas database (TCGA), and the Human Autophagy Database (HADb). Then, the prognostic prediction signature was constructed through using co-expression and Cox regression analysis. The signature was constructed including 7 autophagy-associated lncRNAs (ABALON, NKILA, LINC00941, AL161431.1, AL691432.2, AC020765.2, MMP2-AS1). After that, we used univariate and multivariate Cox regression analysis to calculate the risk score. The survival analysis and ROC curve analysis confirmed good performances of the signature. GSEA indicated that the high-risk group was principally enriched in the adherens junction pathway. In addition, biological experiments showed that ABALON promoted the proliferation, metastasis and autophagy levels of NSCLC cells. These findings demonstrate that the risk signature consisting of 7 autophagy-associated lncRNAs accurately predicts the prognosis of NSCLC patients and should be investigated for potential therapeutic targets in clinic.
Collapse
Affiliation(s)
- Jing Hu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Pei-Jin Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Di Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zhao-Hui Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- *Correspondence: Yue Yu, ; Jie Ge,
| | - Jie Ge
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- *Correspondence: Yue Yu, ; Jie Ge,
| |
Collapse
|
10
|
Li HL, Deng NH, He XS, Li YH. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma. Biomark Res 2022; 10:52. [PMID: 35883139 PMCID: PMC9327212 DOI: 10.1186/s40364-022-00397-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck in Southeast Asia and southern China. The Phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway is involved in processes related to tumour initiation/progression, such as proliferation, apoptosis, metastasis, and drug resistance, and is closely related to the clinicopathological features of NPC. In addition, key genes involved in the PI3K/AKT/mTOR signalling pathway undergo many changes in NPC. More interestingly, a growing body of evidence suggests an interaction between this signalling pathway and microRNAs (miRNAs), a class of small noncoding RNAs. Therefore, in this review, we discuss the interactions between key components of the PI3K/AKT/mTOR signalling pathway and various miRNAs and their importance in NPC pathology and explore potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hai-Long Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Xiu-Sheng He
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China.
| | - Yue-Hua Li
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, P.R. China.
| |
Collapse
|
11
|
Konoshenko M, Lansukhay Y, Krasilnikov S, Laktionov P. MicroRNAs as Predictors of Lung-Cancer Resistance and Sensitivity to Cisplatin. Int J Mol Sci 2022; 23:7594. [PMID: 35886942 PMCID: PMC9321818 DOI: 10.3390/ijms23147594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Platinum-based chemotherapy, cisplatin (DDP) specifically, is the main strategy for treating lung cancer (LC). However, currently, there is a lack of predictive drug-resistance markers, and there is increased interest in the development of a reliable and sensitive panels of markers for DDP chemotherapy-effectiveness prediction. MicroRNAs represent a perspective pool of markers for chemotherapy effectiveness. OBJECTIVES Data on miRNAs associated with LC DDP chemotherapy response are summarized and analyzed. MATERIALS AND METHODS A comprehensive review of the data in the literature and an analysis of bioinformatics resources were performed. The gene targets of miRNAs, as well as their reciprocal relationships with miRNAs, were studied using several databases. RESULTS AND DISCUSSION The complex analysis of bioinformatics resources and the literature indicated that the expressions of 12 miRNAs have a high predictive potential for LC DDP chemotherapy responses. The obtained information was discussed from the point of view of the main mechanisms of LC chemoresistance. CONCLUSIONS An overview of the published data and bioinformatics resources, with respect to the predictive microRNA markers of chemotherapy response, is presented in this review. The selected microRNAs and gene panel have a high potential for predicting LC DDP sensitiveness or DDP resistance as well as for the development of a DDP co-therapy.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Yuriy Lansukhay
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Sergey Krasilnikov
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| |
Collapse
|
12
|
Is Autophagy Always a Barrier to Cisplatin Therapy? Biomolecules 2022; 12:biom12030463. [PMID: 35327655 PMCID: PMC8946631 DOI: 10.3390/biom12030463] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/10/2023] Open
Abstract
Cisplatin has long been a first-line chemotherapeutic agent in the treatment of cancer, largely for solid tumors. During the course of the past two decades, autophagy has been identified in response to cancer treatments and almost uniformly detected in studies involving cisplatin. There has been increasing recognition of autophagy as a critical factor affecting tumor cell death and tumor chemoresistance. In this review and commentary, we introduce four mechanisms of resistance to cisplatin followed by a discussion of the factors that affect the role of autophagy in cisplatin-sensitive and resistant cells and explore the two-sided outcomes that occur when autophagy inhibitors are combined with cisplatin. Our goal is to analyze the potential for the combinatorial use of cisplatin and autophagy inhibitors in the clinic.
Collapse
|
13
|
Lei Y, Chen L, Liu J, Zhong Y, Deng L. The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Front Oncol 2022; 12:841625. [PMID: 35211417 PMCID: PMC8861360 DOI: 10.3389/fonc.2022.841625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance frequently occurs in cancer treatment, which results in chemotherapy failure and is one of the most leading causes of cancer-related death worldwide. Understanding the mechanism of chemoresistance and exploring strategies to overcome chemoresistance have become an urgent need. Autophagy is a highly conserved self-degraded process in cells. The dual roles of autophagy (pro-death or pro-survival) have been implicated in cancers and chemotherapy. MicroRNA (miRNA) is a class of small non-coding molecules that regulate autophagy at the post-transcriptional level in cancer cells. The association between miRNAs and autophagy in cancer chemoresistance has been emphasized. In this review, we focus on the dual roles of miRNA-mediated autophagy in facilitating or combating chemoresistance, aiming to shed lights on the potential role of miRNAs as targets to overcome chemoresistance.
Collapse
Affiliation(s)
- Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Chen
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Mondal P, Meeran SM. microRNAs in cancer chemoresistance: The sword and the shield. Noncoding RNA Res 2021; 6:200-210. [PMID: 34977437 PMCID: PMC8669341 DOI: 10.1016/j.ncrna.2021.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a multifactorial disease and one of the leading causes of mortality worldwide. Cancer cells develop multiple strategies to reduce drug sensitivity and eventually lead to chemoresistance. Chemoresistance is initiated either by intrinsic factors or due to the prolonged use of chemotherapeutics as acquired resistance. Further, chemoresistance is also one of the major reasons behind tumor recurrence and metastasis. Therefore, overcoming chemoresistance is one of the primary challenges in cancer therapy. Several mechanisms are involved in chemoresistance. Among them, the key role of ABC transporters and tumor microenvironment have been well studied. Recently, microRNAs (miRNAs) regulation in tumor development, metastasis, and chemotherapy has got wider interest due to its role in regulating genes involved in cancer progression and therapy. Noncoding RNAs, including miRNAs, have been associated with the regulation of tumor-suppressor and tumor-promoter genes. Further, miRNA can also be used as a reliable diagnostic and prognostic marker to predict the stage and types of cancer. Recent evidences have revealed that miRNAs regulation also influences the function of drug transporters and the tumor microenvironment, which affects chemosensitivity to cancer cells. Therefore, miRNAs can be a promising target to reverse back chemosensitivity in cancer cells. This review comprehensively discusses the mechanisms involved in cancer chemoresistance and its regulation by miRNAs.
Collapse
Affiliation(s)
- Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
15
|
Qu J, Lin Z. Autophagy Regulation by Crosstalk between miRNAs and Ubiquitination System. Int J Mol Sci 2021; 22:ijms222111912. [PMID: 34769343 PMCID: PMC8585084 DOI: 10.3390/ijms222111912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes with ~22 nucleotides which are involved in the regulation of post-transcriptional gene expression. Ubiquitination and deubiquitination are common post-translational modifications in eukaryotic cells and important pathways in regulating protein degradation and signal transduction, in which E3 ubiquitin ligases and deubiquitinases (DUBs) play a decisive role. MiRNA and ubiquitination are involved in the regulation of most biological processes, including autophagy. Furthermore, in recent years, the direct interaction between miRNA and E3 ubiquitin ligases or deubiquitinases has attracted much attention, and the cross-talk between miRNA and ubiquitination system has been proved to play key regulatory roles in a variety of diseases. In this review, we summarized the advances in autophagy regulation by crosstalk between miRNA and E3 ubiquitin ligases or deubiquitinases.
