1
|
Luo Y, He Y, Xu Y, Wang Y, Yang L. The KDM5A/HOXA5 axis regulates osteosarcoma progression via activating the Wnt/β-catenin pathway. Eur J Med Res 2025; 30:284. [PMID: 40229896 PMCID: PMC11998425 DOI: 10.1186/s40001-025-02478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
As an oncogenic driver, lysine-specific demethylase 5A (KDM5A) participates in regulating numerous tumor progression-related processes. Moreover, KDM5A functions as a histone demethylase, modulating the expression levels of its target genes by adjusting methylation levels. However, the underlying molecular mechanism of KDM5A in osteosarcoma remains elusive. To elucidate this mechanism, specifically how the KDM5A /Homeobox A5 (HOXA5) axis regulates osteosarcoma progression, we measured the expression levels of KDM5A and HOXA5 genes using reverse transcription-quantitative real-time PCR. The correlation between HOXA5 and KDM5A was analyzed via Pearson correlation analysis and further validated through chromatin immunoprecipitation-quantitative real-time PCR. Immunohistochemistry was conducted to determine the number of KDM5A-or HOXA5-positive cells present in osteosarcoma tissues. Additionally, Western blot analysis was utilized to quantify the protein levels of KDM5A, HOXA5, di- and tri-methylation of lysine 4 on histone H3, and β-catenin. Colony formation assays, wound healing assays and flow cytometry were used to detect cell proliferation, migration and apoptosis. The factors associated with the five-year survival rate of patients were analyzed. Our results illustrated that KDM5A was up-regulated in osteosarcoma and associated with a poor prognosis; KDM5A knockdown inhibited osteosarcoma cell proliferation and migration and promotes apoptosis. Subsequently, KDM5A knockdown induced HOXA5 expression by promoting di- and tri-methylation of lysine 4 on histone H3 demethylation, and HOXA5 overexpression inhibited osteosarcoma cell proliferation and migration, and promoted apoptosis by inhibiting the Wnt/β-catenin pathway. We finally proved that HOXA5 silence weakened the inhibitory effect of sh- KDM5A on osteosarcoma proliferation and migration and promoted apoptosis via activating Wnt/β-catenin pathway in vivo and in vitro. Our study demonstrated that the KDM5A /HOXA5 axis regulates osteosarcoma progression by activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yi Luo
- Department of Spine Surgery, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, The No.161 of the Shaoshan South Road, Changsha City, Hunan Province, China.
| | - Youzhi He
- Department of Spine Surgery, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, The No.161 of the Shaoshan South Road, Changsha City, Hunan Province, China
| | - Yuxia Xu
- Department of Spine Surgery, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, The No.161 of the Shaoshan South Road, Changsha City, Hunan Province, China
| | - Yongfu Wang
- Department of Spine Surgery, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, The No.161 of the Shaoshan South Road, Changsha City, Hunan Province, China
| | - Li Yang
- Department of Spine Surgery, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, The No.161 of the Shaoshan South Road, Changsha City, Hunan Province, China
| |
Collapse
|
2
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy FMA, Alsaadi SB, Abosaoda MK. Role of homeobox genes in cancer: immune system interactions, long non-coding RNAs, and tumor progression. Mol Biol Rep 2024; 51:964. [PMID: 39240390 DOI: 10.1007/s11033-024-09857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.
Collapse
Affiliation(s)
| | - Shireen Hamid Farhan
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
3
|
Shen Y, Jiang H, Canario AV, Chen T, Liu Y, Yang G, Meng X, Zhao J, Chen X. The fusion gene hsf5-rnf43 in Nile tilapia: A potential regulator in the maintenance of testis function and sexual differentiation. iScience 2023; 26:108284. [PMID: 38026183 PMCID: PMC10679895 DOI: 10.1016/j.isci.2023.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
We identified that the genes heat shock transcription factor 5 (hsf5) and ring finger protein 43 (rnf43) happened fusion in Nile tilapia (Oreochromis niloticus), called hsf5-rnf43, and provided the characteristic and functional analysis of hsf5-rnf43 gene in fish for the first time. Analysis of spatiotemporal expression showed that hsf5-rnf43 was specifically expressed in the testis and located in primary spermatocytes of adult Nile tilapia and gradually increased during testis development from 5 to 180 days after hatching. We also found DNA methylation regulated sex-biased expression of hsf5-rnf43 in the early development of Nile tilapia, and was affected by high temperature during the thermosensitive period of Nile tilapia sex differentiation. Therefore, we first reported that the fusion gene hsf5-rnf43 was sex-biased expressed in the testis regulated by DNA methylation and affected by high temperature, which may be involved in the maintenance of testis function and sex differentiation of Nile tilapia.
