1
|
Wang D, Li Q, Xie C. The role and mechanism of protein post‑translational modification in vascular calcification (Review). Exp Ther Med 2024; 28:419. [PMID: 39301258 PMCID: PMC11411399 DOI: 10.3892/etm.2024.12708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Vascular calcification is closely associated with morbidity and mortality in patients with chronic kidney disease, atherosclerosis and diabetes. In the past few decades, vascular calcification has been studied extensively and the findings have shown that the mechanism of vascular calcification is not merely a consequence of a high-phosphorus and high-calcium environment but also an active process characterized by abnormal calcium phosphate deposition on blood vessel walls that involves various molecular mechanisms. Recent advances in bioinformatics approaches have led to increasing recognition that aberrant post-translational modifications (PTMs) play important roles in vascular calcification. This review presents the latest progress in clarifying the roles of PTMs, such as ubiquitination, acetylation, carbamylation and glycosylation, as well as signaling pathways, such as the Wnt/β-catenin pathway, in vascular calcification.
Collapse
Affiliation(s)
- Dongyan Wang
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225100, P.R. China
| | - Qin Li
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225100, P.R. China
| | - Caidie Xie
- Department of Nephrology, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210037, P.R. China
| |
Collapse
|
2
|
He J, Xie P, An XQ, Guo DF, Bi B, Wu G, Yu WF, Ren ZK, Zuo L. LncRNA NPTN-IT1-201 Ameliorates Depressive-like Behavior by Targeting miR-142-5p and Regulating Inflammation and Apoptosis via BDNF. Curr Med Sci 2024; 44:971-986. [PMID: 39145838 DOI: 10.1007/s11596-024-2917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/26/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are widely expressed in the brain and are associated with the development of neurological and neurodegenerative diseases. However, their roles and molecular mechanisms in major depressive disorder (MDD) remain largely unknown. This study aimed to identify lncRNAs and miRNAs involved in the development of MDD and elucidate their molecular mechanisms. METHODS Transcriptome and bioinformatic analyses were performed to identify miRNAs and lncRNAs related to MDD. C57 mice were subjected to chronic unpredictable mild stress (CUMS) to establish a depression model. Lentiviruses containing either lncRNA NPTN-IT1-201 or miR-142-5p were microinjected into the hippocampal region of these mice. Behavioral tests including the sucrose preference test (SPT), tail suspension test (TST), and forced swim test (FST) were conducted to evaluate depressive-like behaviors. RESULTS The results revealed that overexpression of lncRNA NPTN-IT1-201 or inhibition of miR-142-5p significantly ameliorated depressive-like behaviors in CUMS-treated mice. Dual-luciferase reporter assays confirmed interactions between miR-142-5p with both brain-derived neurotrophic factor (BDNF) and NPTN-IT1-201. ELISA analysis revealed significant alterations in relevant biomarkers in the blood samples of MDD patients compared to healthy controls. Histological analyses, including HE and Nissl staining, showed marked structural changes in brain tissues following CUMS treatment, which were partially reversed by lncRNA NPTN-IT1-201 overexpression or miR-142-5p inhibition. Immunofluorescence imaging demonstrated significant differences in the levels of BAX, Bcl2, p65, Iba1 among different treatment groups. TUNEL assays confirmed reduced apoptosis in brain tissues following these interventions. Western blotting showed the significant differences in BDNF, BAX, and Bcl2 protein levels among different treatment groups. CONCLUSION NPTN-IT1-201 regulates inflammation and apoptosis in MDD by targeting BDNF via miR-142-5p, making it a potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Jun He
- Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
- Guizhou Provincial Center for Clinical Laboratory, Guiyang, 550002, China
| | - Peng Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Xiao-Qiong An
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Dong-Fen Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Bin Bi
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Gang Wu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Zhen-Kui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, 550004, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Li Zuo
- Department of Immunology, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
3