Collapse
|
16
|
Zhao Y, Li A. miR-19b-3p relieves intervertebral disc degeneration through modulating PTEN/PI3K/Akt/mTOR signaling pathway. Aging (Albany NY) 2021; 13:22459-22473. [PMID: 34554926 PMCID: PMC8507280 DOI: 10.18632/aging.203553] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Emerging studies have revealed that non-coding RNAs contribute to regulating intervertebral disc degeneration (IVDD). Here, we intended to probe into the function of miR-19b-3p in IVDD evolvement. The miR-19b-3p level in the intervertebral disc (IVD) tissues of IVDD patients and IL-1β/TNF-α/hydrogen peroxide-treated human nucleus pulposus cells (HNPCs) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Also, qRT-PCR was conducted to examine the profiles of MMP-3, MMP-9, MMP-13, ADAMTS-4 and ADAMTS-5. The PTEN/PI3K/Akt/mTOR pathway was examined by Western blot (WB). The miR-19b-3p overexpression assay was carried out, and HNPC proliferation and apoptosis were compared by the cell counting kit-8 (CCK-8) assay and flow cytometry (FCM). In addition, the mechanism of action of miR-19b-3p was clarified using the PTEN inhibitor (VO-Ohpic triphosphate) or the mTOR inhibitor (Rapamycin) on the basis of IL-1β intervention and miR-19b-3p mimics transfection. Our results testified that miR-19b-3p expression was curbed in IVD tissues of the IVDD patients (vs. normal IVD tissues) and IL-1β-, TNF-α, or hydrogen peroxide-treated HNPCs. Up-regulating miR-19b-3p enhanced HNPC proliferation and hampered its apoptosis. Moreover, miR-19b-3p dampened the PTEN profile and activated the PI3K/Akt/mTOR pathway. Interestingly, attenuating PTEN reduced IL-1β-, TNF-α-, or hydrogen peroxide-mediated HNPC apoptosis and up-regulated PI3K/Akt/mTOR, while inhibiting the mTOR pathway offset the protective function of miR-19b-3p. Further mechanism studies illustrated that miR-19b-3p targeted the 3'untranslated region (UTR) of PTEN and abated the PTEN level. This research confirmed that miR-19b-3p suppressed HNPC apoptosis in the in-vitro model of IVDD by regulating PTEN/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yulin Zhao
- Department of Spine Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShanDong University, Qingdao 266035, ShanDong, China
| | - Aimin Li
- Department of Spine Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShanDong University, Qingdao 266035, ShanDong, China
| |
Collapse
|
17
|
Fodor A, Lazar AL, Buchman C, Tiperciuc B, Orasan OH, Cozma A. MicroRNAs: The Link between the Metabolic Syndrome and Oncogenesis. Int J Mol Sci 2021; 22:ijms22126337. [PMID: 34199293 PMCID: PMC8231835 DOI: 10.3390/ijms22126337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) represents a cluster of disorders that increase the risk of a plethora of conditions, in particular type two diabetes, cardiovascular diseases, and certain types of cancers. MetS is a complex entity characterized by a chronic inflammatory state that implies dysregulations of adipokins and proinflammatory cytokins together with hormonal and growth factors imbalances. Of great interest is the implication of microRNA (miRNA, miR), non-coding RNA, in cancer genesis, progression, and metastasis. The adipose tissue serves as an important source of miRs, which represent a novel class of adipokines, that play a crucial role in carcinogenesis. Altered miRs secretion in the adipose tissue, in the context of MetS, might explain their implication in the oncogenesis. The interplay between miRs expressed in adipose tissue, their dysregulation and cancer pathogenesis are still intriguing, taking into consideration the fact that miRNAs show both carcinogenic and tumor suppressor effects. The aim of our review was to discuss the latest publications concerning the implication of miRs dysregulation in MetS and their significance in tumoral signaling pathways. Furthermore, we emphasized the role of miRNAs as potential target therapies and their implication in cancer progression and metastasis.
Collapse
Affiliation(s)
- Adriana Fodor
- Department of Diabetes and Nutrtion, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Andrada Luciana Lazar
- Department of Dermatology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Cristina Buchman
- Department of Oncology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (A.F.); (A.L.L.); (C.B.)
| | - Brandusa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Olga Hilda Orasan
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| | - Angela Cozma
- Internal Medicine Department, 4th Medical Clinic “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.H.O.); (A.C.)
| |
Collapse
|
18
|
Gu JH, Liu CC, Xie JL, Ma B, Cui SM, Yang GZ, He SC. The Local Anesthetic Bupivacaine Inhibits the Progression of Non-Small Cell Lung Cancer by Inducing Autophagy Through Akt/mTOR Signaling. Front Oncol 2021; 11:616445. [PMID: 33777755 PMCID: PMC7991299 DOI: 10.3389/fonc.2021.616445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent malignancy with high mortality and poor prognosis. Bupivacaine serves as a widely used local anesthetic and presents potential anti-tumor activity. Nevertheless, the function of bupivacaine in the NSCLC development remains elusive. Here, we tried to investigate the impact of bupivacaine on the NSCLC progression. Significantly, we revealed that bupivacaine was able to reduce the proliferation and induce the apoptosis of NSCLC cells. Bupivacaine could attenuate the invasion and migration in the cells. Mechanically, the treatment of bupivacaine increased the expression ratio of light chain 3B-II (LC3B-II)/LC3B-I and the expression of Beclin-1 in the NSCLC cells. Meanwhile, the expression of the autophagic adaptor protein p62 was decreased by bupivacaine treatment in the cells. The treatment of bupivacaine attenuated the phosphorylation of AKT and mTOR in the NSCLC cells. The AKT activator SC79 and autophagy inhibitor 3-methyladenine (3-MA) reversed the bupivacaine-inhibited phosphorylation of AKT and mTOR and bupivacaine-induced autophagy, as well as the bupivacaine-attenuated NSCLC progression in the cells. Bupivacaine could inhibit the tumor growth in vivo. In conclusion, we discovered that the local anesthetic bupivacaine inhibited the progression of NSCLC by inducing autophagy through Akt/mTOR signaling. Our finding provides new insights into the mechanism by which bupivacaine attenuates the development of NSCLC. Bupivacaine may serve as a potential anti-tumor candidate for the therapeutic strategy of NSCLC.
Collapse
Affiliation(s)
- Jian-Hua Gu
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Cui-Cui Liu
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Jin-Lan Xie
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Bin Ma
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Shao-Min Cui
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Guang-Zhu Yang
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| | - Shun-Cheng He
- Department of Anesthesia, Jinan People's Hospital, Jinan, China
| |
Collapse
|
19
|
Mechanisms of resistance to chemotherapy in non-small cell lung cancer. Arch Pharm Res 2021; 44:146-164. [PMID: 33608812 DOI: 10.1007/s12272-021-01312-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC), which represents 80-85% of lung cancer cases, is one of the leading causes of human death worldwide. The majority of patients undergo an intensive and invasive treatment regimen, which may include radiotherapy, chemotherapy, targeted therapy, immunotherapy, or a combination of these, depending on disease stage and performance status. Despite advances in therapeutic regimens, the 5-year survival of NSCLC is approximately 20-30%, largely due to diagnosis at advanced stages. Conventional chemotherapy is still the standard treatment option for patients with NSCLC, especially those with advanced disease. However, the emergence of resistance to chemotherapeutic agents (chemoresistance) poses a significant obstacle to the management of patients with NSCLC. Therefore, to develop efficacious chemotherapeutic approaches for NSCLC, it is necessary to understand the mechanisms underlying chemoresistance. Several mechanisms are known to mediate chemoresistance. These include altered cellular targets for chemotherapy, decreased cellular drug concentrations, blockade of chemotherapy-induced cell cycle arrest and apoptosis, acquisition of epithelial-mesenchymal transition and cancer stem cell-like phenotypes, deregulated expression of microRNAs, epigenetic modulation, and the interaction with tumor microenvironments. In this review, we summarize the mechanisms underlying chemoresistance and tumor recurrence in NSCLC and discuss potential strategies to avoid or overcome chemoresistance.
Collapse
|
20
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
21
|
Integrated Genomics Identifies miR-181/TFAM Pathway as a Critical Driver of Drug Resistance in Melanoma. Int J Mol Sci 2021; 22:ijms22041801. [PMID: 33670365 PMCID: PMC7918089 DOI: 10.3390/ijms22041801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets and promising candidates as molecular biomarkers for various therapy-resistant tumors. However, the association between miRNAs and drug resistance in melanoma remains to be elucidated. We used an integrative genomic analysis to comprehensively study the miRNA expression profiles of drug-resistant melanoma patients and cell lines. MicroRNA-181a and -181b (miR181a/b) were identified as the most significantly down-regulated miRNAs in resistant melanoma patients and cell lines. Re-establishment of miR-181a/b expression reverses the resistance of melanoma cells to the BRAF inhibitor dabrafenib. Introduction of miR-181 mimics markedly decreases the expression of TFAM in A375 melanoma cells resistant to BRAF inhibitors. Furthermore, melanoma growth was inhibited in A375 and M14 resistant melanoma cells transfected with miR-181a/b mimics, while miR-181a/b depletion enhanced resistance in sensitive cell lines. Collectively, our study demonstrated that miR-181a/b could reverse the resistance to BRAF inhibitors in dabrafenib resistant melanoma cell lines. In addition, miR-181a and -181b are strongly down-regulated in tumor samples from patients before and after the development of resistance to targeted therapies. Finally, melanoma tissues with high miR-181a and -181b expression presented favorable outcomes in terms of Progression Free Survival, suggesting that miR-181 is a clinically relevant candidate for therapeutic development or biomarker-based therapy selection.