Collapse
Affiliation(s)
- Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Adelino V.M. Canario
- CCMAR/CIMAR Centre for Marine Sciences, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yufei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Martínez-Ramos S, Rafael-Vidal C, Malvar-Fernández B, Rodriguez-Trillo A, Veale D, Fearon U, Conde C, Conde-Aranda J, Radstake TRDJ, Pego-Reigosa JM, Reedquist KA, García S. HOXA5 is a key regulator of class 3 semaphorins expression in the synovium of rheumatoid arthritis patients. Rheumatology (Oxford) 2023; 62:2621-2630. [PMID: 36398888 PMCID: PMC10321103 DOI: 10.1093/rheumatology/keac654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/08/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE Class 3 semaphorins are reduced in the synovial tissue of RA patients and these proteins are involved in the pathogenesis of the disease. The aim of this study was to identify the transcription factors involved in the expression of class 3 semaphorins in the synovium of RA patients. METHODS Protein and mRNA expression in synovial tissue from RA and individuals at risk (IAR) patients, human umbilical vein endothelial cells (HUVEC) and RA fibroblast-like synoviocytes (FLS) was determined by ELISA, immunoblotting and quantitative PCR. TCF-3, EBF-1 and HOXA5 expression was knocked down using siRNA. Cell viability, migration and invasion were determined using MTT, calcein, wound closure and invasion assays, respectively. RESULTS mRNA expression of all class 3 semaphorins was significantly lower in the synovium of RA compared with IAR patients. In silico analysis suggested TCF-3, EBF-1 and HOXA5 as transcription factors involved in the expression of these semaphorins. TCF-3, EBF-1 and HOXA5 silencing significantly reduced the expression of several class 3 semaphorin members in FLS and HUVEC. Importantly, HOXA5 expression was significantly reduced in the synovium of RA compared with IAR patients and was negatively correlated with clinical disease parameters. Additionally, TNF-α down-regulated the HOXA5 expression in FLS and HUVEC. Finally, HOXA5 silencing enhanced the migratory and invasive capacities of FLS and the viability of HUVEC. CONCLUSION HOXA5 expression is reduced during the progression of RA and could be a novel therapeutic strategy for modulating the hyperplasia of the synovium, through the regulation of class 3 semaphorins expression.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Carlos Rafael-Vidal
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Beatriz Malvar-Fernández
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Angela Rodriguez-Trillo
- Laboratorio de Reumatología Experimental y Observacional, Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico, Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Douglas Veale
- Rheumatology EULAR Centre of Excellence, St Vincent's University Hospital and University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Rheumatology EULAR Centre of Excellence, St Vincent's University Hospital and University College Dublin, Dublin, Ireland
- Department of Molecular Rheumatology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Carmen Conde
- Laboratorio de Reumatología Experimental y Observacional, Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico, Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jose María Pego-Reigosa
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Kris A Reedquist
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Samuel García
- Correspondence to: Samuel García, Rheumatology & Immune-mediated Diseases (IRIDIS) Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Hospital Álvaro Cunqueiro, Estrada Clara Campoamor No. 341, Beade, 36312 Vigo (Pontevedra), Spain. E-mail:
| |
Collapse
|
5
|
Deregulation of miR-375 Inhibits HOXA5 and Promotes Migration, Invasion, and Cell Proliferation in Breast Cancer. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04375-3. [PMID: 36701095 DOI: 10.1007/s12010-023-04375-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Breast cancer (BC) is a highly aggressive tumour and one of the women's leading causes of cancer-related deaths in worldwide. MiR-375 overexpressed in BC cells, and its biological relevance is largely unknown. Here in, we explored the function of miR-375 in BC. MicroRNA-375 targets were predicted by online target prediction tools and found that HOXA5 is one of the potential targets. MTT assay was employed to assess the effect of miR-375 on cell proliferation, where migration and invasion transwell assays were applied to detect cell migratory and invasive ability. Besides, relative expression of miR-375 and HOXA5 was measured in BC and HEK-293 cells, and its downstream gene target expressions were evaluated by qRT-PCR and western blot. In this study, we found that miR-375 expression was higher in BC cell lines than in the HEK-293 cell line, whereas HOXA5 expression was significantly lower. Our study showed that exogenous inhibition of miR-375 promoted HOXA5 expression; on the contrary, miR-375 mimics down-regulated HOXA5 expression level. Knockdown of miR-375 expression in BC cells reduces cell proliferation, migration, and invasion by inverse correlation expression of HOXA5. Our findings associated that miR-375 accelerated apoptosis evasion, proliferation, migration, and invasion by targeting HOXA5. In addition, nucleolin interferes in miR-375 biogenesis while silencing of nucleolin significantly reduced miR-375 expression and increased HOXA5 expression in BC. Thus, miR-375/HOXA5 axis may represent a potential therapeutic target for BC treatment.
