1
|
Nikseresht S, Shewell LK, Day CJ, Jennings MP, Chittoory H, McCart Reed AE, Simpson PT, Lakhani SR, Nabiee R, Moore M, Khanabdali R, Hinch LM, Rice GE. Improved breast cancer diagnosis using a CA15-3 capture antibody-lectin sandwich assay. Breast Cancer Res Treat 2025; 211:605-615. [PMID: 40148706 PMCID: PMC12031999 DOI: 10.1007/s10549-025-07672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
PURPOSE This study aims to test the hypothesis that an enzyme-linked antibody-lectin sandwich assay for a glycovariant of CA15-3 can deliver better diagnostic performance, defined by classification accuracy, sensitivity and specificity, for breast cancer compared to an existing FDA-approved CA15-3 test. METHODS A genetically engineered lectin (SubB2M) that specifically binds N-glycolylneuraminic acid (Neu5Gc) was used as a detection reagent in a CA15-3 capture antibody-lectin sandwich (neuCA15-3) assay. In a case: control cohort equivalence study the classification accuracy for the neuCA15-3 assay was determined and compared to an FDA-approved CA15-3 IVD test (Elecsys CA15-3 II, Roche Diagnostics). RESULTS Classification accuracy and AUC for neuCA15-3 were 81% and 0.886 ± 0.015 (standard error, n = 567) and for Elecsys CA15-3 II, 55% and 0.642 ± 0.023 (n = 558), respectively. At a threshold cut-off serum concentration of 23.6 units/ml, overall breast cancer classification accuracy of the neuCA15-3 was 81% (compared to 55% for the comparator assay, p < 0.001). At 95% specificity, the sensitivity of the neuCA15-3 assay was 69.5%, significantly greater than the comparator assay (11.9%, p < 0.001). neuCA15-3 concentrations did not vary significantly with breast cancer receptor subtype or comorbidities tested. CONCLUSIONS The diagnostic performance of neuCA15-3 was substantially improved by specifically targeting both a CA15-3 protein epitope and a pan-cancer glycan (Neu5Gc) epitope (the specific binding target of SubB2M). The reporter signal generated depends on the colocalization of the cancer antigen protein epitope and the aberrant sialylation of the protein, thus increasing the assay specificity. The presence of multiple Neu5Gc lectin-binding sites per glycoprotein molecule increases signal generation and assay sensitivity. The inclusion of additional cancer biomarkers in a multivariate index assay format may further increase diagnostic performance for breast cancer.
Collapse
Affiliation(s)
- S Nikseresht
- INOVIQ Ltd, Notting Hill, 23 Normanby Road, VIC, Australia
| | - L K Shewell
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - C J Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - M P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - H Chittoory
- Centre for Clinical Research, The University of Queensland, Brisbane, 23 Normanby Road, QLD, Australia
| | - A E McCart Reed
- Centre for Clinical Research, The University of Queensland, Brisbane, 23 Normanby Road, QLD, Australia
| | - P T Simpson
- Centre for Clinical Research, The University of Queensland, Brisbane, 23 Normanby Road, QLD, Australia
| | - S R Lakhani
- Centre for Clinical Research, The University of Queensland, Brisbane, 23 Normanby Road, QLD, Australia
- Pathology Queensland, Brisbane, Qld, Australia
| | | | | | - R Khanabdali
- INOVIQ Ltd, Notting Hill, 23 Normanby Road, VIC, Australia
| | - L M Hinch
- INOVIQ Ltd, Notting Hill, 23 Normanby Road, VIC, Australia
| | - G E Rice
- INOVIQ Ltd, Notting Hill, 23 Normanby Road, VIC, Australia.
- Centre for Clinical Research, The University of Queensland, Brisbane, 23 Normanby Road, QLD, Australia.
| |
Collapse
|
2
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
He K, Baniasad M, Kwon H, Caval T, Xu G, Lebrilla C, Hommes DW, Bertozzi C. Decoding the glycoproteome: a new frontier for biomarker discovery in cancer. J Hematol Oncol 2024; 17:12. [PMID: 38515194 PMCID: PMC10958865 DOI: 10.1186/s13045-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Cancer early detection and treatment response prediction continue to pose significant challenges. Cancer liquid biopsies focusing on detecting circulating tumor cells (CTCs) and DNA (ctDNA) have shown enormous potential due to their non-invasive nature and the implications in precision cancer management. Recently, liquid biopsy has been further expanded to profile glycoproteins, which are the products of post-translational modifications of proteins and play key roles in both normal and pathological processes, including cancers. The advancements in chemical and mass spectrometry-based technologies and artificial intelligence-based platforms have enabled extensive studies of cancer and organ-specific changes in glycans and glycoproteins through glycomics and glycoproteomics. Glycoproteomic analysis has emerged as a promising tool for biomarker discovery and development in early detection of cancers and prediction of treatment efficacy including response to immunotherapies. These biomarkers could play a crucial role in aiding in early intervention and personalized therapy decisions. In this review, we summarize the significant advance in cancer glycoproteomic biomarker studies and the promise and challenges in integration into clinical practice to improve cancer patient care.
Collapse
Affiliation(s)
- Kai He
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA.
| | | | - Hyunwoo Kwon
- James Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | | | - Gege Xu
- InterVenn Biosciences, South San Francisco, USA
| | - Carlito Lebrilla
- Department of Biochemistry and Molecular Medicine, UC Davis Health, Sacramento, USA
| | | | | |
Collapse
|
4
|
Galeș LN, Păun MA, Anghel RM, Trifănescu OG. Cancer Screening: Present Recommendations, the Development of Multi-Cancer Early Development Tests, and the Prospect of Universal Cancer Screening. Cancers (Basel) 2024; 16:1191. [PMID: 38539525 PMCID: PMC10969110 DOI: 10.3390/cancers16061191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
Cancer continues to pose a considerable challenge to global health. In the search for innovative strategies to combat this complex enemy, the concept of universal cancer screening has emerged as a promising avenue for early detection and prevention. In contrast to targeted approaches that focus on specific populations or high-risk individuals, universal screening seeks to cast a wide net to detect incipient malignancies in different demographic groups. This paradigm shift in cancer care underscores the importance of comprehensive screening programs that go beyond conventional boundaries. As our understanding of the complex molecular and genetic basis of cancer deepens, the need to develop comprehensive screening methods becomes increasingly apparent. In this article, we look at the rationale and potential benefits of universal cancer screening.