Collapse
|
22
|
Chen E, Li E, Liu H, Zhou Y, Wen L, Wang J, Wang Y, Ye L, Liang T. miR-26b enhances the sensitivity of hepatocellular carcinoma to Doxorubicin via USP9X-dependent degradation of p53 and regulation of autophagy. Int J Biol Sci 2021; 17:781-795. [PMID: 33767588 PMCID: PMC7975695 DOI: 10.7150/ijbs.52517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/16/2021] [Indexed: 12/30/2022] Open
Abstract
Multi-drug resistance is a major challenge to hepatocellular carcinoma (HCC) treatment, and the over-expression or deletion of microRNA (miRNA) expression is closely related to the drug-resistant properties of various cell lines. However, the underlying molecular mechanisms remain unclear. CCK-8, EdU, flow cytometry, and transmission electron microscopy were performed to determine cell viability, proliferation, apoptosis, autophagic flow, and nanoparticle characterization, respectively. In this study, the results showed that the expression of miR-26b was downregulated following doxorubicin treatment in human HCC tissues. An miR-26b mimic enhanced HCC cell doxorubicin sensitivity, except in the absence of p53 in Hep3B cells. Delivery of the proteasome inhibitor, MG132, reversed the inhibitory effect of miR-26b on the level of p53 following doxorubicin treatment. Tenovin-1 (an MDM2 inhibitor) protected p53 from ubiquitination-mediated degradation only in HepG2 cells with wild type p53. Tenovin-1 pretreatment enhanced HCC cell resistance to doxorubicin when transfected with an miR-26b mimic. Moreover, the miR-26b mimic inhibited doxorubicin-induced autophagy and the autophagy inducer, rapamycin, eliminated the differences in the drug sensitivity effect of miR-26b. In vivo, treatment with sp94dr/miR-26b mimic nanoparticles plus doxorubicin inhibited tumor growth. Our current data indicate that miR-26b enhances HCC cell sensitivity to doxorubicin through diminishing USP9X-mediated p53 de-ubiquitination caused by DNA damaging drugs and autophagy regulation. This miRNA-mediated pathway that modulates HCC will help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Enjiang Chen
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Enliang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Liu
- Department of Medical Oncology, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Yue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianxin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Department of Medical Oncology, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Disease, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
23
|
Wu LM, Liao XZ, Zhang Y, He ZR, Nie SQ, Ke B, Shi L, Zhao JF, Chen WH. Parthenolide Augments the Chemosensitivity of Non-small-Cell Lung Cancer to Cisplatin via the PI3K/AKT Signaling Pathway. Front Cell Dev Biol 2021; 8:610097. [PMID: 33614623 PMCID: PMC7892899 DOI: 10.3389/fcell.2020.610097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
The mortality rate of non-small-cell lung cancer (NSCLC) remains high worldwide. Although cisplatin-based chemotherapy may greatly enhance patient prognosis, chemotherapy resistance remains an obstacle to curing patients with NSCLC. Therefore, overcoming drug resistance is the main route to successful treatment, and combinatorial strategies may have considerable clinical value in this effort. In this study, we observed that both parthenolide (PTL) and cisplatin (DDP) inhibited the growth of NSCLC cells in a dose- and time-dependent manner. The combination of PTL and DDP presented a synergistic inhibitory effect on NSCLC at a ratio of 50:1. The combination of PTL and DDP synergistically inhibited cell migration and invasion, inhibited cell cycle progression, and induced apoptosis of A549 and PC9 cells. Bioinformatics and network pharmacology analysis indicated that PTL may primarily affect the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway. After treatment with PTL and DDP either alone or in combination, Western blot analysis revealed that the proteins levels of Bax and cleaved Caspase-3 were upregulated, while p-PI3K, p-Akt, Caspase-3, and Bcl-2 proteins were downregulated. Among these alterations, the combination of PTL and DDP was found to exhibit the most significant effects. PTL might therefore be considered as a new option for combination therapy of NSCLC.
Collapse
Affiliation(s)
- Li-Mei Wu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Zhong Liao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Zhang
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zi-Rui He
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shi-Qing Nie
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bin Ke
- Department of Traditional Chinese Medicine, Cancer Center of Sun Yat-sen University, Guangzhou, China
| | - Lin Shi
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wen-Hui Chen
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Adil MS, Khulood D, Somanath PR. Targeting Akt-associated microRNAs for cancer therapeutics. Biochem Pharmacol 2020; 189:114384. [PMID: 33347867 DOI: 10.1016/j.bcp.2020.114384] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
The uncontrolled growth and spread of abnormal cells because of activating protooncogenes and/or inactivating tumor suppressor genes are the hallmarks of cancer. The PI3K/Akt signaling is one of the most frequently activated pathways in cancer cells responsible for the regulation of cell survival and proliferation in stress and hypoxic conditions during oncogenesis. Non-coding RNAs are a large family of RNAs that are not involved in protein-coding, and microRNAs (miRNAs) are a sub-set of non-coding RNAs with a single strand of 18-25 nucleotides. miRNAs are extensively involved in the post-transcriptional regulation of gene expression and play an extensive role in the regulatory mechanisms including cell differentiation, proliferation, apoptosis, and tumorigenesis. The impact of cancer on mRNA stability and translation efficiency is extensive and therefore, cancerous tissues exhibit drastic alterations in the expression of miRNAs. miRNAs can be modulated by utilizing techniques such as miRNA mimics, miRNA antagonists, or CRISPR/Cas9. In addition to their capacity as potential targets in cancer therapy, they can be used as reliable biomarkers to diagnose the disease at the earliest stage. Recent evidence indicates that microRNA-mediated gene regulation intersects with the Akt pathway, forming an Akt-microRNA regulatory network. miRNAs and Akt in this network operate together to exert their cellular tasks. In the current review, we discuss the Akt-associated miRNAs in several cancers, their molecular regulation, and how this newly emerging knowledge may contribute greatly to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Daulat Khulood
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
25
|
Zhu X, Han J, Lan H, Lin Q, Wang Y, Sun X. A novel circular RNA hsa_circRNA_103809/miR-377-3p/GOT1 pathway regulates cisplatin-resistance in non-small cell lung cancer (NSCLC). BMC Cancer 2020; 20:1190. [PMID: 33276753 PMCID: PMC7716498 DOI: 10.1186/s12885-020-07680-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cisplatin is the first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC), and emerging evidences suggests that targeting circular RNAs (circRNAs) is an effective strategy to increase cisplatin-sensitivity in NSCLC, but the detailed mechanisms are still not fully delineated. Methods Cell proliferation, viability and apoptosis were examined by using the cell counting kit-8 (CCK-8) assay, trypan blue staining assay and Annexin V-FITC/PI double staining assay, respectively. The expression levels of cancer associated genes were measured by using the Real-Time qPCR and Western Blot analysis at transcriptional and translated levels. Dual-luciferase reporter gene system assay was conducted to validated the targeting sites among hsa_circRNA_103809, miR-377-3p and 3′ untranslated region (3’UTR) of GOT1 mRNA. The expression status, including expression levels and localization, were determined by immunohistochemistry (IHC) assay in mice tumor tissues. Results Here we identified a novel hsa_circRNA_103809/miR-377-3p/GOT1 signaling cascade which contributes to cisplatin-resistance in NSCLC in vitro and in vivo. Mechanistically, parental cisplatin-sensitive NSCLC (CS-NSCLC) cells were subjected to continuous low-dose cisplatin treatment to generate cisplatin-resistant NSCLC (CR-NSCLC) cells, and we found that hsa_circRNA_103809 and GOT1 were upregulated, while miR-377-3p was downregulated in CR-NSCLC cells but not in CS-NSCLC cells. In addition, hsa_circRNA_103809 sponged miR-337-3p to upregulate GOT1 in CS-NSCLC cells, and knock-down of hsa_circRNA_103809 enhanced the inhibiting effects of cisplatin on cell proliferation and viability, and induced cell apoptosis in CR-NSCLC cells, which were reversed by downregulating miR-377-3p and overexpressing GOT1. Consistently, overexpression of hsa_circRNA_103809 increased cisplatin-resistance in CS-NSCLC cells by regulating the miR-377-3p/GOT1 axis. Finally, silencing of hsa_circRNA_103809 aggravated the inhibiting effects of cisplatin treatment on NSCLC cell growth in vivo. Conclusions Analysis of data suggested that targeting the hsa_circRNA_103809/miR-377-3p/GOT1 pathway increased susceptibility of CR-NSCLC cells to cisplatin, and this study provided novel targets to improve the therapeutic efficacy of cisplatin for NSCLC treatment in clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07680-w.
Collapse
Affiliation(s)
- Xiang Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jing Han
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huiyin Lan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qingren Lin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yuezhen Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojiang Sun
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
26
|
Hao CC, Xu CY, Zhao XY, Luo JN, Wang G, Zhao LH, Ge X, Ge XF. Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:256. [PMID: 33228740 PMCID: PMC7687693 DOI: 10.1186/s13046-020-01772-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that radiation treatment causes an adaptive response of lung adenocarcinoma (LUAD), which in turn attenuates the lethal effect of the irradiation. Previous microarray assays manifested the change of gene expression profile after irradiation. Bioinformatics analysis of the significantly changed genes revealed that VANGL1 may notably influence the effect of radiation on LUAD. To determine the role of VANGL1, this study knocked down or overexpressed VANGL1 in LUAD. M6A level of VANGL1 mRNA was determined by M6A-IP-qPCR assay. Irradiation caused the up-regulation of VANGL1 with the increase of VANGL1 m6A level. Depletion of m6A readers, IGF2BP2/3, undermined VANGL1 mRNA stability and expression upon irradiation. miR-29b-3p expression was decreased by irradiation, however VANGL1 is a target of miR-29b-3p which was identified by Luciferase report assay. The reduction of miR-29b-3p inhibited the degradation of VANGL1 mRNA. Knockdown of VANGL1 enhanced the detrimental effect of irradiation on LUAD, as indicated by more severe DNA damage and increased percentage of apoptotic cells. Immunocoprecipitation revealed the interaction between VANGL1 with BRAF. VANGL1 increased BRAF probably through suppressing the protein degradation, which led to the increase of BRAF downstream effectors, TP53BP1 and RAD51. These effectors are involved in DNA repair after the damage. In summary, irradiation caused the up-regulation of VANGL1, which, in turn, mitigated the detrimental effect of irradiation on LUAD by protecting DNA from damage probably through activating BRAF/TP53BP1/RAD51 cascades. Increased m6A level of VANGL1 and reduced miR-29b-3p took the responsibility of VANGL1 overexpression upon irradiation.