Collapse
|
6
|
Liang Y, Cen J, Huang Y, Fang Y, Wang Y, Shu G, Pan Y, Huang K, Dong J, Zhou M, Xu Y, Luo J, Liu M, Zhang J. CircNTNG1 inhibits renal cell carcinoma progression via HOXA5-mediated epigenetic silencing of Slug. Mol Cancer 2022; 21:224. [PMID: 36536414 PMCID: PMC9761964 DOI: 10.1186/s12943-022-01694-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recent studies have identified that circular RNAs (circRNAs) have an important role in cancer via their well-recognized sponge effect on miRNAs, which regulates a large variety of cancer-related genes. However, only a few circRNAs have been well-studied in renal cell carcinoma (RCC) and their regulatory function remains largely elusive. METHODS Bioinformatics approaches were used to characterize the differentially expressed circRNAs in our own circRNA-sequencing dataset, as well as two public circRNA microarray datasets. CircNTNG1 (hsa_circ_0002286) was identified as a potential tumor-suppressing circRNA. Transwell assay and CCK-8 assay were used to assess phenotypic changes. RNA pull-down, luciferase reporter assays and FISH experiment were used to confirm the interactions among circNTNG1, miR-19b-3p, and HOXA5 mRNA. GSEA was performed to explore the downstream pathway regulated by HOXA5. Immunoblotting, chromatin immunoprecipitation, and methylated DNA immunoprecipitation were used to study the mechanism of HOXA5. RESULTS In all three circRNA datasets, circNTNG1, which was frequently deleted in RCC, showed significantly low expression in the tumor group. The basic properties of circNTNG1 were characterized, and phenotype studies also demonstrated the inhibitory effect of circNTNG1 on RCC cell aggressiveness. Clinically, circNTNG1 expression was associated with RCC stage and Fuhrman grade, and it also served as an independent predictive factor for both OS and RFS of RCC patients. Next, the sponge effect of circNTNG1 on miR-19b-3p and the inhibition of HOXA5 by miR-19b-3p were validated. GSEA analysis indicated that HOXA5 could inactivate the epithelial-mesenchymal transition (EMT) process, and this inactivation was mediated by HOXA5-induced SNAI2 (Slug) downregulation. Finally, it was confirmed that the Slug downregulation was caused by HOXA5, along with the DNA methyltransferase DNMT3A, binding to its promoter region and increasing the methylation level. CONCLUSIONS Based on the experimental data, in RCC, circNTNG1/miR-19b-3p/HOXA5 axis can regulate the epigenetic silencing of Slug, thus interfering EMT and metastasis of RCC. Together, our findings provide potential biomarkers and novel therapeutic targets for future study in RCC.