Collapse
Affiliation(s)
- Laurenția Nicoleta Galeș
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.); (R.M.A.); (O.G.T.)
- Department of Medical Oncology II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Mihai-Andrei Păun
- Department of Radiotherapy II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Rodica Maricela Anghel
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.); (R.M.A.); (O.G.T.)
- Department of Radiotherapy II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Oana Gabriela Trifănescu
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.N.G.); (R.M.A.); (O.G.T.)
- Department of Radiotherapy II, Prof. Dr. Al. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
5
|
Dubey AK, Kaur I, Madaan R, Raheja S, Bala R, Garg M, Kumar S, Lather V, Mittal V, Pandita D, Gundamaraju R, Singla RK, Sharma R. Unlocking the potential of oncology biomarkers: advancements in clinical theranostics. Drug Metab Pers Ther 2024; 39:5-20. [PMID: 38469723 DOI: 10.1515/dmpt-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Cancer biomarkers have revolutionized the field of oncology by providing valuable insights into tumor changes and aiding in screening, diagnosis, prognosis, treatment prediction, and risk assessment. The emergence of "omic" technologies has enabled biomarkers to become reliable and accurate predictors of outcomes during cancer treatment. CONTENT In this review, we highlight the clinical utility of biomarkers in cancer identification and motivate researchers to establish a personalized/precision approach in oncology. By extending a multidisciplinary technology-based approach, biomarkers offer an alternative to traditional techniques, fulfilling the goal of cancer therapeutics to find a needle in a haystack. SUMMARY AND OUTLOOK We target different forms of cancer to establish a dynamic role of biomarkers in understanding the spectrum of malignancies and their biochemical and molecular characterization, emphasizing their prospective contribution to cancer screening. Biomarkers offer a promising avenue for the early detection of human cancers and the exploration of novel technologies to predict disease severity, facilitating maximum survival and minimum mortality rates. This review provides a comprehensive overview of the potential of biomarkers in oncology and highlights their prospects in advancing cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, 34753 Sichuan University , Chengdu, P.R. China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, 154025 Chitkara University Punjab , Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, 154025 Chitkara University Punjab , Rajpura, India
| | - Shikha Raheja
- Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa, Haryana, India
| | - Rajni Bala
- Chitkara College of Pharmacy, 154025 Chitkara University Punjab , Rajpura, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research, 77282 Amity University, Sector-125 , Noida, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, 429174 Punjabi University Patiala , Patiala, India
| | - Viney Lather
- Amity Institute of Pharmacy, 77282 Amity University , Noida, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, 29062 Maharshi Dayanand University , Rohtak, Haryana, India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, PushpVihar, 633274 Govt. of NCT of Delhi , New Delhi, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, PushpVihar, Govt. of NCT of Delhi, New Delhi, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, 8785 University of Tasmania , Launceston, Tasmania, Australia
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, 34753 Sichuan University , Chengdu, P.R. China
- School of Pharmaceutical Sciences, 34753 Lovely Professional University , Phagwara, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, 80095 Banaras Hindu University , Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Huang H, Qu R, Wu K, Xu J, Li J, Lu S, Sui G, Fan XY. Proteinase K-pretreated ConA-based ELISA assay: a novel urine LAM detection strategy for TB diagnosis. Front Microbiol 2023; 14:1236599. [PMID: 37692407 PMCID: PMC10485274 DOI: 10.3389/fmicb.2023.1236599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives Lipoarabinomannan (LAM), an abundant cell wall glycolipid of mycobacteria including Mycobacterium tuberculosis (Mtb), is a promising TB diagnostic marker. The current commercially available urine LAM assays are not sufficiently sensitive, and more novel detection strategies are urgently needed to fill the current diagnostic gap. Methods A proteinase K-pretreated Concanavalin A (ConA)-based ELISA assay was developed. Diagnostic performance was assessed by several bacterial strains and clinical urine samples. Results The limit of detection (LoD) of the assay against ManLAM was 6 ng/ml. The assay reacted strongly to Mtb H37Rv and M. bovis BCG, intermediately to M. smegmatis mc2155, and weakly to four non-mycobacteria pathogens. This method could distinguish TB patients from healthy controls (HCs) and close contacts (CCs) in 71 urine samples treated with proteinase K, which increases urine LAM antibody reactiveness. In TB+HIV+ and TB+HIV- patients, the sensitivity was 43.8 and 37.5%, respectively, while the specificity was 100.0%. The areas under ROC curves (AUCs) were 0.74 and 0.82, respectively. Conclusion This study implies that ConA can be paired with antibodies to detect LAM. Proteinase K treatment could effectively enhance the sensitivity by restoring the reactiveness of antibodies to LAM.
Collapse
Affiliation(s)
- Huan Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rong Qu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Kang Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jinchuan Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianhui Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuihua Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Silva MLS. Capitalizing glycomic changes for improved biomarker-based cancer diagnostics. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:366-395. [PMID: 37455827 PMCID: PMC10344901 DOI: 10.37349/etat.2023.00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer serum biomarkers are valuable or even indispensable for cancer diagnostics and/or monitoring and, currently, many cancer serum markers are routinely used in the clinic. Most of those markers are glycoproteins, carrying cancer-specific glycan structures that can provide extra-information for cancer monitoring. Nonetheless, in the majority of cases, this differential feature is not exploited and the corresponding analytical assays detect only the protein amount, disregarding the analysis of the aberrant glycoform. Two exceptions to this trend are the biomarkers α-fetoprotein (AFP) and cancer antigen 19-9 (CA19-9), which are clinically monitored for their cancer-related glycan changes, and only the AFP assay includes quantification of both the protein amount and the altered glycoform. This narrative review demonstrates, through several examples, the advantages of the combined quantification of protein cancer biomarkers and the respective glycoform analysis, which enable to yield the maximum information and overcome the weaknesses of each individual analysis. This strategy allows to achieve higher sensitivity and specificity in the detection of cancer, enhancing the diagnostic power of biomarker-based cancer detection tests.