Collapse
Affiliation(s)
- Chun-Cheng Hao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, 150040, Harbin City, Heilongjiang, China
| | - Cui-Yang Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, 150040, Harbin City, Heilongjiang, China
| | - Xin-Yu Zhao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, 150040, Harbin City, Heilongjiang, China
| | - Jia-Ning Luo
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, 150040, Harbin City, Heilongjiang, China
| | - Gang Wang
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, 150040, Harbin City, Heilongjiang, China
| | - Li-Hong Zhao
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, 150040, Harbin City, Heilongjiang, China
| | - Xiaofeng Ge
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, 150040, Harbin City, Heilongjiang, China
| | - Xiao-Feng Ge
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, 150040, Harbin City, Heilongjiang, China.
| |
Collapse
|
27
|
Peng W, Sha H, Sun X, Zou R, Zhu Y, Zhou G, Feng J. Role and mechanism of miR-187 in human cancer. Am J Transl Res 2020; 12:4873-4884. [PMID: 33042395 PMCID: PMC7540151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, approximately 22 nucleotides in length, and involved in the post-transcriptional regulation of gene expression. MiRNAs play fundamental roles in many biological processes such as the development and progression of tumors. In this review, we briefly describe the expression of miR-187 in various types of cancer and discuss the role of miR-187 in cancer development and drug resistance. It is also possible to take miR-187 as an important indicator of diagnosis and prognosis of tumors.
Collapse
Affiliation(s)
- Weiwei Peng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Huanhuan Sha
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Xun Sun
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Renrui Zou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Yue Zhu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Guoren Zhou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Rzemieniec J, Bratek E, Wnuk A, Przepiórska K, Salińska E, Kajta M. Neuroprotective effect of 3,3'-Diindolylmethane against perinatal asphyxia involves inhibition of the AhR and NMDA signaling and hypermethylation of specific genes. Apoptosis 2020; 25:747-762. [PMID: 32816128 PMCID: PMC7527327 DOI: 10.1007/s10495-020-01631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Each year, 1 million children die due to perinatal asphyxia; however, there are no effective drugs to protect the neonatal brain against hypoxic/ischemic damage. In this study, we demonstrated for the first time the neuroprotective capacity of 3,3’-diindolylmethane (DIM) in an in vivo model of rat perinatal asphyxia, which has translational value and corresponds to hypoxic/ischemic episodes in human newborns. Posttreatment with DIM restored the weight of the ipsilateral hemisphere and normalized cell number in the brain structures of rats exposed to perinatal asphyxia. DIM also downregulated the mRNA expression of HIF1A-regulated Bnip3 and Hif1a which is a hypoxic marker, and the expression of miR-181b which is an indicator of perinatal asphyxia. In addition, DIM inhibited apoptosis and oxidative stress accompanying perinatal asphyxia through: downregulation of FAS, CASP-3, CAPN1, GPx3 and SOD-1, attenuation of caspase-9 activity, and upregulation of anti-apoptotic Bcl2 mRNA. The protective effects of DIM were accompanied by the inhibition of the AhR and NMDA signaling pathways, as indicated by the reduced expression levels of AhR, ARNT, CYP1A1, GluN1 and GluN2B, which was correlated with enhanced global DNA methylation and the methylation of the Ahr and Grin2b genes. Because our study provided evidence that in rat brain undergoing perinatal asphyxia, DIM predominantly targets AhR and NMDA, we postulate that compounds that possess the ability to inhibit their signaling are promising therapeutic tools to prevent stroke.
Collapse
Affiliation(s)
- J Rzemieniec
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Bratek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - A Wnuk
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - K Przepiórska
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Salińska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - M Kajta
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
29
|
Zeng X, Wang H, He D, Jia W, Ma R. LIMD1 Increases the Sensitivity of Lung Adenocarcinoma Cells to Cisplatin via the GADD45α/p38 MAPK Signaling Pathway. Front Oncol 2020; 10:969. [PMID: 32754438 PMCID: PMC7365921 DOI: 10.3389/fonc.2020.00969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022] Open
Abstract
Objective: To investigate the effect of LIM domain-containing protein 1 (LIMD1) on the sensitivity of lung adenocarcinoma cells to cisplatin and explore the mechanism. Methods: A549 and H1299 cells were transfected with lentivirus to establish LIMD1-overexpressing cell lines and their respective controls. The protein expression of DNA damage-inducible 45 alpha (GADD45α) and p38 mitogen-activated protein kinase (MAPK) was detected by Western blot. The survival of A549-vec, A549-LIMD1, H1299-vec, and H1299-LIMD1 cells after cisplatin treatment was observed by CCK-8, and the viability was calculated accordingly. Then, SB203580 was used to inhibit the activity of the p38 MAPK signaling pathway, after which the survival of A549-vec, A549-LIMD1, H1299-vec, and H1299-LIMD1 cells in response to cisplatin was observed again by CCK-8, and the viability was calculated accordingly. Results: When LIMD1 was overexpressed in A549 and H1299 cells, the levels of GADD45α and p-p38 MAPK were increased, but total p38 MAPK expression showed no significant change. After adding 30 μM cisplatin, the optical density (OD) values of A549-LIMD1 and H1299-LIMD1 cells were significantly lower than those of their respective controls at 24, 48, and 72 h. The viability of A549-LIMD1 and H1299-LIMD1 cells was significantly lower than that of their respective controls at all the times tested (p < 0.05). The Western blot results showed that the expression of apoptotic proteins cleaved caspase 3 and cleaved PARP in cisplatin-treated A549-LIDM1 and H1299-LIMD1 cells was significantly higher than that in their respective control cells. Flow cytometry showed that the apoptosis rates of A549-LIMD1 and H1299-LIMD1 cells were significantly higher than those of their respective controls (p < 0.05). SB203580 significantly inhibited the activation of the p38 MAPK signaling pathway in lung adenocarcinoma cells; however, neither the OD values nor the viability of A549-LIMD1 cells and H1299-LIMD1 cells showed no significant difference from those of their controls at 24, 48, and 72 h after cisplatin and SB203580 treatment (p > 0.05 for both). Western blot analysis showed that after SB203580 was added, the expression of cleaved caspase 3 and cleaved PARP in A549-LIMD1 and H1299-LIMD1 cells presented no significant difference compared with that in their respective controls. Conclusion: LIMD1 increases the sensitivity of lung adenocarcinoma cells to cisplatin by activating the GADD45α/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiaofei Zeng
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hong Wang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dongsheng He
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Weikun Jia
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ruidong Ma
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
30
|
Bone marrow stromal cells-derived microRNA-181-containing extracellular vesicles inhibit ovarian cancer cell chemoresistance by downregulating MEST via the Wnt/β-catenin signaling pathway. Cancer Gene Ther 2020; 28:785-798. [PMID: 32632270 DOI: 10.1038/s41417-020-0195-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022]
Abstract
Cisplatin (DDP)-based strategies are the first-line treatment for cancers; however, resistance to DDP remains a major obstacle to cancer treatment. The current study set out to investigate the effects of microRNA-181c (miR-181c) on the resistance of ovarian cancer cells to DDP. Ovarian cancer-associated miRs as well as the target messenger RNAs were screened using microarray-based analysis followed by determining the expression patterns of miR-181c and mesoderm-specific transcript (MEST) in ovarian cancer tissues with RT-qPCR and Western blot analysis. Subsequently, dual-luciferase reporter gene assay was performed to confirm the targeting relation between miR-181c and MEST. Through gain- or loss-of-function experiments, the study explored the mechanism by which miR-181 regulated MEST to influence the resistance of ovarian cancer cells to DDP via the Wnt/β-catenin signaling pathway. Afterwards, extracellular vesicles (EVs) were isolated from bone marrow stromal cells (BMSCs) and co-cultured with ovarian cancer cells to further investigate the effects of overexpressed miR-181 delivered by BMSCs-derived EVs on ovarian cancer cell resistance to DDP. miR-181c was significantly downregulated, while MEST was up-regulated in ovarian cancer. miR-181c was verified to specifically bind to MEST. Overexpressed miR-181c depleted the expression of MEST to attenuate the resistance of ovarian cancer cells to DDP by inactivating the Wnt/β-catenin signaling pathway. Furthermore, the delivery of overexpressed miR-181c by BMSCs-derived EVs was found to suppress the resistance of ovarian cancer cells to DDP. These findings demonstrate that miR-181c delivered by BMSCs-derived EVs down-regulates MEST, to inactivate the Wnt/β-catenin signaling pathway, thus repressing the resistance of ovarian cancer cells to DDP.