Collapse
Affiliation(s)
- Yanping Liang
- grid.12981.330000 0001 2360 039XDepartment of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Junjie Cen
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yong Huang
- grid.12981.330000 0001 2360 039XDepartment of Emergency, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yong Fang
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yunfei Wang
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Guannan Shu
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yihui Pan
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Kangbo Huang
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Jiaqi Dong
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Mi Zhou
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yi Xu
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Junhang Luo
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Min Liu
- grid.12981.330000 0001 2360 039XDepartment of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Jiaxing Zhang
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
7
|
Shenoy US, Adiga D, Kabekkodu SP, Hunter KD, Radhakrishnan R. Molecular implications of HOX genes targeting multiple signaling pathways in cancer. Cell Biol Toxicol 2022; 38:1-30. [PMID: 34617205 PMCID: PMC8789642 DOI: 10.1007/s10565-021-09657-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Homeobox (HOX) genes encode highly conserved homeotic transcription factors that play a crucial role in organogenesis and tissue homeostasis. Their deregulation impacts the function of several regulatory molecules contributing to tumor initiation and progression. A functional bridge exists between altered gene expression of individual HOX genes and tumorigenesis. This review focuses on how deregulation in the HOX-associated signaling pathways contributes to the metastatic progression in cancer. We discuss their functional significance, clinical implications and ascertain their role as a diagnostic and prognostic biomarker in the various cancer types. Besides, the mechanism of understanding the theoretical underpinning that affects HOX-mediated therapy resistance in cancers has been outlined. The knowledge gained shall pave the way for newer insights into the treatment of cancer.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
8
|
Ding F, Chen P, Bie P, Piao W, Cheng Q. HOXA5 Is Recognized as a Prognostic-Related Biomarker and Promotes Glioma Progression Through Affecting Cell Cycle. Front Oncol 2021; 11:633430. [PMID: 34485110 PMCID: PMC8416157 DOI: 10.3389/fonc.2021.633430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Glioma is malignant tumor derives from glial cells in the central nervous system. High-grade glioma shows aggressive growth pattern, and conventional treatments, such as surgical removal and chemo-radiotherapy, archive limitation in the interference of this process. In this work, HOXA5, from the HOX family, was identified as a glioma cell proliferation-associated factor by investigating its feature in the TCGA and CGGA data set. High HOXA5 expression samples contain unfavorable clinical features of glioma, including IDH wild type, un-methylated MGMT status, non-codeletion 1p19q status, malignant molecular subtype. Survival analysis indicates that high HOXA5 expression samples are associated with worse clinical outcome. The CNVs and SNPs profile difference further confirmed the enrichment of glioma aggressive related biomarkers. In the meantime, the activation of DNA damage repair-related pathways and TP53-related pathways is also related to HOXA5 expression. In cell lines, U87MG and U251, by interfering HOXA5 expression significantly inhibit glioma progression and apoptosis, and cell cycle is arrested at the G2/M phase. Collectively, increased HOXA5 expression can promote glioma progression via affecting glioma cell proliferation.
Collapse
Affiliation(s)
- Fengqin Ding
- Department of Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| | - Ping Chen
- Medical Experiment Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Pengfei Bie
- Department of Neurosurgery, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| | - Wenhua Piao
- Department of Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest Minzu University, Yinchuan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Kim CY, Kim YC, Oh JH, Kim MH. HOXA5 confers tamoxifen resistance via the PI3K/AKT signaling pathway in ER-positive breast cancer. J Cancer 2021; 12:4626-4637. [PMID: 34149926 PMCID: PMC8210559 DOI: 10.7150/jca.59740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Tamoxifen is a commonly used drug to treat estrogen receptor-positive patients with breast cancer. Despite the outstanding efficacy of tamoxifen, approximately one-third of patients develop resistance toward it, thereby presenting a therapeutic challenge. HOX genes may be involved in the acquisition of tamoxifen resistance. In this study, we identified HOXA5, a member of the HOX gene family, as a marker of tamoxifen resistance. Using ChIP assay, we found that HOXA5 expression was significantly overexpressed in tamoxifen-resistant MCF7 (TAMR) breast cancer cells because of reduced H3K27me3 binding. HOXA5 upregulation resulted in activation of the PI3K/AKT signaling cascade, which in turn, led to p53 and p21 reduction, ultimately making the TAMR cells less apoptotic. Furthermore, elevated HOXA5 expression resulted in breast cancer cells acquiring more mesenchymal-like and stem cell traits associated with aggressive breast cancer phenotypes. In conclusion, our results delineate a mechanism by which HOXA5 promotes tumorigenesis, cancer progression, and tamoxifen resistance in breast cancer cells.