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Zhong J, Lu S, Jia X, Li Q, Liu L, Xie P, Wang G, Lu M, Gao W, Zhao T, Wang Q, Su W, Li N. Role of endoplasmic reticulum stress in apoptosis induced by HK2 inhibitor and its potential as a new drug combination strategy. Cell Stress Chaperones 2022; 27:273-283. [PMID: 35355227 PMCID: PMC9106785 DOI: 10.1007/s12192-022-01267-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 01/23/2023] Open
Abstract
Compared with normal cells, tumor cells mainly obtain energy through aerobic glycolysis. Hexokinase 2 (HK2) plays a key role in the regulation of tumor cell aerobic glycolysis, and targeting HK2 has become a new strategy for cancer treatment. However, little is known about the role of HK2 in colon cancer and the regulation of its targeted inhibitors. In this study, we found that the expression of HK2 in colorectal cancer tissues was significantly higher than that in adjacent tissues, and the expression level of HK2 in metastatic colorectal cancer was further increased. Meanwhile, the expression level of HK2 was closely related to clinical TNM stage and outcome of colorectal cancer patients. We provide here evidence that HK2 inhibitor 3-Bromopyruvate acid (3-BP) can significantly inhibit the survival and proliferation of colon cancer cells, and induce apoptosis through mitochondrial apoptosis signaling pathway. In addition, we found that 3-BP can also induce endoplasmic reticulum stress in colon cancer cells, the mechanism may be through the increase of intracellular calcium concentration. In vitro and in vivo experiments showed that inhibition of endoplasmic reticulum stress could further increase the proliferation inhibition and apoptosis induced by 3-BP. Collectively, our results show that HK2 is highly expressed in colorectal cancer. 3-BP, an inhibitor of HK2, can induce apoptosis and endoplasmic reticulum stress in colon cancer cells. Endoplasmic reticulum stress plays a protective role in cell death induced by 3-BP. This result suggested that targeting HK2 and endoplasmic reticulum stress may be a valuable strategy in targeted and combination therapy of colon cancer.
Collapse
Affiliation(s)
- Jiateng Zhong
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
- Department of Gynecology, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shuya Lu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoling Jia
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qian Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Lei Liu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Pei Xie
- Department of Gynecology, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Guodong Wang
- Nursing School, Xinxiang Medical University, Xinxiang, China
| | - Manman Lu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Wuji Gao
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiesuo Zhao
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qianqing Wang
- Department of Gynecology, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Na Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
5
|
Metformin Treatment or PRODH/POX-Knock out Similarly Induces Apoptosis by Reprograming of Amino Acid Metabolism, TCA, Urea Cycle and Pentose Phosphate Pathway in MCF-7 Breast Cancer Cells. Biomolecules 2021; 11:biom11121888. [PMID: 34944532 PMCID: PMC8699520 DOI: 10.3390/biom11121888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
It has been considered that proline dehydrogenase/proline oxidase (PRODH/POX) is involved in antineoplastic activity of metformin (MET). The aim of this study is identification of key metabolites of glycolysis, pentose phosphate pathway (PPP), tricarboxylic acids (TCA), urea cycles (UC) and some amino acids in MET-treated MCF-7 cells and PRODH/POX-knocked out MCF-7 (MCF-7crPOX) cells. MCF-7crPOX cells were generated by using CRISPR-Cas9. Targeted metabolomics was performed by LC-MS/MS/QqQ. Expression of pro-apoptotic proteins was evaluated by Western blot. In the absence of glutamine, MET treatment or PRODH/POX-knock out of MCF-7 cells contributed to similar inhibition of glycolysis (drastic increase in intracellular glucose and pyruvate) and increase in the utilization of phospho-enol-pyruvic acid, glucose-6-phosphate and some metabolites of TCA and UC, contributing to apoptosis. However, in the presence of glutamine, MET treatment or PRODH/POX-knock out of MCF-7 cells contributed to utilization of some studied metabolites (except glucose), facilitating pro-survival phenotype of MCF-7 cells in these conditions. It suggests that MET treatment or PRODH/POX-knock out induce similar metabolic effects (glucose starvation) and glycolysis is tightly linked to glutamine metabolism in MCF-7 breast cancer cells. The data provide insight into mechanism of anticancer activity of MET as an approach to further studies on experimental breast cancer therapy.