Collapse
Affiliation(s)
- Maria Luísa S. Silva
- Unidade de Aprendizagem ao Longo da Vida, Universidade Aberta, 1269-001 Lisboa, Portugal
| |
Collapse
|
8
|
Lin S, Tan Z, Cui H, Ma Q, Zhao X, Wu J, Dai L, Kang H, Guan F, Dai Z. Identification of glycogene signature as a tool to predict the clinical outcome and immunotherapy response in breast cancer. Front Oncol 2022; 12:854284. [PMID: 36185271 PMCID: PMC9515430 DOI: 10.3389/fonc.2022.854284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Breast cancer is one of the most important diseases in women around the world. Glycosylation modification correlates with carcinogenesis and roles of glycogenes in the clinical outcome and immune microenvironment of breast cancer are unclear. METHODS A total of 1297 breast cancer and normal cases in the TCGA and GTEx databases were enrolled and the transcriptional and survival information were extracted to identify prognostic glycogenes using Univariate Cox, LASSO regression, Multivariate Cox analyses and Kaplan-Meier method. The immune infiltration pattern was explored by the single sample gene set enrichment method. The HLA and immune checkpoint genes expression were also compared in different risk groups. The expressions of a glycogene MGAT5 as well as its products were validated by immunohistochemistry and western blotting in breast cancer tissues and cells. RESULTS A 19-glycogene signature was identified to separate breast cancer patients into high- and low-risk groups with distinct overall survival rates (P < 0.001). Compared with the high-risk group, proportion of naive B cells, plasma cells and CD8+ T cells increased in the low-risk group (P < 0.001). Besides, expressions of HLA and checkpoint genes, such as CD274, CTLA4, LAG3 and TIGIT3, were upregulated in low-risk group. Additionally, highly expressed MGAT5 was validated in breast cancer tissues and cells. Downstream glycosylation products of MGAT5 were all increased in breast cancer. CONCLUSIONS We identified a 19-glycogene signature for risk prediction of breast cancer patients. Patients in the low-risk group demonstrated a higher immune infiltration and better immunotherapy response. The validation of MGAT5 protein suggests a probable pathway and target for the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zengqi Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi’an, China
| | - Hanxiao Cui
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qilong Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi’an, China
| | - Xuyan Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianhua Wu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Luyao Dai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi’an, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol (Lausanne) 2022; 13:970489. [PMID: 36072925 PMCID: PMC9441633 DOI: 10.3389/fendo.2022.970489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications (PTMs) in a protein, and is the most abundant and diverse biopolymer in nature. Glycans are involved in multiple biological processes of cancer initiation and progression, including cell-cell interactions, cell-extracellular matrix interactions, tumor invasion and metastasis, tumor angiogenesis, and immune regulation. As an important biomarker, tumor-associated glycosylation changes have been extensively studied. This article reviews recent advances in glycosylation-based biomarker research, which is useful for cancer diagnosis and prognostic assessment. Truncated O-glycans, sialylation, fucosylation, and complex branched structures have been found to be the most common structural patterns in malignant tumors. In recent years, immunochemical methods, lectin recognition-based methods, mass spectrometry (MS)-related methods, and fluorescence imaging-based in situ methods have greatly promoted the discovery and application potentials of glycomic and glycoprotein biomarkers in various cancers. In particular, MS-based proteomics has significantly facilitated the comprehensive research of extracellular glycoproteins, increasing our understanding of their critical roles in regulating cellular activities. Predictive, preventive and personalized medicine (PPPM; 3P medicine) is an effective approach of early prediction, prevention and personalized treatment for different patients, and it is known as the new direction of medical development in the 21st century and represents the ultimate goal and highest stage of medical development. Glycosylation has been revealed to have new diagnostic, prognostic, and even therapeutic potentials. The purpose of glycosylation analysis and utilization of biology is to make a fundamental change in health care and medical practice, so as to lead medical research and practice into a new era of 3P medicine.
Collapse
Affiliation(s)
- Yuna Guo
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Wenshuang Jia
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
The Clinical Application of Combined Ultrasound, Mammography, and Tumor Markers in Screening Breast Cancer among High-Risk Women. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4074628. [PMID: 35872933 PMCID: PMC9307376 DOI: 10.1155/2022/4074628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
In order to explore the clinical application value of color Doppler ultrasound (CDUS), mammography (MAM), and serum tumor marker carbohydrate antigen 153 (CA153) in screening breast cancer (BC) for high-risk women, a total of 38,241 women were surveyed by epidemiological questionnaire on BC high-risk factors. A total of 10,821 cases were screened, accounting for 28.30%. They were randomly divided into US, MAM, and CA153 and combined examination group which has no significant difference in high-risk factors. Breast cancer in high-risk population was screened by CDUS, MAM, and CA153 and combined examination. CA153 was detected by electroluminescence method. The positive detection rate of BC was 360.41/100,000 (39/10,821). The overall difference in the positive detection rate of BC among 10,821 cases in all age groups was statistically significant. The sensitivity and negative predictive value of combined examination were significantly improved compared with each single examination. Combined examination for BC screening can significantly improve the sensitivity of BC early diagnosis and reduce the missed diagnosis rate.