Collapse
Affiliation(s)
- Clara Yuri Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yu Cheon Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Anatomy, Graduate School of Medical Science, Bain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji Hoon Oh
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
10
|
Zhang H, Zhang Z, Liu X, Duan H, Xiang T, He Q, Su Z, Wu H, Liang Z. DNA Methylation Haplotype Block Markers Efficiently Discriminate Follicular Thyroid Carcinoma from Follicular Adenoma. J Clin Endocrinol Metab 2021; 106:1011-1021. [PMID: 33394038 PMCID: PMC7993581 DOI: 10.1210/clinem/dgaa950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Indexed: 12/19/2022]
Abstract
CONTEXT Follicular thyroid carcinoma (FTC) is the second most common type of thyroid carcinoma and must be pathologically distinguished from benign follicular adenoma (FA). Additionally, the clinical assessment of thyroid tumors with uncertain malignant potential (TT-UMP) demands effective indicators. OBJECTIVE We aimed to identify discriminating DNA methylation markers between FA and FTC. METHODS DNA methylation patterns were investigated in 33 FTC and 33 FA samples using reduced representation bisulfite sequencing and methylation haplotype block-based analysis. A prediction model was constructed and validated in an independent cohort of 13 FTC and 13 FA samples. Moreover, 36 TT-UMP samples were assessed using this model. RESULTS A total of 70 DNA methylation markers, approximately half of which were located within promoters, were identified to be significantly different between the FTC and FA samples. All the Gene Ontology terms enriched among the marker-associated genes were related to "DNA binding," implying that the inactivation of DNA binding played a role in FTC development. A random forest model with an area under the curve of 0.994 was constructed using those markers for discriminating FTC from FA in the validation cohort. When the TT-UMP samples were scored using this model, those with fewer driver mutations also exhibited lower scores. CONCLUSION An FTC-predicting model was constructed using DNA methylation markers, which distinguished between FA and FTC tissues with a high degree of accuracy. This model can also be used to help determine the potential of malignancy in TT-UMP.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | | | - Xiaoding Liu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Huanli Duan
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Qiye He
- Singlera Genomics Inc. Shanghai, China
| | - Zhixi Su
- Singlera Genomics Inc. Shanghai, China
| | - Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Correspondence: Zhiyong Liang, PhD, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China. ; or Huanwen Wu, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
- Correspondence: Zhiyong Liang, PhD, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China. ; or Huanwen Wu, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
11
|
Liu G, Liu Z, Sun X, Xia X, Liu Y, Liu L. Pan-Cancer Genome-Wide DNA Methylation Analyses Revealed That Hypermethylation Influences 3D Architecture and Gene Expression Dysregulation in HOXA Locus During Carcinogenesis of Cancers. Front Cell Dev Biol 2021; 9:649168. [PMID: 33816499 PMCID: PMC8012915 DOI: 10.3389/fcell.2021.649168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 01/22/2023] Open
Abstract
DNA methylation dysregulation during carcinogenesis has been widely discussed in recent years. However, the pan-cancer DNA methylation biomarkers and corresponding biological mechanisms were seldom investigated. We identified differentially methylated sites and regions from 5,056 The Cancer Genome Atlas (TCGA) samples across 10 cancer types and then validated the findings using 48 manually annotated datasets consisting of 3,394 samples across nine cancer types from Gene Expression Omnibus (GEO). All samples’ DNA methylation profile was evaluated with Illumina 450K microarray to narrow down the batch effect. Nine regions were identified as commonly differentially methylated regions across cancers in TCGA and GEO cohorts. Among these regions, a DNA fragment consisting of ∼1,400 bp detected inside the HOXA locus instead of the boundary may relate to the co-expression attenuation of genes inside the locus during carcinogenesis. We further analyzed the 3D DNA interaction profile by the publicly accessible Hi-C database. Consistently, the HOXA locus in normal cell lines compromised isolated topological domains while merging to the domain nearby in cancer cell lines. In conclusion, the dysregulation of the HOXA locus provides a novel insight into pan-cancer carcinogenesis.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhenhao Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Xiaomeng Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaoqiong Xia
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yunhe Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei Liu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chen S, Li Y, Zhi S, Ding Z, Huang Y, Wang W, Zheng R, Yu H, Wang J, Hu M, Miao J, Li J. lncRNA Xist Regulates Osteoblast Differentiation by Sponging miR-19a-3p in Aging-induced Osteoporosis. Aging Dis 2020; 11:1058-1068. [PMID: 33014522 PMCID: PMC7505278 DOI: 10.14336/ad.2019.0724] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
The switch between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a key role in aging-induced osteoporosis. In this study, miR-19a-3p was obviously downregulated in BMSCs from aged humans and mice. Overexpressed miR-19a-3p evidently reduced aging-induced bone loss in mice and promoted osteogenic differentiation of BMSCs, while silenced miR-19a-3p manifestly increased aging-induced bone loss in mice and repressed osteogenic differentiation of BMSCs. Hoxa5 was significantly downregulated in the BMSCs from aged mice and contribute to miR-19a-3p-induced osteoblast differentiation as a direct target gene of miR-19a-3p. Furthermore, lncRNA Xist was found as a sponge of miR-19a-3p to repress BMSCs osteogenic differentiation. In conclusion, our study reveals the critical role of the lncRNA Xist/miR-19a-3p/Hoxa5 pathway in aging-induced osteogenic differentiation of BMSCs, indicating the potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Shijie Chen