Collapse
|
6
|
Radic Shechter K, Kafkia E, Zirngibl K, Gawrzak S, Alladin A, Machado D, Lüchtenborg C, Sévin DC, Brügger B, Patil KR, Jechlinger M. Metabolic memory underlying minimal residual disease in breast cancer. Mol Syst Biol 2021; 17:e10141. [PMID: 34694069 PMCID: PMC8543468 DOI: 10.15252/msb.202010141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/11/2023] Open
Abstract
Tumor relapse from treatment-resistant cells (minimal residual disease, MRD) underlies most breast cancer-related deaths. Yet, the molecular characteristics defining their malignancy have largely remained elusive. Here, we integrated multi-omics data from a tractable organoid system with a metabolic modeling approach to uncover the metabolic and regulatory idiosyncrasies of the MRD. We find that the resistant cells, despite their non-proliferative phenotype and the absence of oncogenic signaling, feature increased glycolysis and activity of certain urea cycle enzyme reminiscent of the tumor. This metabolic distinctiveness was also evident in a mouse model and in transcriptomic data from patients following neo-adjuvant therapy. We further identified a marked similarity in DNA methylation profiles between tumor and residual cells. Taken together, our data reveal a metabolic and epigenetic memory of the treatment-resistant cells. We further demonstrate that the memorized elevated glycolysis in MRD is crucial for their survival and can be targeted using a small-molecule inhibitor without impacting normal cells. The metabolic aberrances of MRD thus offer new therapeutic opportunities for post-treatment care to prevent breast tumor recurrence.
Collapse
Affiliation(s)
| | - Eleni Kafkia
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Katharina Zirngibl
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Sylwia Gawrzak
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Present address:
Cellzome GmbHFunctional GenomicsGlaxoSmithKlineHeidelbergGermany
| | - Ashna Alladin
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Daniel Machado
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Present address:
Norwegian University of Science and TechnologyTrondheimNorway
| | | | - Daniel C Sévin
- Cellzome GmbHFunctional GenomicsGlaxoSmithKlineHeidelbergGermany
| | - Britta Brügger
- Biochemie‐Zentrum der Universität Heidelberg (BZH)HeidelbergGermany
| | - Kiran R Patil
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Martin Jechlinger
- European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- MOLIT Institute gGmbHHeilbronnGermany
| |
Collapse
|
7
|
Shin E, Koo JS. Glucose Metabolism and Glucose Transporters in Breast Cancer. Front Cell Dev Biol 2021; 9:728759. [PMID: 34552932 PMCID: PMC8450384 DOI: 10.3389/fcell.2021.728759] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and is associated with high mortality rates despite the continuously advancing treatment strategies. Glucose is essential for cancer cell metabolism owing to the Warburg effect. During the process of glucose metabolism, various glycolytic metabolites, such as serine and glycine metabolites, are produced and other metabolic pathways, such as the pentose phosphate pathway (PPP), are associated with the process. Glucose is transported into the cell by glucose transporters, such as GLUT. Breast cancer shows high expressions of glucose metabolism-related enzymes and GLUT, which are also related to breast cancer prognosis. Triple negative breast cancer (TNBC), which is a high-grade breast cancer, is especially dependent on glucose metabolism. Breast cancer also harbors various stromal cells such as cancer-associated fibroblasts and immune cells as tumor microenvironment, and there exists a metabolic interaction between these stromal cells and breast cancer cells as explained by the reverse Warburg effect. Breast cancer is heterogeneous, and, consequently, its metabolic status is also diverse, which is especially affected by the molecular subtype, progression stage, and metastatic site. In this review, we will focus on glucose metabolism and glucose transporters in breast cancer, and we will additionally discuss their potential applications as cancer imaging tracers and treatment targets.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Nikravesh H, Khodayar MJ, Behmanesh B, Mahdavinia M, Teimoori A, Alboghobeish S, Zeidooni L. The combined effect of dichloroacetate and 3-bromopyruvate on glucose metabolism in colorectal cancer cell line, HT-29; the mitochondrial pathway apoptosis. BMC Cancer 2021; 21:903. [PMID: 34364387 PMCID: PMC8349486 DOI: 10.1186/s12885-021-08564-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