Collapse
|
11
|
Nassan MA, Aldhahrani A, Amer HH, Elhenawy A, Swelum AA, Ali OM, Zaki YH. Investigation of the Anticancer Effect of α-Aminophosphonates and Arylidine Derivatives of 3-Acetyl-1-aminoquinolin-2( 1H)-one on the DMBA Model of Breast Cancer in Albino Rats with In Silico Prediction of Their Thymidylate Synthase Inhibitory Effect. Molecules 2022; 27:molecules27030756. [PMID: 35164019 PMCID: PMC8839308 DOI: 10.3390/molecules27030756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a major cause of death in women worldwide. In this study, 60 female rats were classified into 6 groups; negative control, α-aminophosphonates, arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one, DMBA, DMBA & α-aminophosphonates, and DMBA & arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one. New α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one were synthesized and elucidated by different spectroscopic and elemental analysis. Histopathological examination showed marked proliferation of cancer cells in the DMBA group. Treatment with α-aminophosphonates mainly decreased tumor mass. Bcl2 expression increased in DMBA-administered rats and then declined in the treated groups, mostly with α-aminophosphonates. The level of CA15-3 markedly declined in DMBA groups treated with α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one. Gene expression of GST-P, PCNA, PDK, and PIK3CA decreased in the DMBA group treated with α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one, whereas PIK3R1 and BAX increased in the DMBA group treated with α-aminophosphonates and arylidine derivatives of 3-acetyl-1-aminoquinolin-2(1H)-one. The molecular docking postulated that the investigated compounds can inhibt the Thymidylate synthase TM due to high hydrophobicity charachter.
Collapse
Affiliation(s)
- Mohamed A. Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.N.); (A.A.)
| | - Adil Aldhahrani
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.N.); (A.A.)
| | - Hamada H. Amer
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: (H.H.A.); (Y.H.Z.)
| | - Ahmed Elhenawy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| | - Ayman A. Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Yasser H. Zaki
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni Suef 62514, Egypt
- Department of Chemistry, Faculty of Science and Humanity Studies at Al-Quwayiyah, Shaqra University, Al-Quwayiyah 11961, Saudi Arabia
- Correspondence: (H.H.A.); (Y.H.Z.)
| |
Collapse
|
12
|
Vafaei R, Samadi M, Hosseinzadeh A, Barzaman K, Esmailinejad M, Khaki Z, Farahmand L. Comparison of mucin-1 in human breast cancer and canine mammary gland tumor: a review study. Cancer Cell Int 2022; 22:14. [PMID: 35000604 PMCID: PMC8744232 DOI: 10.1186/s12935-021-02398-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
Mucin-1 (MUC-1) is a transmembrane glycoprotein, which bears many similarities between dogs and humans. Since the existence of animal models is essential to understand the significant factors involved in breast cancer mechanisms, canine mammary tumors (CMTs) could be used as a spontaneously occurring tumor model for human studies. Accordingly, this review assessed the comparison of canine and human MUC-1 based on their diagnostic and therapeutic aspects and showed how comparative oncology approaches could provide insights into translating pre-clinical trials from human to veterinary oncology and vice versa which could benefit both humans and dogs.
Collapse
Affiliation(s)
- Rana Vafaei
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran
| | - Mitra Samadi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran
| | - Aysooda Hosseinzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran
| | - Khadijeh Barzaman
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - MohammadReza Esmailinejad
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zohreh Khaki
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran.
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No.146, South Gandi Ave, Vanak Sq, Tehran, Iran.
| |
Collapse
|
13
|
Bertok T, Pinkova Gajdosova V, Bertokova A, Svecova N, Kasak P, Tkac J. Breast cancer glycan biomarkers: their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev Proteomics 2021; 18:881-910. [PMID: 34711108 DOI: 10.1080/14789450.2021.1996231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the most common cancer type diagnosed in women and 5th most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality. AREAS COVERED In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation. We also discuss novel exciting discoveries regarding glycan-based analysis, which can provide useful information for better understanding of the disease. The final part deals with clinical usefulness of glycan-based biomarkers and the clinical performance of such biomarkers is compared to already approved BCa biomarkers and diagnostic tools based on imaging. EXPERT OPINION Recent discoveries suggest that glycan-based biomarkers offer high accuracy for possible BCa diagnostics in blood, but also for better monitoring and management of BCa patients. The review article was written using Web of Science search engine to include articles published between 2019 and 2021.
Collapse
Affiliation(s)
- Tomas Bertok
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Pinkova Gajdosova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Natalia Svecova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Tkac
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
14
|
A Diagnostic Analysis Workflow to Optimal Multiple Tumor Markers to Predict the Nonmetastatic Breast Cancer from Breast Lumps. JOURNAL OF ONCOLOGY 2021; 2021:5579373. [PMID: 34335759 PMCID: PMC8289572 DOI: 10.1155/2021/5579373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/30/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Objective To assess the diagnostic performance of clinically common single markers and combinations to distinguish nonmetastatic breast cancer and benign breast tumor. A predictive model with a better diagnostic ability for nonmetastatic breast cancer was established by using the diagnostic process. Methods A total of 222 patients with nonmetastatic breast cancer and 265 patients with benign breast disease were enrolled in this study. CEA, Ca 15-3, Ca 125, Ca 72-4, CYFRA 21-1, FERR, AFP, and NSE were measured by an electrochemiluminescent immunoenzymometric assay on the Elecsys system. There are four key steps for our diagnostic workflow, that is, feature selection, algorithm selection, parameter optimization, and outer test data was used to validate the optimal algorithm and markers. Results CEA, Ca 15-3, CYFRA 21-1, AFP, and FERR were selected using the t-test in our inner development set. The optimal algorithm among logical regression, decision tree, support vector machine, random forest, and gradient boost machine was selected by 10-fold cross-validation, and we found that random forest and logistic regression are the better classification. The outer test data was used to validate the best markers and classification. The random forest with CEA, Ca 15-3, CYFRA 21-1, AFP, and FERR showed the optimal combination for distinguishing breast cancer and benign breast disease. The AUC value was 0.888, the cut-off point was 0.484, and sensitivity and specificity were 78.9% and 90.1%. Conclusions No single marker of these eight markers was good at identifying nonmetastatic breast cancer from benign tumors. But a diagnostic analysis workflow was established to develop a predictive model with better diagnostic capability for nonmetastatic breast cancer. This workflow is also applicable to the optimization of other disease markers and diagnostic models. The predictive model showed good diagnostic performance, and it could be gradually incorporated as a support method for the diagnosis of nonmetastatic breast cancer.