Collapse
|
31
|
Wang H, Chen J, Zhang S, Zheng X, Xie S, Mao J, Cai Y, Lu X, Hu L, Shen J, Chai K, Chen W. MiR-223 regulates autophagy associated with cisplatin resistance by targeting FBXW7 in human non-small cell lung cancer. Cancer Cell Int 2020; 20:258. [PMID: 32577098 PMCID: PMC7304223 DOI: 10.1186/s12935-020-01284-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cisplatin is widely used as a first-line treatment for non-small cell lung cancer (NSCLC), but chemoresistance remains a major clinical obstacle for efficient use. As a microRNA, miR-223 was reported to promote the doxorubicin resistance of NSCLC. However, whether miR-223 is also involved in cisplatin resistance of NSCLC and the mechanism miR-223 involved in drug resistance is unclear. Accumulated evidence has shown that abnormal autophagy is associated with tumor chemoresistance. The study aimed to study the role of miR-223 on cisplatin sensitivity in NSCLC and uncover the potential mechanisms. METHODS NSCLC cells transfected with mimic or inhibitor for miR-223 was assayed for chemoresistance in vitro. MiR-223 expression was assessed by quantitative real-time PCR (qRT-PCR). Western blot were used to study the expression level of F-box/WD repeat-containing protein 7 (FBXW7) and autophagy-related protein. The effect of miR-223 on cisplatin sensitivity was examined by using CCK-8, EdU assays and Autophagic flux assay. Luciferase assays, EdU assays and small interfering RNA were performed to identify the targets of miR-223 and the mechanism by which it promotes treatment resistance. Xenograft models were established to investigate the effect of mir-223 on cisplatin sensitivity. RESULTS In the present study, we found that the level of miR-223 was significantly positively correlated with cisplatin resistance. MiR-223 overexpression made NSCLC cells resistant to cisplatin treatment. We further found that autophagy mediated miR-223-mediated cisplatin resistance in NSCLC cells. Further mechanistic research demonstrated that miR-223 directly targeted FBXW7. The overexpression of miR-223 could inhibit the level of FBXW7 protein expression, thus promoting autophagy and making NSCLC cells resistant to cisplatin. Finally, we confirmed the increased effect of cisplatin sensitivity by miR-223 Antagomir in xenograft models of NSCLC. CONCLUSIONS Our results demonstrate that miR-223 could enhance autophagy by targeting FBXW7 in NSCLC cells. Inhibition of autophagy by miR-223 knockdown provides a novel treatment strategy to alleviate cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Hui Wang
- Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053 Zhejiang China
| | - Jiabin Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Shangzhi Xie
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Xuemei Lu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Liqiang Hu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Jian Shen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Kequn Chai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, No.234, Gucui Road, Hangzhou, 310012 Zhejiang China
| |
Collapse
|
32
|
Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front Pharmacol 2020; 11:343. [PMID: 32265714 PMCID: PMC7100275 DOI: 10.3389/fphar.2020.00343] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Platinum-based anticancer drugs, including cisplatin, carboplatin, oxaliplatin, nedaplatin, and lobaplatin, are heavily applied in chemotherapy regimens. However, the intrinsic or acquired resistance severely limit the clinical application of platinum-based treatment. The underlying mechanisms are incredibly complicated. Multiple transporters participate in the active transport of platinum-based antitumor agents, and the altered expression level, localization, or activity may severely decrease the cellular platinum accumulation. Detoxification components, which are commonly increasing in resistant tumor cells, can efficiently bind to platinum agents and prevent the formation of platinum–DNA adducts, but the adducts production is the determinant step for the cytotoxicity of platinum-based antitumor agents. Even if adequate adducts have formed, tumor cells still manage to survive through increased DNA repair processes or elevated apoptosis threshold. In addition, autophagy has a profound influence on platinum resistance. This review summarizes the critical participators of platinum resistance mechanisms mentioned above and highlights the most potential therapeutic targets or predicted markers. With a deeper understanding of the underlying resistance mechanisms, new solutions would be produced to extend the clinical application of platinum-based antitumor agents largely.
Collapse
Affiliation(s)
- Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Ying J, Yang J, Liu Y. LncARSR promotes non-small-cell lung cancer progression via regulating PTEN/Akt. Am J Transl Res 2020; 12:857-866. [PMID: 32269718 PMCID: PMC7137040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 06/11/2023]
Abstract
LncRNAs have been suggested to be key modulators in many biological and pathological processes. LncARSR, a recently identified lncRNA, plays crucial roles in the progression of several cancers. However, the role of lncARSR in NSCLC is uninvestigated. In the present study, it was demonstrated that lncARSR expression was higher in NSCLC tissues than in noncancerous tissues. The expression of lncARSR was higher in four NSCLC cell lines than in a normal lung bronchial epithelial line. Further investigation demonstrated that increased lncARSR expression promoted NSCLC cell migration and growth and induced epithelial-mesenchymal transition in A549 cells. Moreover, ectopic expression of lncARSR suppressed PTEN expression and induced Akt phosphorylation in A549 cells. The expression level of PTEN was higher in NSCLC samples than in adjacent non-tumor specimens. PTEN expression was negatively correlated with lncARSR in NSCLC specimens. Furthermore, we demonstrated that overexpression of lncARSR induced NSCLC cell growth and migration via regulating the PTEN/Akt signaling pathway. These results suggest that lncARSR acts as an oncogene in NSCLC development and could serve as a new potential therapeutic target.
Collapse
Affiliation(s)
- Jie Ying
- Clinical Research Center, Xuyi People’s HospitalXuyi 211700, Jiangsu, China
| | - Jian Yang
- Clinical Research Center, Xuyi People’s HospitalXuyi 211700, Jiangsu, China
| | - Yingzi Liu
- Department of Occupational Disease, Daqing People’s HospitalDaqing 163316, Heilongjiang, China
| |
Collapse
|
34
|
Xu Z, Han X, Ou D, Liu T, Li Z, Jiang G, Liu J, Zhang J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol 2019; 104:575-587. [PMID: 31832711 DOI: 10.1007/s00253-019-10257-8] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Autophagy is a highly conserved catabolic process and participates in a variety of cellular biological activities. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, as a critical regulator of autophagy, is involved in the initiation and promotion of a series of pathological disorders including various tumors. Autophagy also participates in regulating the balance between the tumor and the tumor microenvironment. Natural products have been considered a treasure of new drug discoveries and are of great value to medicine. Mounting evidence has suggested that numerous natural products are targeting PI3K/AKT/mTOR-mediated autophagy, thereby suppressing tumor growth. Furthermore, autophagy plays a "double-edged sword" role in different tumors. Targeting PI3K/AKT/mTOR-mediated autophagy is an important therapeutic strategy for a variety of tumors, and plays important roles in enhancing the chemosensitivity of tumor cells and avoiding drug resistance. Therefore, we summarized the roles of PI3K/AKT/mTOR-mediated autophagy in tumorigenesis, progression, and drug resistance of tumors, which may be utilized to design preferably therapeutic strategies for various tumors.
Collapse
Affiliation(s)
- Zhenru Xu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Daming Ou
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Liu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zunxiong Li
- University of South China, Hengyang, Hunan, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.
| |
Collapse
|
35
|
Wang J, Hao F, Fei X, Chen Y. SPP1 functions as an enhancer of cell growth in hepatocellular carcinoma targeted by miR-181c. Am J Transl Res 2019; 11:6924-6937. [PMID: 31814897 PMCID: PMC6895505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Patients diagnosed with hepatocellular carcinoma (HCC) suffered a high risk of recurrence and poor prognosis. Identification of differentially expressed genes (DEGs) in HCC provides potential biomarkers for evaluating prognosis and specific therapeutic treatments. In this study, DEGs over-expressed in HCC specimens with a fold change over 2.0 were collected through integrative bioinformatics analysis from GEO datasets. Gene ontology and KEGG pathway enrichment were conducted by applying DAVID database. We noticed Secreted phosphoprotein 1 (SPP1) as one of the signature genes up-regulated in HCC tissues with a close relation to the tumor process. Eighty-seven paired HCC specimens from our medical center were explored to verify the aberrant expression of SPP1 by IHC and qRT-PCR assay. Depletion of SPP1 in HCC Hep3B cells was established. The cell proliferation was impaired in SPP1 depleted cells, along with a resistance of cell apoptosis by down-regulating SPP1. Intriguingly, we further validated a direct interaction between miR-181c and SPP1, which indicated a post-transcriptional regulation mechanism of SPP1 in HCC. Thus, our results suggest that SPP1 may function as an enhancer of HCC growth targeted by miR-181c, and probably provide us an innovational target for HCC diagnose and therapeutic treatment.
Collapse
Affiliation(s)
- Junqing Wang
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Fengjie Hao
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Yongjun Chen
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197 Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| |
Collapse
|
36
|
Shi L, Xu Z, Yang Q, Huang Y, Gong Y, Wang F, Ke B. IL-7-Mediated IL-7R-JAK3/STAT5 signalling pathway contributes to chemotherapeutic sensitivity in non-small-cell lung cancer. Cell Prolif 2019; 52:e12699. [PMID: 31599032 PMCID: PMC6869130 DOI: 10.1111/cpr.12699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/26/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives The chemotherapy drug resistance is a major challenge for non‐small‐cell lung cancer (NSCLC) treatment. Combination of immunotherapy and chemotherapy has shown promise for cancer. The goal of this study was to evaluate the anti‐tumour efficacy of interleukin‐7 (IL‐7) combining cisplatin against NSCLC. Materials and Methods Cell proliferation was analysed using CCK‐8 assay, EdU proliferation assay and colony‐forming assay. Cell apoptosis was evaluated using HOECHST 33342 assay and flow cytometry. The protein expression levels were analysed by Western blot. The blocking antibody against the IL‐7 receptor and the inhibitors of STAT5 and JAK3 were used to investigate the pathway involved. A xenograft model was established to assess the anti‐tumour efficacy of IL‐7 combining cisplatin in vivo. Results Here we found IL‐7R was increased in A549/DDP cells compared with A549 cells. The block of IL‐7R reversed the inhibitory effects of IL‐7 combined with cisplatin and decreased the numbers of apoptosis cells induced by treatment of IL‐7 combined with cisplatin. The JAK3 inhibitor and STAT5 inhibitor were used to identify the pathway involved. The results showed that JAK3/STAT5 pathway was involved in enhancing role of cisplatin sensitivity of NSCLC cells by IL‐7. In vivo, cisplatin significantly inhibited tumour growth and IL‐7 combined with cisplatin achieved the best therapeutic effect. Conclusion Together, IL‐7 promoted the sensitivity of NSCLC cells to cisplatin via IL‐7R‐JAK3/STAT5 signalling pathway.