- 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China.,2Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuezhan Li
- 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuang Zhi
- 4Four Gynecological Wards, Ningbo Women & Children's Hospital, Ningbo, Zhejiang, China
| | - Zhiyu Ding
- 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yan Huang
- 5The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weiguo Wang
- 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ruping Zheng
- 6School of Basic Medical Science, Central South University, Changsha, China
| | - Haiyang Yu
- 6School of Basic Medical Science, Central South University, Changsha, China
| | - Jianlong Wang
- 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minghua Hu
- 3Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha, China
| | - Jinglei Miao
- 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinsong Li
- 1Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Jin X, Dai L, Ma Y, Wang J, Yan H, Jin Y, Zhu X, Liu Z. Homeobox proteins are potential biomarkers and therapeutic targets in gastric cancer: a systematic review and meta-analysis. BMC Cancer 2020; 20:866. [PMID: 32907552 PMCID: PMC7487678 DOI: 10.1186/s12885-020-07346-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND An increasing number of studies have described the aberrant expression of homeobox (HOX) proteins in gastric cancer (GC), which is critically associated with the prognosis and clinicopathological characteristics of GC. This study was conducted to investigate the clinical value and action mechanisms of HOX proteins in GC. METHODS A comprehensive search of PubMed, Embase, Web of Science and Cochrane Library was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. The pooled hazard ratio (HR) with its 95% confidence interval (95% CI) and the pooled odds ratio (OR) with its 95% CI were used to assess the effect of HOX protein expression on the prognosis and clinicopathological features of GC, respectively. RESULTS Nineteen studies containing 3775 patients were selected for this study. Heterogeneity among HRs of overall survival (OS) was markedly high (I2 = 90.5%, p = 0.000). According to the subgroup analysis, increased expression of HOX protein in the downregulated subgroup was associated with a good prognosis for patients with GC (pooled HR: 0.46, 95% CI: 0.36-0.59, I2 = 3.1%, p = 0.377), while overexpression of HOX protein in the upregulated subgroup was correlated with a reduced OS (pooled HR: 2.59, 95% CI: 1.79-3.74, I2 = 73.5%, p = 0.000). The aberrant expression of HOX protein was crucially related to the TNM stage, depth of tumour invasion, tumour size, lymph node metastasis, distant metastasis, vascular invasion, histological differentiation and Lauren classification in patients with GC. In addition, the molecular mechanisms by which HOX proteins regulate tumorigenesis and development of GC were also explored. CONCLUSIONS HOX proteins play vital roles in GC progression, which might serve as prognostic markers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Xiao Jin
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Lu Dai
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Yilan Ma
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Jiayan Wang
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Haihao Yan
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Ye Jin
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Xiaojuan Zhu
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China
| | - Zheng Liu
- Institute of Digestive Endoscopy and Medical Centre for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210011, People's Republic of China.
| |
Collapse
|
14
|
Lin R, Li C, Liu Z, Wu R, Lu J. Genome-wide DNA methylation profiling identifies epigenetic signatures of gastric cardiac intestinal metaplasia. J Transl Med 2020; 18:292. [PMID: 32736574 PMCID: PMC7393819 DOI: 10.1186/s12967-020-02453-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Measuring the DNA methylome may offer the opportunity to identify novel disease biomarkers and insights into disease mechanisms. Although aberrant DNA methylation has been investigated in many human cancers and precancerous lesions, the DNA methylation landscape of gastric cardiac intestinal metaplasia (IM) remains unknown. Therefore, we aimed to investigate the genome-wide DNA methylation landscape and to search for potential epigenetic biomarkers of gastric cardiac IM. METHODS Histopathologic profiling was performed on a total of 118 gastric cardiac biopsies from cancer-free individuals. Genome-wide DNA methylation analysis was performed on 11 gastric cardiac mucosal biopsies (IM = 7; normal = 4) using Illumina 850K microarrays. Transcriptional relevance of any candidate epigenetic biomarker was validated by qRT-PCR. RESULTS The detection rate of gastric cardiac IM was 23% (27/118) in cancer-free individuals. Genome-wide DNA methylation profiling showed a global decrease in methylation in IM compared with normal tissues (median methylation = 0.64 and 0.70 for gastric cardiac IM and normal tissues, respectively). Differential methylation analysis between gastric cardiac IM and normal tissues identified 38,237 differentially methylated probes (DMPs) with a majority of sites showing hypermethylation in IM compared with normal tissues (56.3% vs. 43.7%). Subsequent analysis revealed a significant enrichment of hypermethylated DMPs in promoter and CpG islands (p < 0.001 for both, Pearson χ2 test). For DMPs located in promoter CpG islands showing extreme hypermethylation, the candidate gene with the largest number of DMPs (n = 7) was mapped to HOXA5. Accordingly, mRNA expression of HOXA5 was significantly reduced in IM compared to normal tissue. CONCLUSIONS Our results suggest the implication of alterations in DNA methylation in gastric cardiac IM and highlight that HOXA5 hypermethylation may be a promising epigenetic biomarker, emphasizing the role of aberrant HOXA5 expression in the pathogenesis of gastric cardiac IM.