Collapse
|
15
|
A New Nanomaterial Based Biosensor for MUC1 Biomarker Detection in Early Diagnosis, Tumor Progression and Treatment of Cancer. ACTA ACUST UNITED AC 2021. [DOI: 10.3390/nanomanufacturing1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early detection of cancer disease is vital to the successful treatment, follow-up and survival of patients, therefore sensitive and specific methods are still required. Mucin 1 (MUC1) is a clinically approved biomarker for determining the cancer that is a type I transmembrane protein with a dense glycosylated extracellular domain extending from the cell surface to 200–500 nm. In this study, nanopolymers were designed with a lectin affinity-based recognition system for MUC1 detection as a bioactive layer on electrochemical biosensor electrode surfaces. They were synthesized using a mini emulsion polymerization method and derivatized with triethoxy-3-(2-imidazolin-1-yl) propylsilane (IMEO) and functionalized with Concanavalin a Type IV (Con A) lectin. Advanced characterization studies of nanopolymers were performed. The operating conditions of the sensor system have been optimized. Biosensor validation studies were performed. Real sample blood serum was analyzed and this new method compared with a commercially available medical diagnostic kit (Enzyme-Linked ImmunoSorbent Assay-ELISA). The new generation nanopolymeric material has been shown to be an affordable, sensitive, reliable and rapid device with 0.1–100 U/mL linear range and 20 min response time.
Collapse
|
16
|
Fan Y, Ren X, Liu X, Shi D, Xu E, Wang S, Liu Y. Combined detection of CA15-3, CEA, and SF in serum and tissue of canine mammary gland tumor patients. Sci Rep 2021; 11:6651. [PMID: 33758208 PMCID: PMC7988110 DOI: 10.1038/s41598-021-85029-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
The purpose of this study is to evaluate the levels and clinical diagnosis value of CA15-3, CEA, and SF in canine mammary gland tumors (CMGTs). In this study, the levels of tissues/serum CA15-3, CEA, and SF in 178 CMGT patients or healthy dogs were determined by ELISA and qRT-PCR assay. CA15-3, CEA, and SF levels of the malignant tumor group were significantly higher than that of the benign tumor group and the healthy control group. In the malignant tumor group, CA15-3 held a sensitivity of 51.8%, a specificity of 93.9%, and an accuracy of 76.8%. The sensitivity, specificity, and accuracy of CEA were 44.6%, 84.1%, and 68.1% respectively. SF held a sensitivity of 62.5%, a specificity of 85.4%, and an accuracy of 76.1%. SF showed the highest sensitivity and CA15-3 showed the highest specificity. The sensitivity, specificity, and accuracy of the combined detection of the three biomarkers in malignant tumor groups were 80.4%, 78.0%, and 80.0%, respectively, therefore combined detection increased sensitivity and accuracy but decreased specificity. In conclusion, the combined detection of serum/tissue markers CA15-3, CEA, and SF may improve the detection sensitivity of CMGTs, providing reference value for clinical application.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Xiaoli Ren
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450046, People's Republic of China
| | - Xuesong Liu
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161000, Heilongjiang, People's Republic of China
| | - Dongmei Shi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450046, People's Republic of China
| | - Enshuang Xu
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Shuang Wang
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Yun Liu
- Department of Veterinary Clinic, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
17
|
Murphy N, Rooney B, Bhattacharyya T, Triana-Chavez O, Krueger A, Haslam SM, O'Rourke V, Pańczuk M, Tsang J, Bickford-Smith J, Gilman RH, Tetteh K, Drakeley C, Smales CM, Miles MA. Glycosylation of Trypanosoma cruzi TcI antigen reveals recognition by chagasic sera. Sci Rep 2020; 10:16395. [PMID: 33009443 PMCID: PMC7532467 DOI: 10.1038/s41598-020-73390-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Chagas disease is considered the most important parasitic disease in Latin America. The protozoan agent, Trypanosoma cruzi, comprises six genetic lineages, TcI-TcVI. Genotyping to link lineage(s) to severity of cardiomyopathy and gastrointestinal pathology is impeded by the sequestration and replication of T. cruzi in host tissues. We describe serology specific for TcI, the predominant lineage north of the Amazon, based on expression of recombinant trypomastigote small surface antigen (gTSSA-I) in the eukaryote Leishmania tarentolae, to allow realistic glycosylation and structure of the antigen. Sera from TcI-endemic regions recognised gTSSA-I (74/146; 50.7%), with no cross reaction with common components of gTSSA-II/V/VI recombinant antigen. Antigenicity was abolished by chemical (periodate) oxidation of gTSSA-I glycosylation but retained after heat-denaturation of conformation. Conversely, non-specific recognition of gTSSA-I by non-endemic malaria sera was abolished by heat-denaturation. TcI-specific serology facilitates investigation between lineage and diverse clinical presentations. Glycosylation cannot be ignored in the search for immunogenic antigens.