Collapse
Affiliation(s)
- Lin Shi
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhaozhong Xu
- Department of Emergency, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiong Yang
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Huang
- Department of VIP Ward, Affiliated Cancer Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuxin Gong
- Department of Respiratory Diseases, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Ke
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Zhang H, Luo Y, Xu W, Li K, Liao C. Silencing long intergenic non-coding RNA 00707 enhances cisplatin sensitivity in cisplatin-resistant non-small-cell lung cancer cells by sponging miR-145. Oncol Lett 2019; 18:6261-6268. [PMID: 31788103 DOI: 10.3892/ol.2019.10959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023] Open
Abstract
The aberrant expression of long non-coding RNAs is closely associated with drug resistance in multiple types of cancer. Long intergenic non-coding RNA 00707 (LINC00707) has previously been reported to be an oncogene able to promote lung adenocarcinoma cell proliferation and metastasis. However, its role in the progression of cisplatin (DDP) resistance in non-small-cell lung cancer (NSCLC) requires further elucidation. In the present study, LINC00707 and microRNA (miR)-145 expression levels were measured using reverse transcription-quantitative PCR (RT-qPCR). MTT and flow cytometric assays were performed to evaluate the IC50 value of DDP and cell apoptosis, respectively. Bcl-2, Bax, multidrug resistance protein 1 (MRP1) and P-glycoprotein (P-gp) mRNA and protein expression were detected using RT-qPCR and western blotting, respectively. The interaction between LINC00707 and miR-145 was explored using a luciferase reporter assay. LINC00707 expression was found to be significantly upregulated in DDP-resistant A549 cells (A549/DDP) cells when compared with that in parental A549 cells. LINC00707 knockdown reduced the IC50 value of DDP, enhanced apoptosis and inhibited Bcl-2, MRP1 and P-gp expression, while promoting Bax expression in A549/DDP cells. miR-145 expression was found to be significantly decreased in A549/DDP cells when compared with in A549 cells. LINC00707 directly interacted with miR-145 and negatively regulated its expression. Furthermore, miR-145 downregulation weakened the effect of LINC00707 knockdown in A549/DDP cells. Therefore, silencing of LINC00707 enhanced DDP sensitivity in A549/DDP cells by sponging miR-145, thereby shedding light on LINC00707 and its corresponding molecular mechanisms involved in the progression of DDP resistance in NSCLC cells.
Collapse
Affiliation(s)
- Hongde Zhang
- Central Laboratory, Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, P.R. China
| | - Yi Luo
- Central Laboratory, Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, P.R. China
| | - Wenli Xu
- Central Laboratory, Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, P.R. China
| | - Kang Li
- Central Laboratory, Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, P.R. China
| | - Changzheng Liao
- Central Laboratory, Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
38
|
Liu H, Zhang J, Luo X, Zeng M, Xu L, Zhang Q, Liu H, Guo J, Xu L. Overexpression of the Long Noncoding RNA FOXD2-AS1 Promotes Cisplatin Resistance in Esophageal Squamous Cell Carcinoma Through the miR-195/Akt/mTOR Axis. Oncol Res 2019; 28:65-73. [PMID: 31558183 PMCID: PMC7851541 DOI: 10.3727/096504019x15656904013079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Emerging evidence has demonstrated that long noncoding RNAs (lncRNAs) mediate the development of esophageal squamous cell carcinoma (ESCC) via various pathophysiological pathways. This study explored the impact of the lncRNA FOXD2-AS1 on cisplatin resistance in ESCC and its possible mechanisms. Upregulation of FOXD2-AS was detected in patients with ESCC and ESCC cells that are resistant to cisplatin. In an in vitro assay, knockdown of FOXD2-AS1 noticeably inhibited cell invasion and growth, triggered cell death, and repressed the stimulation of the Akt/mTOR axis in cisplatin-resistant ESCC cells (TE-1/DDP). Conversely, the overexpression of FOXD2-AS1 remarkably increased cell invasion and growth, repressed cell death, and triggered the stimulation of the Akt/mTOR axis in TE-1/DDP cells. These findings, along with bioinformatics and validation tests, showed that FOXD2-AS1 targeted miR-195 by acting as a competing endogenous RNA. FOXD2-AS1/miR-195/Akt/mTOR axis plays a crucial role in resistance to cisplatin in ESCC cells, offering an innovative strategy to treat ESCC.
Collapse
Affiliation(s)
- Huasong Liu
- Department of Cardiothoracic Surgery, Taihe Hospital Affiliated to Hubei University of MedicineShiyan, HubeiP.R. China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital Affiliated to Hubei University of MedicineShiyan, HubeiP.R. China
| | - Xiangyu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital Affiliated to Hubei University of MedicineShiyan, HubeiP.R. China
| | - Min Zeng
- Department of Cardiothoracic Surgery, Taihe Hospital Affiliated to Hubei University of MedicineShiyan, HubeiP.R. China
| | - Liqiang Xu
- Department of Cardiothoracic Surgery, Taihe Hospital Affiliated to Hubei University of MedicineShiyan, HubeiP.R. China
| | - Qunxian Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital Affiliated to Hubei University of MedicineShiyan, HubeiP.R. China
| | - Hua Liu
- Department of Cardiothoracic Surgery, Taihe Hospital Affiliated to Hubei University of MedicineShiyan, HubeiP.R. China
| | - Jialong Guo
- Department of Cardiothoracic Surgery, Taihe Hospital Affiliated to Hubei University of MedicineShiyan, HubeiP.R. China
| | - Lanlan Xu
- Hubei University of MedicineHubeiP.R. China
| |
Collapse
|
39
|
Irani S. Emerging insights into the biology of metastasis: A review article. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:833-847. [PMID: 31579438 PMCID: PMC6760483 DOI: 10.22038/ijbms.2019.32786.7839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Metastasis means the dissemination of the cancer cells from one organ to another which is not directly connected to the primary site. Metastasis has a crucial role in the prognosis of cancer patients. A few theories, different types of cell and several molecular pathways have been proposed to explain the mechanism of metastasis. In this work, the related articles in the limited period of time, 2000-mid -2018 were reviewed, through search in PubMed, Google Scholar and Scopus database. The articles published in the last two decades related to the biology of cancer metastasis were selected and the most important factors were discussed. Metastasis is critical factor to predict survival in patients with advanced cancer and prognosis determines the treatment plan. Many different cell types and various signaling pathways control the metastatic process. Metastasis is a multistep process. Many signaling pathways and molecules are involved in metastasis. Increasing knowledge about the mechanism of metastasis can help in finding the promising targets of cancer therapy.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan,Iran, Lecturer at Griffith University, Gold Coast, Australia
| |
Collapse
|
40
|
Sun H, Zhou X, Bao Y, Xiong G, Cui Y, Zhou H. Involvement of miR-4262 in paclitaxel resistance through the regulation of PTEN in non-small cell lung cancer. Open Biol 2019; 9:180227. [PMID: 31337279 PMCID: PMC6685930 DOI: 10.1098/rsob.180227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is considered to be the primary cause of cancer-related mortalities worldwide. Paclitaxel (PTX), either as a monotherapy or in combination with other drugs, is an alternative therapy for advanced NSCLC. However, cancer cell resistance against PTX represents a major clinical problem. This study aimed to investigate the role and underlying mechanism of miR-4262 in PTX-resistant NSCLC. The levels of miR-4262 were analysed by quantitative reverse transcription polymerase chain reaction. A luciferase reporter assay and bioinformatics were used to explore the potential target gene of miR-4262. Regulation of miR-4262 and PTEN expressions in NSCLC was conducted by transfection. PTX-resistant A549 and H1299 cells were established by stepwise screening through increasing the PTX concentration in the cultures. In vivo, tumorigenesis experiments were used to explore the effects of miR-4262 and PTX. Cell proliferation, apoptosis and cell migration were detected using a CCK-8 assay, flow cytometry and Transwell migration assay, respectively. PI3 K/Akt pathway-related proteins were detected by western blot. miR-4262 expression was significantly upregulated in NSCLC tissues and cell lines, and miR-4262 targeted PTEN. In addition, miR-4262 induced PTX chemoresistance by promoting survival and migration in A549/PTX and H1299/PTX cells. Moreover, miR-4262 expression and PI3 K/Akt signalling pathway-related proteins were upregulated and PTEN was downregulated in A549/PTX and H1299/PTX. Our results indicate that miR-4262 enhances PTX resistance in NSCLC cells through targeting PTEN and activating the PI3 K/Akt signalling pathway. The inhibition of miR-4262 expression might be an improved treatment to overcome PTX resistance in NSCLC.