Collapse
Affiliation(s)
- Runhua Lin
- Department of Pathology, Shantou University Medical College, Shantou, 515041, China.
| | - Chenxi Li
- Department of Pathology, Shantou University Medical College, Shantou, 515041, China
| | - Zhaohui Liu
- The Second People's Hospital of Shenzhen/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ruinuan Wu
- The Second People's Hospital of Shenzhen/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianghong Lu
- Department of Pathology, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
15
|
Ma HM, Cui N, Zheng PS. HOXA5 inhibits the proliferation and neoplasia of cervical cancer cells via downregulating the activity of the Wnt/β-catenin pathway and transactivating TP53. Cell Death Dis 2020; 11:420. [PMID: 32499530 PMCID: PMC7272418 DOI: 10.1038/s41419-020-2629-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
HOXA5 is considered a regulator involved in embryonic development and cellular differentiation and a tumor suppressor. Nevertheless, its biological role in cervical carcinoma is still unclear. In the present study, immunohistochemistry showed that HOXA5 expression gradually decreased as the degree of cervical lesions deepened. Ectopic expression of HOXA5 restrained cell proliferation, decreased cell viability, and inhibited tumor formation in vitro and in vivo. Furthermore, the expression of HOXA5 could arrest cell cycle from G0/G1 to S phase. RNA-seq revealed that p21 and cyclinD1 were involved in this process. Moreover, the gene set enrichment analysis and the TOP/FOP reporter assay both suggested that HOXA5 could restrain the activity of the Wnt/β-catenin pathway. Further study using dual-luciferase reporter assay and quantitative chromatin immunoprecipitation assay demonstrated that HOXA5 could directly bind to the TAAT motif within the promoter of TP53 by its HD domain and transactivate TP53, which can upregulate p21. Altogether, our data suggest that HOXA5 inhibits the proliferation and neoplasia via repression activity of the Wnt/β-catenin pathway and transactivating TP53 in cervical cancer.
Collapse
Affiliation(s)
- Hong-Mei Ma
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China. .,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Xu K, Xiong W, Zhao S, Wang B. MicroRNA-106b serves as a prognostic biomarker and is associated with cell proliferation, migration, and invasion in osteosarcoma. Oncol Lett 2019; 18:3342-3348. [PMID: 31452813 DOI: 10.3892/ol.2019.10666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to be involved in tumor progression of various human malignancies. The purpose of this study was to investigate the expression patterns and prognostic value of microRNA-106b (miR-106b) in osteosarcoma (OS) and to examine its functional role in OS progression. Reverse transcription-quantitative PCR (RT-qPCR) was used to estimate the expression of miR-106b in OS tissues and cells. The prognostic value of miR-106b in OS was evaluated by plotting Kaplan-Meier survival curves and performing Cox analyses. Cell experiments were carried out to examine the effects of miR-106b on OS cell proliferation, migration, and invasion. The expression of miR-106b was elevated in both OS tissues and cells compared with the expression in normal control tissues and cells (P<0.001). miR-106b expression was associated with metastasis (P=0.028) and Tumor-Node-Metastasis stage (P=0.017). Patients with high miR-106b expression levels had a poorer overall survival rate compared with those with low miR-106b expression levels (log-rank P=0.001). Multivariate Cox analyses indicated that miR-106b expression was an independent prognostic factor for patients with OS (hazard ratio=2.769; 95% confidence interval=1.369-5.599; P=0.005). The results of cell experiments implied that the upregulation of miR-106b could promote OS cell proliferation, migration and invasion, whereas the downregulation of miR-106b could suppress these functions (P<0.05). Taken together, this study's results indicated that the overexpression of miR-106b is associated with a poor prognosis for patients with OS and that overexpression promotes OS cell proliferation, migration, and invasion. This study may provide a novel prognostic biomarker and a candidate therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Ke Xu
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Wenhua Xiong
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Shoujun Zhao
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Bin Wang
- Orthopedics Centre, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
17
|
Wang SL, Huang Y, Su R, Yu YY. Silencing long non-coding RNA HOTAIR exerts anti-oncogenic effect on human acute myeloid leukemia via demethylation of HOXA5 by inhibiting Dnmt3b. Cancer Cell Int 2019; 19:114. [PMID: 31168296 PMCID: PMC6489230 DOI: 10.1186/s12935-019-0808-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/28/2019] [Indexed: 11/10/2022] Open