Collapse
Affiliation(s)
- Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Barrie Rooney
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury, Kent, UK.,TroZonX17, Kent, UK
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Victoria O'Rourke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Magdalena Pańczuk
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jemima Tsang
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jack Bickford-Smith
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Kevin Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - C Mark Smales
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
18
|
Choi JW, Jeong KH, You JW, Lee JW, Moon BI, Kim HJ, Kim HJ. Serum Levels and Glycosylation Changes of Alpha-1-Acid Glycoprotein According to Severity of Breast Cancer in Korean Women. J Microbiol Biotechnol 2020; 30:1297-1304. [PMID: 32627751 PMCID: PMC9728234 DOI: 10.4014/jmb.2006.06007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Elevated serum levels of alpha-1-acid glycoprotein (AGP) are known to be associated with several types of cancer. In addition, some reports have indicated that changes in glycosylation of AGP are associated with cancer progression. However, changes in AGP levels of serum and changes in glycosylation of AGPs in breast cancer have not been specifically studied. In the present study, serum AGP levels in benign (BN) cancer and breast cancer stage I (BC I), BC IIA, BC IIB, and BC III in Korean women were measured using an enzyme-linked immunosorbent assay (ELISA). AGP was purified from individual sera by hot phenol extraction and then subjected to AGP glycosylation analysis. Three types of AGP glycosylation (fucosylation, high-mannose-type and sialylation) were detected using enzyme-linked lectin assays (ELLAs). Serum AGP levels were higher in BC I, BC IIA, BC IIB, and BC III, than in the BN group, and the level in BC I and BC IIA was high enough to be distinguished from BN. Meanwhile, terminal fucosylation and high-mannose-type glycans appeared to be lowest in BC I. The glycosylation levels of BC I provide sensitivity and specificity that make BC I clearly distinguishable from BC IIA, BC IIB, and BC III as well as BN. Therefore, determination of serum AGP or AGP glycosylation level could be useful for detecting the early stages of breast cancer.
Collapse
Affiliation(s)
- Jae Woong Choi
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ki-Ho Jeong
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Won You
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jun Woo Lee
- Breast and Thyroid Cancer Center, Ewha Womans University Cancer Center for Women, Seoul 07985, Republic of Korea
| | - Byung-In Moon
- Breast and Thyroid Cancer Center, Ewha Womans University Cancer Center for Women, Seoul 07985, Republic of Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea,Corresponding author Phone: +82-2-820-5613 Fax: +82 2 816 7338 E-mail:
| |
Collapse
|
19
|
Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, Cao WM, Liu DX. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers (Basel) 2020; 12:E2767. [PMID: 32992445 PMCID: PMC7601650 DOI: 10.3390/cancers12102767] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of "omics" strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xin Guan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Zhimin Fan
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| |
Collapse
|
20
|
Lee SB, Bose S, Ahn SH, Son BH, Ko BS, Kim HJ, Chung IY, Kim J, Lee W, Ko MS, Lee K, Chang S, Park HS, Lee JW, Kim DC. Breast cancer diagnosis by analysis of serum N-glycans using MALDI-TOF mass spectroscopy. PLoS One 2020; 15:e0231004. [PMID: 32271809 PMCID: PMC7144955 DOI: 10.1371/journal.pone.0231004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and serum N-glycans can be used as markers for cancer diagnosis, as alterations in protein glycosylation are associated with cancer pathogenesis and progression. We aimed to develop a platform for breast cancer (BrC) diagnosis based on serum N-glycan profiles using MALDI-TOF mass spectroscopy. Serum N-glycans from BrC patients and healthy volunteers were evaluated using NosQuest’s software “NosIDsys.” BrC-associated “NosID” N-glycan biomarkers were selected based on abundance and NosIDsys analysis, and their diagnostic potential was determined using NosIDsys and receiver operating characteristic curves. Results showed an efficient pattern recognition of invasive ductal carcinoma patients, with very high diagnostic performance [area under the curve (AUC): 0.93 and 95% confidence interval (CI): 0.917–0.947]. We achieved effective stage-specific differentiation of BrC patients from healthy controls with 82.3% specificity, 84.1% sensitivity, and 82.8% accuracy for stage 1 BrC and recognized hormone receptor-2 and lymph node invasion subtypes based on N-glycan profiles. Our novel technique supplements conventional diagnostic strategies for BrC detection and can be developed as an independent platform for BrC screening.
Collapse
Affiliation(s)
- Sae Byul Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shambhunath Bose
- R&D Center, NOSQUEST Inc., Seongnam, Gyeonggi, Republic of Korea
| | - Sei Hyun Ahn
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byung Ho Son
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Ko
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee Jeong Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Il Yong Chung
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jisun Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woochang Lee
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Myung-Su Ko
- Health Screening and Promotion Center, Asan Medical Center, Seoul, Republic of Korea
| | - Kyungsoo Lee
- R&D Center, NOSQUEST Inc., Seongnam, Gyeonggi, Republic of Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Jong Won Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- * E-mail: (JWL); (DCK)
| | - Dong-Chan Kim
- R&D Center, NOSQUEST Inc., Seongnam, Gyeonggi, Republic of Korea
- * E-mail: (JWL); (DCK)
| |
Collapse
|
21
|
Liu Z, Li R, Liang K, Chen J, Chen X, Li X, Li R, Zhang X, Yi L, Long W. Value of digital mammography in predicting lymphovascular invasion of breast cancer. BMC Cancer 2020; 20:274. [PMID: 32245448 PMCID: PMC7119272 DOI: 10.1186/s12885-020-6712-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lymphovascular invasion (LVI) has never been revealed by preoperative scans. It is necessary to use digital mammography in predicting LVI in patients with breast cancer preoperatively. Methods Overall 122 cases of invasive ductal carcinoma diagnosed between May 2017 and September 2018 were enrolled and assigned into the LVI positive group (n = 42) and the LVI negative group (n = 80). Independent t-test and χ2 test were performed. Results Difference in Ki-67 between the two groups was statistically significant (P = 0.012). Differences in interstitial edema (P = 0.013) and skin thickening (P = 0.000) were statistically significant between the two groups. Multiple factor analysis showed that there were three independent risk factors for LVI: interstitial edema (odds ratio [OR] = 12.610; 95% confidence interval [CI]: 1.061–149.922; P = 0.045), blurring of subcutaneous fat (OR = 0.081; 95% CI: 0.012–0.645; P = 0.017) and skin thickening (OR = 9.041; 95% CI: 2.553–32.022; P = 0.001). Conclusions Interstitial edema, blurring of subcutaneous fat, and skin thickening are independent risk factors for LVI. The specificity of LVI prediction is as high as 98.8% when the three are used together.