Background 5-Fluorouracil (5-FU) is regarded as the first line treatment for colorectal cancer; however, its effectiveness is limited by drug resistance. The ultimate goal of cancer therapy is induction of cancer cell death to achieve an effective outcome with minimal side effects. The present work aimed to assess the anti-cancer activities of mitocans which can be considered as an effective anticancer drug due to high specificity in targeting cancer cells. Methods MTT (3–4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide) assay was performed to determine the effects of our mitocans on cell viability and cell death. Apoptosis and necrosis, caspase 3 activity, mitochondrial membrane potential and ROS production in HT29 cell lines were analyzed by ApopNexin™ FITC/PI Kit, Caspase- 3 Assay Kit, MitoTracker Green and DCFH-DA, respectively. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression level of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) genes in HT29 cell lines. Results Treatment with mitocans (3Br-P + DCA) inhibited the growth of HT29. Moreover, 3Br-P + DCA significantly induced apoptosis and necrosis, activation of caspase 3 activity, depolarize the mitochondrial membrane potential, and ROS production. At a molecular level, 3Br-P + DCA treatment remarkably down-regulated the expression of Bcl-2, while up-regulated the expression of Bax. Conclusion Mitocans, in particular the combined drug, 3Br-P + DCA, could be regarded and more evaluated as a safe and effective compound for CRC treatment. Targeting hexokinase and pyruvate dehydrogenase kinase enzymes may be an option to overcome 5-FU -mediated chemo-resistant in colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08564-3.
Collapse
Affiliation(s)
- Hojatolla Nikravesh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Pharmacy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Toxicology Research Center,Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Babak Behmanesh
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, Faculty of Pharmacy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Toxicology Research Center,Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Department of Toxicology, Faculty of Pharmacy, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Palka J, Oscilowska I, Szoka L. Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy. Amino Acids 2021; 53:1917-1925. [PMID: 33818628 PMCID: PMC8651534 DOI: 10.1007/s00726-021-02968-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Recent studies on the regulatory role of amino acids in cell metabolism have focused on the functional significance of proline degradation. The process is catalysed by proline dehydrogenase/proline oxidase (PRODH/POX), a mitochondrial flavin-dependent enzyme converting proline into ∆1-pyrroline-5-carboxylate (P5C). During this process, electrons are transferred to electron transport chain producing ATP for survival or they directly reduce oxygen, producing reactive oxygen species (ROS) inducing apoptosis/autophagy. However, the mechanism for switching survival/apoptosis mode is unknown. Although PRODH/POX activity and energetic metabolism were suggested as an underlying mechanism for the survival/apoptosis switch, proline availability for this enzyme is also important. Proline availability is regulated by prolidase (proline supporting enzyme), collagen biosynthesis (proline utilizing process) and proline synthesis from glutamine, glutamate, α-ketoglutarate (α-KG) and ornithine. Proline availability is dependent on the rate of glycolysis, TCA and urea cycles, proline metabolism, collagen biosynthesis and its degradation. It is well established that proline synthesis enzymes, P5C synthetase and P5C reductase as well as collagen prolyl hydroxylases are up-regulated in most of cancer types and control rates of collagen biosynthesis. Up-regulation of collagen prolyl hydroxylase and its exhaustion of ascorbate and α-KG may compete with DNA and histone demethylases (that require the same cofactors) to influence metabolic epigenetics. This knowledge led us to hypothesize that up-regulation of prolidase and PRODH/POX with inhibition of collagen biosynthesis may represent potential pharmacotherapeutic approach to induce apoptosis or autophagic death in cancer cells. These aspects of proline metabolism are discussed in the review as an approach to understand complex regulatory mechanisms driving PRODH/POX-dependent apoptosis/survival.