Abstract
Background As an aggressive hematological malignancy, acute myeloid leukemia (AML) remains a dismal disease with poor prognosis. Long non-coding RNAs (lncRNAs) have been widely reported to be involved in tumorigenesis of AML. Here, we define an important role of lncRNA HOTAIR in AML in relation to HOXA5 methylation. Methods Firstly, the expression of HOTAIR was examined in AML samples and cells collected. Next, gain- or loss-of function experiments were conducted in AML cells to explore the effect of HOTAIR on AML. Then, relationship among HOXA5 promoter methylation, HOTAIR and Dnmt3b was measured. Expression of HOXA5 and cell proliferation/apoptosis-related genes was also detected. A last, in vivo assay was performed to assess the tumor formation in nude mice in order to explore the roles of HOTAIR and HOXA5 in cell apoptosis and proliferation. Results LncRNA HOTAIR was found to be upregulated in AML cells and tissues. With silencing of HOTAIR and overexpression of HOXA5, AML cell proliferation was decreased while the apoptosis was induced. Furthermore, HOTAIR was observed to recruit Dnmt3b and to increase HOXA5 promoter methylation. Moreover, silencing HOTAIR and upregulating HOXA5 were found to induce apoptosis and reduce proliferation of AML cells in vivo. Conclusion Our findings highlight the anti-tumor ability of HOTAIR silencing in AML, suggesting that silencing HOTAIR was able to inhibit AML progression through HOXA5 promoter demethylation by decreasing Dnmt3b. Electronic supplementary material The online version of this article (10.1186/s12935-019-0808-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Si-Li Wang
- 1Department of Hematology, The First Affiliated Hospital of Xiamen University, No. 55, Zhenhai Road, Xiamen, 361003 Fujian People's Republic of China.,2Department of Clinical Medicines, Fujian Medical University, No. 1, Xuefu North Road, Fuzhou, 350108 Fujian People's Republic of China
| | - Yun Huang
- 1Department of Hematology, The First Affiliated Hospital of Xiamen University, No. 55, Zhenhai Road, Xiamen, 361003 Fujian People's Republic of China
| | - Rui Su
- 1Department of Hematology, The First Affiliated Hospital of Xiamen University, No. 55, Zhenhai Road, Xiamen, 361003 Fujian People's Republic of China
| | - Yong-Yang Yu
- 3Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 People's Republic of China
| |
Collapse
|
18
|
Wang J, Yu XF, OUYang N, Luo QL, Zhao SY, Guan XF, Chen T, Li JX. Multi-platform analysis of methylation-regulated genes in human lung adenocarcinoma. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:37-45. [PMID: 30626254 DOI: 10.1080/15287394.2018.1551645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lung adenocarcinoma (LUAD) is the most frequent pathological type of lung cancer that has a poor prognosis and high mortality rate. DNA methylation plays a critical role in various biological processes during development, while dysregulation results in pathological consequences. Thus, this study aimed to identify DNA methylation-regulated genes involved in LUAD occurrence. Initially, 300 downregulated and 168 upregulated mRNA expression levels were identified in two databases: Gene Expression Omnibus (GEO) and The Cancer Genome Atlas. In addition, GEO was utilized to detect 243 DNA hyper-methylated sites. Based on our observations, it was possible to correlate downregulation of mRNA expression and DNA hyper-methylation of six genes (ABCA3, COX7A1, HOXA5, SLIT3, SOX17, and SPARCL1). Functional analysis of the six genes indicated that these genes are predominantly enriched in cancer-related pathways and may promote carcinogenesis by regulating epithelialmesenchymal transition processes. In conclusion, our study identified a panel of DNA methylation-regulated genes involved in LUAD and may serve as potential epigenetic markers for this type of carcinoma.
Collapse
Affiliation(s)
- Jin Wang
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu , China
- b Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Xiao-Fan Yu
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu , China
- b Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Nan OUYang
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu , China
| | - Qiu-Lin Luo
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu , China
| | - Shi-Yu Zhao
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu , China
| | - Xi-Fei Guan
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu , China
| | - Tao Chen
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu , China
- b Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| | - Jian-Xiang Li
- a Department of Toxicology, School of Public Health , Medical College of Soochow University , Suzhou , Jiangsu , China
- b Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Suzhou , Jiangsu , China
| |
Collapse
|