Collapse
Affiliation(s)
- Zhuangsheng Liu
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, Guangdong, China
| | - Ruqiong Li
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, Guangdong, China
| | - Keming Liang
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, Guangdong, China
| | - Junhao Chen
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, Guangdong, China
| | - Xiangmeng Chen
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, Guangdong, China
| | - Xiaoping Li
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, China
| | - Xin Zhang
- Department of Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, China
| | - Lilei Yi
- Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Wansheng Long
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, Guangdong, China.
| |
Collapse
|
22
|
Lastovickova M, Strouhalova D, Bobalova J. Use of Lectin-based Affinity Techniques in Breast Cancer Glycoproteomics: A Review. J Proteome Res 2020; 19:1885-1899. [PMID: 32181666 DOI: 10.1021/acs.jproteome.9b00818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Changes in glycoprotein content, altered glycosylations, and aberrant glycan structures are increasingly recognized as cancer hallmarks. Because breast cancer is one of the most common causes of cancer deaths in the world, it is highly urgent to find other reliable biomarkers for its initial diagnosis and to learn as much as possible about this disease. In this Review, the applications of lectins to a screening of potential breast cancer biomarkers published during recent years are overviewed. These data provide a deeper insight into the use of modern strategies, technologies, and scientific knowledge in glycoproteomic breast cancer research. Particular attention is concentrated on the use of lectin-based affinity techniques, applied independently or most frequently in combination with mass spectrometry, as an effective tool for the targeting, separation, and reliable identification of glycoprotein molecules. Individual procedures and lectins used in published glycoproteomic studies of breast-cancer-related glycoproteins are discussed. The summarized approaches have the potential for use in diagnostic and predictive applications. Finally, the use of lectins is briefly discussed from the view of their future applications in the analysis of glycoproteins in cancer.
Collapse
Affiliation(s)
- Marketa Lastovickova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Dana Strouhalova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Janette Bobalova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
23
|
Kühne V, Verstraete R, van Ostade X, Büscher P. Experimental Evidence on the Nature of the Antigen in the Direct Agglutination Test for Visceral Leishmaniasis. Am J Trop Med Hyg 2020; 102:788-796. [PMID: 32124719 PMCID: PMC7124922 DOI: 10.4269/ajtmh.19-0784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The direct agglutination test (DAT) for visceral leishmaniasis (VL) is the serodiagnostic test for VL that has the most robust sensitivity and specificity in the field across all endemic regions. It is based on trypsin-treated and formaldehyde-fixed whole promastigote cells from Leishmania donovani. The exact identity and nature of the epitopes on the DAT antigen that cause agglutination with VL patients' sera are currently unknown. In this study, we performed antigen-inhibition studies which revealed that lipophosphoglycan (LPG) and the DAT antigen share epitopes. Antibody inhibition with a monoclonal antibody directed against the phosphoglycan repeat epitope of LPG showed that this is not the epitope that reacts with human sera. Oxidation of carbohydrates by sodium metaperiodate did not alter the reactivity of human sera with the DAT antigen and LPG. This indicates that carbohydrates do not play a role in the reaction of the DAT antigen with antibodies in serum from VL patients, and that they also are not involved in the reaction of LPG with the same serum. We conclude that the noncarbohydrate moiety of LPG, that is, the core-anchor fragment, and potentially other noncarbohydrate epitopes on the surface of the DAT antigen are responsible for its agglutination with antibodies from VL patients. As LPG plays a role in the DAT reaction, this could facilitate the following: 1) incorporation of LPG, preferably the synthetic version of the core-anchor fragment, into an immunochromatographic test format that is more adapted as a point-of-care test (short incubation, little training, and equipment needed) than DAT and 2) enhancing the quality control for the production of the DAT antigen.
Collapse
Affiliation(s)
- Vera Kühne
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | |
Collapse
|
24
|
Elek Z, Kovács Z, Keszler G, Szabó M, Csanky E, Luo J, Guttman A, Rónai Z. High Throughput Multiplex SNP-analysis in Chronic Obstructive Pulmonary Disease and Lung Cancer. Curr Mol Med 2020; 20:185-193. [DOI: 10.2174/1566524019666191017123446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023]
Abstract
Background:
A number of human inflammatory diseases and tumors have
been shown to cause alterations in the glycosylation pattern of plasma proteins in a specific
manner. These highly variable and versatile post-translational modifications finetune
protein functions by influencing sorting, folding, enzyme activity and subcellular
localization. However, relatively little is known about regulatory factors of this procedure
and about the accurate causative connection between glycosylation and disease.
Objective:
The aim of the present study was to investigate whether certain single nucleotide
polymorphisms (SNPs) in genes encoding glycosyltransferases and glycosidases
could be associated with elevated risk for chronic obstructive pulmonary disease
(COPD) and lung adenocarcinoma.
Methods:
A total of 32 SNPs localized in genes related to N-glycosylation were selected
for the association analysis. Polymorphisms with putative biological functions (missense
or regulatory variants) were recruited. SNPs were genotyped by a TaqMan OpenArray
platform. A single base extension-based method in combination with capillary gel electrophoresis
was used for verification.
Results:
The TaqMan OpenArray approach provided accurate and reliable genotype
data (global call rate: 94.9%, accuracy: 99.6%). No significant discrepancy was detected
between the obtained and expected genotype frequency values (Hardy–Weinberg equilibrium)
in the healthy control sample group in case of any SNP confirming reliable sampling
and genotyping. Allele frequencies of the rs3944508 polymorphism localized in the
3’ UTR of the MGAT5 gene significantly differed between the sample groups compared.
Conclusion:
Our results suggest that the rs34944508 SNP might modulate the risk for
lung cancer by influencing the expression of MGAT5. This enzyme catalyzes the addition
of N-acetylglucosamine (GlcNAc) in beta 1-6 linkage to the alpha-linked mannose of
biantennary N-linked oligosaccharides, thus, increasing branching that is the characteristic
of invasive malignancies.