Collapse
Affiliation(s)
- Hongwen Sun
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Xiaoting Zhou
- Clinical Medicine 2015, Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Yanan Bao
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Guosheng Xiong
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Yue Cui
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Hua Zhou
- Department of Oncology Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| |
Collapse
|
41
|
Wang HL, Liu YC, Long MP, Zheng C, Yang JH. Blocking ROR1 enhances the roles of erlotinib in lung adenocarcinoma cell lines. Oncol Lett 2019; 18:2977-2984. [PMID: 31452776 PMCID: PMC6704288 DOI: 10.3892/ol.2019.10643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Treatment strategies involving tyrosine kinase inhibitors (TKIs) for patients with non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations have advanced significantly; however, challenges still remain regarding the development of resistance. It has been reported that receptor tyrosine kinase-like orphan receptor 1 (ROR1) acts as a hepatocyte growth factor receptor (MET) and c-Src substrate, and that the extracellular domain of ROR1 is associated with EGFR to sustain EGFR-ERBB3-PI3K signaling. Our previous study reported that blocking ROR1 significantly decreased the activity of key signal molecules in the AKT/mammalian target of rapamycin (mTOR) signaling pathway, which was associated with a significant increase of apoptosis and significant decrease of proliferation of lung adenocarcinoma cells. The present study hypothesized that inhibiting ROR1 could potentially prevent erlotinib resistance in NSCLC cell lines. Investigations were performed with two erlotinib-resistant cell lines XLA-07 and NCI-H1975, and an erlotinib-acquired-resistant cell line PC-9erlo, which was developed from its parental cell line PC-9. It was identified that the inhibition of ROR1 via small interfering RNA treatment significantly improved the anti-proliferation and apoptosis-inducing roles of erlotinib in TKI-resistant tumor cells. This was in accordance with the activity of key molecules of the AKT/mTOR signaling pathway, including glycogen synthase kinase-3α/β (GSK-3α/β), phosphatase and tensin homolog (PTEN), AKT, mTOR and ribosomal protein S6 kinase β-1 (p70S6K). The current data suggest that targeting ROR1 is a potential novel treatment strategy for patients with ROR1-positive NSCLC, particularly those with acquired resistance to EGFR-TKI.
Collapse
Affiliation(s)
- Hui-Li Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - Ming-Peng Long
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Chuan Zheng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Jia-Hui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
42
|
Liao XZ, Gao Y, Huang S, Chen ZZ, Sun LL, Liu JH, Chen HR, Yu L, Zhang JX, Lin LZ. Tanshinone IIA combined with cisplatin synergistically inhibits non-small-cell lung cancer in vitro and in vivo via down-regulating the phosphatidylinositol 3-kinase/Akt signalling pathway. Phytother Res 2019; 33:2298-2309. [PMID: 31268205 PMCID: PMC6772065 DOI: 10.1002/ptr.6392] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Cisplatin represents one of the first‐line drugs used for non‐small‐cell lung cancer treatment. However, considerable side effects and the emergence of drug resistance are becoming critical limitations to its application. Combinatorial strategies may be able to extend the use of cisplatin. Both Tanshinone IIA and cisplatin inhibit non‐small‐cell lung cancer cell growth in a time‐ and dose‐dependent manner. When Tanshinone IIA was combined with cisplatin at a ratio of 20:1, they were observed to exert a synergistic inhibitory effect on non‐small‐cell lung cancer cells. The combination treatment was shown to impair cell migration and invasion, arrest the cell cycle in the S phases, and induce apoptosis in A549 and PC9 cells in a synergistic manner. KEGG pathway analysis and molecular docking indicated that Tanshinone IIA might mainly influence the phosphatidylinositol 3‐kinase‐Akt signalling pathway. In all treated groups, the expression levels of Bax and cleaved Caspase‐3 were up‐regulated, whereas the expression levels of Bcl‐2, Caspase‐3, p‐Akt, and p‐PI3K proteins were down‐regulated. Among these, the combination of Tan IIA and cisplatin exhibited the most significant difference. Tanshinone IIA may function as a novel option for combination therapy for non‐small‐cell lung cancer treatment.
Collapse
Affiliation(s)
- Xiao-Zhong Liao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Gao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sheng Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhuang-Zhong Chen
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Ling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Hui Liu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Han-Rui Chen
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Yu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Xing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Zhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
43
|
Zhai F, Chen X, He Q, Zhang H, Hu Y, Wang D, Liu S, Zhang Y. MicroRNA-181 inhibits glioblastoma cell growth by directly targeting CCL8. Oncol Lett 2019; 18:1922-1930. [PMID: 31423262 PMCID: PMC6607052 DOI: 10.3892/ol.2019.10480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs), including miR-181, are closely linked to the development and progression of glioblastoma. However, the function of miR-181 in glioblastoma has not been fully clarified. The aim of the present study was to investigate the role of miR-181 in glioblastoma. miR-181 was revealed to be downregulated in glioblastoma tissues and cell lines, and associated with poor prognosis in patients with glioblastoma. Overexpression of miR-181 inhibited glioblastoma cell proliferation, invasion and migration, arrested glioblastoma cell cycle in the G1 phase and induced glioblastoma cell apoptosis. miR-181 was demonstrated to decrease expression of C-C motif chemokine ligand 8 (CCL8) by directly interacting with its 3′-untranslated region. Overexpression of CCL8 inversely reversed the proliferation, invasion and migration-promoting effects of miR-181 in glioblastoma cells. Furthermore, CCL8 was upregulated in glioblastoma tissues and was negatively correlated with miR-181 expression. These results indicate that miR-181 is a potential molecular biomarker or therapeutic target in the clinical management of glioblastoma.
Collapse
Affiliation(s)
- Fengyu Zhai
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Radiotherapy, Puyang Oil Field General Hospital, Puyang, Henan 457000, P.R. China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qianyi He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Heng Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yongqiang Hu
- Department of Radiotherapy, Puyang Oil Field General Hospital, Puyang, Henan 457000, P.R. China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.,Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
44
|
Wang G, Han J, Zhuang L, Li S, Gong Q, Chen Y. Serum starvation induces cell death in NSCLC via miR-224. Onco Targets Ther 2019; 12:3953-3962. [PMID: 31190892 PMCID: PMC6535431 DOI: 10.2147/ott.s186613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose: Increasing evidence suggests that microRNAs (miRNAs) may be involved in the occurrence and progression of non-small cell lung cancer (NSCLC). In the present study, we used serum-starved A549 cells emulating tumor under a nutrient depletion stress in the microenvironment. Patients and methods: We first detected the expression level of miR-224 between tumor tissues and the adjacent normal tissues. We analyzed the expression levels of miR-224 and its predicted target phosphatase and tensin homolog (PTEN) using quantitative real-time PCR (qRT-PCR) in starved A549 cells. Following transfection with miR-224 mimic or inhibitor in starved A549 cells, MTT assay, Annexin V FITC/PI staining, and LC-3 immunofluorence staining were performed to investigate the roles of miR-224 on proliferation, apoptosis, and autophagy. Next, the expression of apoptosis-related protein Bax and Bcl-2, autophagy-related proteins LC3, PI3K signaling, and target PTEN were measured using qRT-PCR and Western blot assays. The direct interaction between miR-224 and PTEN was validated with a dual luciferase assay. Results: We found that the expression level of miR-224 in tumor tissues was significantly higher when compared with the adjacent normal tissues. We discovered a reciprocal expression pattern between miR-224 and PTEN in starved A549 cells, and transfection with miR-224 mimic led to down-regulation of PTEN. A dual luciferase assay further confirmed the direct interaction between miR-224 and 3ʹUTR of PTEN. Transfection with miR-224 mimic in starved A549 cells resulted in enhanced cell proliferation, reduced apoptosis, and autophagy, accompanied by increased expression of anti-apoptotic protein Bcl-2, decreased expression of pro-apoptotic protein Bax, and autophagy-related protein LC3. Activation of PI3K was observed in miR-224 mimic transfected cells. The reverse effects by the miR-224 inhibitor in all experiments were observed. Conclusion: Taken together, we proved that miR-224 might play essential roles in cellular functions of nutrient-depleted A549 cells possibly through regulating the target PTEN and downstream signal PI3K, suggesting the potential of miR-224 to be a therapeutic target for NSCLC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunlan Chen
- Department of Cadres Convalescence, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, People's Republic of China
| |
Collapse
|
45
|
Ebrahimi S, Hashemy SI. MicroRNA-mediated redox regulation modulates therapy resistance in cancer cells: clinical perspectives. Cell Oncol (Dordr) 2019; 42:131-141. [PMID: 30645730 DOI: 10.1007/s13402-018-00421-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chemotherapy and radiation therapy are the most common types of cancer therapy. The development of chemo/radio-resistance remains, however, a major obstacle. Altered redox balances are among of the main factors mediating therapy resistance. Therefore, redox regulatory strategies are urgently needed to overcome this problem. Recently, microRNAs have been found to act as major redox regulatory factors affecting chemo/radio-resistance. MicroRNAs play critical roles in regulating therapeutic resistance through the regulation of antioxidant enzymes, redox-sensitive signaling pathways, cancer stem cells, DNA repair mechanisms and autophagy. CONCLUSIONS Here, we summarize current knowledge on microRNA-mediated redox regulatory mechanisms underlying chemo/radio-resistance. This knowledge may form a basis for a better clinical management of cancer patients.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
LncRNA TP73-AS1 promoted the progression of lung adenocarcinoma via PI3K/AKT pathway. Biosci Rep 2019; 39:BSR20180999. [PMID: 30541897 PMCID: PMC6328885 DOI: 10.1042/bsr20180999] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma (LAD) is one of the most common malignancies that threats human health worldwide. Long non-coding RNAs (lncRNAs) have been reported to play significant roles in tumorigenesis and might be novel biomarkers and targets for diagnosis and treatment of cancers. TP73-AS1 is a newly discovered lncRNA involved in the tumorigenesis and development of several cancers. However, its role in LAD has not been investigated yet. In the present study, we first found that TP73-AS1 expression was markedly increased in LAD tissues and cell lines and its overexpression was strongly associated with poor clinical outcomes. Then the loss/gain-of-function assays elucidated that TP73-AS1 contributed to cell proliferation, migration, and invasion in vitro, and the in vivo experiments illustrated that its knockdown inhibited tumor growth and metastasis. What was more, we discovered that phosphoinositide 3-kinase and AKT (PI3K/AKT) pathway was activated both in LAD tissues and cell lines but inactivated under TP73-AS1 silence. Moreover, the activation of this pathway could rescue the inhibitory effects of TP73-AS1 suppression on LAD cellular processes partially. These data suggested that TP73-AS1 served as an oncogene in LAD partially through activating PI3K/AKT pathway and it could be a potential target for diagnosis and treatment of LAD.