Collapse
Affiliation(s)
- Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Ilona Oscilowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| |
Collapse
|
10
|
Zhou W, Han H, Xu J, Sun T, Feng X. Autophagic Vacuole Secretion Triggered by Chidamide Participates in TRAIL Apoptosis Effect in Breast Cancer Cells. Curr Pharm Des 2020; 27:2366-2380. [PMID: 32787747 DOI: 10.2174/1381612826666200811175513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is one of the most prevalent diseases threatening women's health today. Indepth research on breast cancer (BC) pathogenesis and prevention and treatment methods are gradually receiving attention. Chidamide is a novel histone deacetylase inhibitor (HDACi) that depresses the function of histone deacetylase, consequently affecting the growth of BC cells through epigenetic modification. However, preclinical and clinical studies show that chidamide is ineffective in long-term treatment. We demonstrated in previous experiments that TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in BC cells and is significantly less non-toxic to normal cells than chidamide. Therefore, in this study, we treated BC cells with chidamide and TRAIL to explore a novel option to reduce the clinical toxicity through augmenting the sensitivity for BC cells. METHODS AND RESULTS Results from the MTT and cell viability assays indicated that the combination of chidamide and TRAIL in MCF-7 and MDA-MB-231 cells induced BC cell death, while maintaining a reduced concentration of chidamide. Autophagy assay and annexin V analysis showed that the autophagosome microtubuleassociated protein1light chain3-II (LC3-II) was abnormally increased and much more early and late phase of apoptotic cells appeared during chidamide and TRAIL induction. Anti-tumor assays in a BC tumor xenograft model displayed that the mixture of chidamide and TRAIL exhibited stronger effects on inhibiting tumor growth. The data from real-time PCR and western blotting showed that the cytotoxic effect correlated with the expressions of related apoptosis and autophagy factors. CONCLUSION Our data are the first to demonstrate the synergistic effects of chidamide and TRAIL in BC cells, specifically, the pharmacological effects on cell death induction. These results lay a solid experimental and theoretical basis to solve the clinical resistance of chidamide.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, No. 146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, No. 146 North Huanghe St, Huanggu Dis, Shenyang City, Liaoning Pro 110034, China
| | - Junnan Xu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and & Institute, Key Laboratory of Liaoning Breast Cancer Research, No. 44 Xiaoheyan Rd, Dadong Dis, Shenyang City, Liaoning Pro 110042, China
| | - Tao Sun
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and & Institute, Key Laboratory of Liaoning Breast Cancer Research, No. 44 Xiaoheyan Rd, Dadong Dis, Shenyang City, Liaoning Pro 110042, China
| | - Xiuyan Feng
- The Second Affiliated Hospital of Shenyang Medical College, No.20 North 9th St, Heping Dis, Shenyang City, Liaoning Pro 110002, China
| |
Collapse
|
11
|
Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells. Sci Rep 2020; 10:7714. [PMID: 32382009 PMCID: PMC7206016 DOI: 10.1038/s41598-020-64880-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Vitamin K2 has been shown to exert remarkable anticancer activity. However, the detailed mechanism remains unclear. Here, our study was the first to show that Vitamin K2 significantly promoted the glycolysis in bladder cancer cells by upregulating glucose consumption and lactate production, whereas inhibited TCA cycle by reducing the amounts of Acetyl-CoA. Moreover, suppression of PI3K/AKT and HIF-1α attenuated Vitamin K2-increased glucose consumption and lactate generation, indicating that Vitamin K2 promotes PI3K/AKT and HIF-1α-mediated glycolysis in bladder cancer cells. Importantly, upon glucose limitation, Vitamin K2-upregulated glycolysis markedly induced metabolic stress, along with AMPK activation and mTORC1 pathway suppression, which subsequently triggered AMPK-dependent autophagic cell death. Intriguingly, glucose supplementation profoundly abrogated AMPK activation and rescued bladder cancer cells from Vitamin K2-triggered autophagic cell death. Furthermore, both inhibition of PI3K/AKT/HIF-1α and attenuation of glycolysis significantly blocked Vitamin K2-induced AMPK activation and subsequently prevented autophagic cell death. Collectively, these findings reveal that Vitamin K2 could induce metabolic stress and trigger AMPK-dependent autophagic cell death in bladder cancer cells by PI3K/AKT/HIF-1α-mediated glycolysis promotion.