Collapse
Affiliation(s)
- Zsuzsanna Elek
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Kovács
- Horvath Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - Gergely Keszler
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | - Jane Luo
- SCIEX Separations, Brea, CA 92821, United States
| | | | - Zsolt Rónai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Santorelli L, Capitoli G, Chinello C, Piga I, Clerici F, Denti V, Smith A, Grasso A, Raimondo F, Grasso M, Magni F. In-Depth Mapping of the Urinary N-Glycoproteome: Distinct Signatures of ccRCC-related Progression. Cancers (Basel) 2020; 12:E239. [PMID: 31963743 PMCID: PMC7016614 DOI: 10.3390/cancers12010239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein N-glycosylation is one of the most important post-translational modifications and is involved in many biological processes, with aberrant changes in protein N-glycosylation patterns being closely associated with several diseases, including the progression and spreading of tumours. In light of this, identifying these aberrant protein glycoforms in tumours could be useful for understanding the molecular mechanism of this multifactorial disease, developing specific biomarkers and finding novel therapeutic targets. We investigated the urinary N-glycoproteome of clear cell renal cell carcinoma (ccRCC) patients at different stages (n = 15 at pT1 and n = 15 at pT3), and of non-ccRCC subjects (n = 15), using an N-glyco-FASP-based method. Using label-free nLC-ESI MS/MS, we identified and quantified several N-glycoproteins with altered expression and abnormal changes affecting the occupancy of the glycosylation site in the urine of RCC patients compared to control. In particular, nine of them had a specific trend that was directly related to the stage progression: CD97, COCH and P3IP1 were up-expressed whilst APOB, FINC, CERU, CFAH, HPT and PLTP were down-expressed in ccRCC patients. Overall, these results expand our knowledge related to the role of this post-translational modification in ccRCC and translation of this information into pre-clinical studies could have a significant impact on the discovery of novel biomarkers and therapeutic target in kidney cancer.
Collapse
Affiliation(s)
- Lucia Santorelli
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Giulia Capitoli
- Centre of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy;
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Francesca Clerici
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Vanna Denti
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Angelica Grasso
- Urology Service, Department of Surgery, EOC Beata Vergine Regional Hospital, 23, 6850 Mendrisio, Switzerland;
| | - Francesca Raimondo
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Marco Grasso
- Urology Unit, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| |
Collapse
|
26
|
Herman K, Weiss M, Lekka M, Ptak A. How Complex Is the Concanavalin A-Carboxypeptidase Y Interaction? ACS Chem Biol 2019; 14:1611-1618. [PMID: 31287283 DOI: 10.1021/acschembio.9b00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lectin-carbohydrate interactions can be exploited in ultrasensitive biochemical recognition or medical diagnosis. For this purpose, besides the high specificity of the interactions, an appropriate methodology for their quantitative and detailed characterization is demanded. In this work, we determine the unbinding properties of the concanavalin A-carboxypeptidase Y complex, which is important for characterization of glycoproteins on the surface of biological cells. To achieve the goal, we have developed a methodology based on dynamic force spectroscopy measurements and two advanced theoretical models of force-induced unbinding. Our final results allowed excluding both, rebinding processes and the multibarrier character of the interaction potential, as possible explanations of the concanavalin A-carboxypeptidase Y unbinding mechanisms. Such characteristics as the position and height of the activation barrier and the force-free dissociation rate were determined. We hope our paper contributes to a better understanding of the unbinding processes in receptor-ligand complexes.
Collapse
Affiliation(s)
- Katarzyna Herman
- Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland
| | - Marek Weiss
- Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland
| | - Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Cracow, Poland
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Piotrowo 3, PL-60965 Poznan, Poland
| |
Collapse
|
27
|
Lin Q, Chen XY, Liu WF, Zhu PW, Shi WQ, Li B, Yuan Q, Min YL, Liu JM, Shao Y. Diagnostic value of CA-153 and CYFRA 21-1 in predicting intraocular metastasis in patients with metastatic lung cancer. Cancer Med 2019; 9:1279-1286. [PMID: 31218849 PMCID: PMC7013068 DOI: 10.1002/cam4.2354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is prone to metastasis to various organs. Although intraocular metastasis (IOM) occurs at a later stage than metastasis to other organs, it often adversely affects the quality of life and suggests a poor prognosis. In this study, we selected 1608 patients with lung cancer who had metastasis to at least one site and explored clinical differences between those with IOM and non‐IOM (NIOM). An independent t test and chi‐squared test were used to analyze the clinical features of the patients. The statistically significant parameters were analyzed by binary logistic regression to determine the risk factors for IOM. A receiver operating characteristic curve was constructed to assess their diagnostic value in IOM. The results showed that no significant differences were noted in age, gender, and pathological type between the IOM and NIOM groups. However, the IOM group had higher levels of alpha‐fetoprotein, carcinoembryonic antigen, cancer antigen (CA)‐125, CA‐153, cytokeratin fragment 19 (CYFRA 21‐1), and total prostate‐specific antigen, compared with the NIOM group. Binary logistic regression indicated that CA‐153 and CYFRA 21‐1 were risk factors for IOM in patients with MLC (P < 0.05). Area under the curve of CA‐153, CYFRA 21‐1 and their combination were 0.791, 0.860, and 0.872 respectively. The cutoff values for CA‐153 and CYFRA 21‐1 were 22.2 U/mL and 6.785 ng/mL. In conclusion, both CA‐153 and CYFRA 21‐1 were independent risk factors for IOM in patients with metastatic lung cancer (MLC), whereas the combination of CA‐153 and CYFRA 21‐1 assessment yields the most value in the detection of IOM in patients with MLC.
Collapse
Affiliation(s)
- Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Xuan-Yin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wen-Feng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| | - Jia-Ming Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|