Collapse
|
47
|
Gao LM, Zheng Y, Wang P, Zheng L, Zhang WL, Di Y, Chen LL, Yin XB, Tian Q, Shi SS, Xu SF. Tumor-suppressive effects of microRNA-181d-5p on non-small-cell lung cancer through the CDKN3-mediated Akt signaling pathway in vivo and in vitro. Am J Physiol Lung Cell Mol Physiol 2019; 316:L918-L933. [PMID: 30628487 DOI: 10.1152/ajplung.00334.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The involvement of several microRNAs (miRs) in the initiation and development of tumors through the suppression of the target gene expression has been highlighted. The aberrant expression of miR-181d-5p and cyclin-dependent kinase inhibitor 3 (CDKN3) in non-small-cell lung cancer (NSCLC) was then screened by microarray analysis. In the present study, we performed a series of in vivo and in vitro experiments for the purpose of investigating their roles in NSCLC and the underlying mechanism. There was a high expression of CDKN3, whereas miR-181d-5p was downregulated in NSCLC. Quantitative RT-PCR, Western blot analysis, and dual-luciferase reporter gene assay further identified that CDKN3 could be negatively regulated by miR-181d-5p. Moreover, the upregulation of miR-181d-5p or silencing of CDKN3 could inactivate the Akt signaling pathway. A549 with the lowest miR-181d-5p and H1975 with the highest CDKN3 among the five NSCLC cell lines (H1299, A549, H1975, NCI-H157, and GLC-82) were adopted for in vitro experiments, in which expression of miR-181d-5p and CDKN3 was altered by transfection of miR-181d-5p mimic/inhibitor or siRNA-targeting CDKN3. Afterwards, cell proliferation, apoptosis, invasion, migration, and angiogenesis, as well as epithelial-mesenchymal transition (EMT), were evaluated, and tumorigenicity was assessed. In addition, an elevation in miR-181d-5p or depletion in CDKN3 led to significant reductions in proliferation, invasion, migration, angiogenesis, EMT, and tumorigenicity of NSCLC cells, coupling with increased cell apoptosis. In conclusion, this study highlights the tumor-suppressive effects of miR-181d-5p on NSCLC via Akt signaling pathway inactivation by suppressing CDKN3, thus providing a promising therapeutic strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Li-Ming Gao
- Department of Oncology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Yue Zheng
- Department of Gastroenterology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Ping Wang
- Department of Respiratory, Chinese PLA General Hospital , Beijing , People's Republic of China
| | - Lei Zheng
- Department of Oncology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Wen-Li Zhang
- Department of Imaging, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Ya Di
- Department of Oncology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Lan-Lan Chen
- Department of Oncology, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Xiao-Bo Yin
- Department of Respiratory, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Qi Tian
- Department of Respiratory, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Shan-Shan Shi
- Department of Respiratory, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| | - Shu-Feng Xu
- Department of Respiratory, the First Hospital of Qinhuangdao , Qinhuangdao , People's Republic of China
| |
Collapse
|
48
|
Ge S, Zhang H, Deng T, Sun W, Ning T, Fan Q, Wang Y, Wang X, Zhang Q, Zhou Z, Yang H, Ying G, Ba Y. MiR-181a, a new regulator of TGF-β signaling, can promote cell migration and proliferation in gastric cancer. Invest New Drugs 2019; 37:923-934. [PMID: 30607520 DOI: 10.1007/s10637-018-0695-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023]
Abstract
Transforming growth factor-beta (TGF-β) signaling pathway plays pivotal roles in various types of cancer. TGF-β receptor 2 (TGFβR2) contains a kinase domain that phosphorylates and activates the downstream of the TGF-β signaling pathway. Our previous microarray analysis revealed marked changes in miR-181a expression in gastric cancers, and the bioinformatics analysis suggested that miR-181a negatively regulated TGFβR2. In order to verify the effect of miR-181a on TGFβR2 and clarify the influence of miR-181a on the migration and proliferation of gastric cancer, studies in gastric cancer cell lines and xenograft mouse models were carried out. We found that a reduced expression of TGFβR2 and an increased expression miR-181a in gastric cancer tissues compared to adjacent noncancerous tissues. A luciferase reporter assay confirmed that TGFβR2 was a target of miR-181a. In addition, we found that miR-181a mimics, which increased the level of miR-181a, downregulated the expression of TGFβR2 in the gastric cancer cell line SGC-7901. Moreover, both the overexpression of miR-181a and the downregulation of TGFβR2 promoted the migration and proliferation of SGC-7901 cells. Conversely, SGC-7901 cell migration and proliferation were inhibited by the downregulation of miR-181a and the overexpression of TGFβR2. Furthermore, the increased expression of miR-181a and the decreased expression of TGFβR2 also enhanced the tumor growth in mice bearing gastric cancer. Our results herein indicated that miR-181a promoted the migration and proliferation of gastric cancer cells by downregulating TGFβR2 at the posttranscriptional level. The present study suggests that miR-181a is a novel negative regulator of TGFβR2 in the TGF-β signaling pathway and thus represents a potential new therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Qian Fan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Yi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Xinyi Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Qiumo Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Zhengyang Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Haiou Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
49
|
Pectolinarigenin inhibits non‑small cell lung cancer progression by regulating the PTEN/PI3K/AKT signaling pathway. Oncol Rep 2018; 40:3458-3468. [PMID: 30542737 PMCID: PMC6196644 DOI: 10.3892/or.2018.6759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is the principal cause of cancer-associated mortality. Pectolinarigenin (Pec) reportedly has effective antitumor activity against certain cancer types. Phosphatase and tensin homolog (PTEN) is a well-known tumor suppressor and serves a vital role in cancer progression. However, the effect of Pec on non-small cell lung cancer (NSCLC) cell proliferation and metastasis, and the underlying mechanism, has not yet been elucidated. In the present study, it was demonstrated that Pec inhibited the proliferation of A549 and Calu-3 cells in dose- and time-dependent manners. The apoptosis rate significantly increased with increasing doses of Pec. Apoptosis-associated protein expression was additionally altered by Pec exposure. Pec was able to suppress the metastasis of NSCLC cells; it upregulated the mRNA and protein expression levels of E-cadherin, and downregulated the mRNA and protein expression levels of vimentin. Additionally, Pec was able to activate PTEN and subsequently downregulate the PI3K/protein kinase B (AKT) signaling pathway. In summary, Pec was able to inhibit cell proliferation, promote apoptosis and suppress metastasis in NSCLC cells through the PTEN/PI3K/AKT signaling pathway, indicating that Pec is a potential agent for NSCLC therapy.
Collapse
|
50
|
Zhang C, Su L, Huang L, Song ZY. GSK3β inhibits epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt pathways. Int J Ophthalmol 2018; 11:1120-1128. [PMID: 30046527 DOI: 10.18240/ijo.2018.07.08] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
AIM To investigate the regulatory mechanism of glycogen synthase kinase 3β (GSK3β) in epithelial-mesenchymal transition (EMT) process after proliferative vitreoretinopathy (PVR) induction. METHODS Experimental PVR was induced by intravitreal injection of retinal pigment epithelium (RPE) cells in the eyes of rabbits. A PI3K/Akt inhibitor (wortmannin) and a GSK3β inhibitor (LiCl) were also injected at different time during PVR progress. Electroretinogram (ERG), ocular fundus photographs, and B-scan ultrasonography were used to observe the PVR progress. Western blot test on the extracted retina were performed at 1, 2, 4wk. The expression of the mesenchymal marker vimentin was determined by immunohistochemistry. Toxicity of wortmannin and LiCl were evaluated by ERG and TdT-mediated dUTP nick-end labeling (TUNEL) assay. The vitreous was also collected for metabolomic analysis. RESULTS Experimental PVR could significantly lead to EMT, along with the suppressed expression of GSK3β and the activation of Wnt/β-catenin and PI3K/Akt pathways. It was verified that upregulating the expression of GSK3β could effectively inhibit EMT process by suppressing Wnt/β-catenin and PI3K/Akt pathways. CONCLUSION GSK3β effectively inhibits EMT via the Wnt/β-catenin and PI3K/Akt pathways. GSK3β may be regarded as a promising target of experimental PVR inhibition.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Li Su
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai 200000, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200000, China
| | - Li Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Zheng-Yu Song
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.,Department of Ophthalmology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| |
Collapse
|