Collapse
|
12
|
Effect of methyl jasmonate and 3-bromopyruvate combination therapy on mice bearing the 4 T1 breast cancer cell line. J Bioenerg Biomembr 2020; 52:103-111. [PMID: 31960257 DOI: 10.1007/s10863-019-09811-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
Cancer cells apply the Warburg pathway to meet their increased metabolic demands caused by their rapid growth and proliferation and also creates an acidic environment to promote cancer cell invasion. 3-bromopyruvate (3-BrP) as an anti-cancer agent disrupts glycolytic pathway. Moreover, one of the mechanism of actions of Methyl Jasmonate (MJ) is interference in glycolysis. Hence, the aim of this study was to evaluate MJ and 3-BrP interaction. MTT assay was used to determine IC50 and synergistic concentrations. Combination index was applied to evaluate the drug- drug interaction. Human tumor xenograft breast cancer mice was used to evaluate drug efficacy in vivo. Tumor size was considered as a drug efficacy criterion. In addition to drug efficacy, probable side effects of these drugs including hepatotoxicity, renal failure, immunotoxicity, and losing weight were evaluated. Serum alanine aminotransferase and aspartate aminotransferase for hepatotoxicity, serum urea and creatinine level for the possibility of renal failure and changes in body weight were measured to evaluate drug toxicity. IL10 and TGFβ secretion in supernatant of isolated splenocytes from treated mice were assessed to check immunotoxicity. 3-BrP synergistically augmented the efficacy of MJ in the specific concentrations. This polytherapy was more effective than monotherapy of 3-BrP, MJ, and also surprisingly cyclophosphamide as a routine treatment for breast cancer in the tumor bearing mice. These results have been shown by decrease in tumor volume and increase of tumor growth inhibition percentage. This combination therapy didn't have any noticeable side effects on kidney, liver, and immune system and body weight.
Collapse
|
13
|
El-Masry OS, Brown BL, Dobson PRM. AMPK Activation of Apoptotic Markers in Human Breast Cancer Cell Lines with Different p53 Backgrounds: MCF-7, MDA-MB-231 and T47D Cells. Asian Pac J Cancer Prev 2019; 20:3763-3770. [PMID: 31870119 PMCID: PMC7173391 DOI: 10.31557/apjcp.2019.20.12.3763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Downregulation of AMPK has been established as a major contributor to carcinogenesis in many types of human cancer. We sought to investigate the influence of activated AMPK on apoptotic markers in human breast cancer cells differing in their p53 status, as well as estrogen receptor status (MCF-7 (p53+ and ER+), MDA-MB-231 (p53 mutant and ER-) and T47D (p53 mutant and ER+)). Methods: We examined the effect of AICAR-activated AMPK on PARP cleavage, Bax redistribution, the involvement of intrinsic and extrinsic pathways of apoptosis using selective caspase inhibitors and cell cycle progression and p21 levels. Results: PARP cleavage occurred to a greater extent in MCF-7 and MDA-MB-231 cells, whereas Bax translocation was slower in MDA-MB-231 cells. Although there were quantitative differences in the effect of caspase inhibitors, it was clear that AMPK activation predominately affected the intrinsic pathway of apoptosis. Although, p21 was increased in all 3 cell types, there were quantitative and time differences. Apoptosis, as measured by fluorimetry, was increased in all three cell types. Conclusion: The impact of AMPK activation was cell type dependent resulting in differential activation of apoptotic markers, confirming that the genetic background of breast cancer may have an influence on the mode of action of AMPK. Thus, different anti-tumour mechanisms may be elicited depending on the cellular genotype.
Collapse
Affiliation(s)
- Omar S El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Barry L Brown
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2RX, United Kingdom
| | - Pauline R M Dobson
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2RX, United Kingdom
| |
Collapse
|
14
|
时 宗, 张 配, 鲁 星, 朱 晨, 陈 长, 赵 素, 刘 浩. [Down-regulation of miR-205-5p enhances pro-apoptotic effect of 3-bromopyruvate on human nasopharyngeal carcinoma CNE2Z cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1166-1172. [PMID: 31801705 PMCID: PMC6867955 DOI: 10.12122/j.issn.1673-4254.2019.10.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of down-regulation of miR-205-5p on 3-bromopyruvate-induced apoptosis in human nasopharyngeal carcinoma CNE2Z cells. METHODS Nasopharyngeal carcinoma CNE2Z cells were transfected with miR- 205-5p-mimic or miR-205-5p-inhibitor, treated with 80 μmol/L 3-bromopyruvate alone, or exposed to both of the treatments. The proliferation of the treated cells was examined with MTT assay, and early apoptosis of the cells was detected using a mitochondrial membrane potential detection kit (JC-1). DAPI fluorescence staining was used to detect morphological changes of the cell nuclei and late cell apoptosis; Annexin V-FITC/PI double staining was employed to detect the cell apoptosis rate. Western blotting was used to detect the expressions of Bcl-2, Bax, Mcl-1 and Bak proteins. RESULTS Exposure to 3-bromopyruvate significantly inhibited the proliferation of CNE2Z cells, and increasing the drug concentration and extending the treatment time produced stronger inhibitory effects. Treatment with 80 μmol/L 3-bromopyruvate for 24, 48 and 72 h resulted in inhibition rates of (45.7±1.21)%, (64.4±2.02)% and (78.3±1.55)% in non-transfected CNE2Z cells, respectively; the inhibition rates were (27.7±1.04)%, (34.8±2.10)% and (44.3±1.57)% in the cells transfected with miR-205-5p-mimic, and were (80.5 ± 0.94)%, (87.9 ± 0.50)% and (93.8 ± 1.16)% in cells transfected with miR-205-5p-inhibitor, respectively. The results of mitochondrial membrane potential detection showed that the relative proportion of red and green fluorescence decreased significantly in miR-205-5p-inhibitor-transfected cells with 3-bromopyruvate treatment. Combined treatment of the cells with 3-bromopyruvate and miR-205-5p-inhibitor transfection obviously increased nuclear fragmentation and nuclear pyknosis and significantly increased cell apoptotic rate as compared with the two treatments alone (P < 0.01), causing also decreased expressions of Bcl-2 and Mcl-1 proteins and increased expressions of Bax and Bak proteins. CONCLUSIONS Inhibition of miR-205-5p enhances the proapototic effect of 3-bromopyruvate in CNE2Z cells possibly in relation to the down-regulation of Mcl-1 and Bcl-2 and the up-regulation of Bak and Bax proteins.
Collapse
Affiliation(s)
- 宗芬 时
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 配 张
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 星月 鲁
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 晨露 朱
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 长江 陈
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 素容 赵
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| | - 浩 刘
- />蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, China
| |
Collapse
|
15
|
Fan T, Sun G, Sun X, Zhao L, Zhong R, Peng Y. Tumor Energy Metabolism and Potential of 3-Bromopyruvate as an Inhibitor of Aerobic Glycolysis: Implications in Tumor Treatment. Cancers (Basel) 2019; 11:317. [PMID: 30845728 PMCID: PMC6468516 DOI: 10.3390/cancers11030317] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/24/2022] Open
Abstract
Tumor formation and growth depend on various biological metabolism processes that are distinctly different with normal tissues. Abnormal energy metabolism is one of the typical characteristics of tumors. It has been proven that most tumor cells highly rely on aerobic glycolysis to obtain energy rather than mitochondrial oxidative phosphorylation (OXPHOS) even in the presence of oxygen, a phenomenon called "Warburg effect". Thus, inhibition of aerobic glycolysis becomes an attractive strategy to specifically kill tumor cells, while normal cells remain unaffected. In recent years, a small molecule alkylating agent, 3-bromopyruvate (3-BrPA), being an effective glycolytic inhibitor, has shown great potential as a promising antitumor drug. Not only it targets glycolysis process, but also inhibits mitochondrial OXPHOS in tumor cells. Excellent antitumor effects of 3-BrPA were observed in cultured cells and tumor-bearing animal models. In this review, we described the energy metabolic pathways of tumor cells, mechanism of action and cellular targets of 3-BrPA, antitumor effects, and the underlying mechanism of 3-BrPA alone or in combination with other antitumor drugs (e.g., cisplatin, doxorubicin, daunorubicin, 5-fluorouracil, etc.) in vitro and in vivo. In addition, few human case studies of 3-BrPA were also involved. Finally, the novel chemotherapeutic strategies of 3-BrPA, including wafer, liposomal nanoparticle, aerosol, and conjugate formulations, were also discussed for future clinical application.
Collapse
Affiliation(s)
- Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaodong Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment & Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|