1
|
Wu X, Wang K, Li Q, Zhang Y, Wei P, Shan Y, Zhao G. Combining Single-Cell RNA Sequencing and Mendelian Randomization to Explore Novel Drug Targets for Parkinson's Disease. Mol Neurobiol 2025; 62:7380-7392. [PMID: 39890696 DOI: 10.1007/s12035-025-04700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/11/2025] [Indexed: 02/03/2025]
Abstract
Neuroinflammation is a key pathological factor of PD, and T cells play a central role in neuroinflammatory progression. However, the causal effect of T cell-related genes on the risk of PD is still unclear. We explored single-cell RNA sequencing (scRNA-Seq) datasets of the peripheral blood T cells of PD patients and healthy controls, and screened the differentially expressed genes (DEGs) in the cytotoxic CD4 + T cells relative to the other T cell subsets. Pseudo-time series analysis, cell-cell communication analysis, and metabolic pathway analysis was performed for the cytotoxic CD4 + T cells. The DEGs were also functionally annotated through GO and KEGG pathway enrichment analyses. The MR approach was used to establish causal effects of the DEGs (exposure) on PD risk (outcome), and explore new drug targets for PD. The findings of MR analysis were further validated by Steiger filtering, bidirectional MR, Bayesian colocalization analysis, and phenotype scanning, and the GWAS data from an independent PD case-control cohort was used for external validation of the results. Finally, differences in gene expression between PD patients and healthy controls were further validated in scRNA-Seq and bulk transcriptome sequencing data. We found that increased expression of IL-32, GNLY, MT2A, and ARPC2 was significantly associated with a higher risk of PD. In contrast, the increase in ARRB2 was closely related to a lower risk of PD. IL32, GNLY, MT2A, ARRB2, and ARPC2 are the causal genes and potential drug targets of PD. Cytotoxic CD4 + T cells are likely the key effectors of PD-related neuroinflammation. These findings provide new insights into the pathogenesis and treatment options for PD, and further research and clinical trials based on the five potential drug targets and neuroinflammation are necessary.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Kailiang Wang
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, 100053, China.
| | - Qinghua Li
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yuqing Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China
- International Neuroscience Institute (China-INI), Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of the Capital Medical University, Beijing, 100053, China.
- International Neuroscience Institute (China-INI), Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
| |
Collapse
|
2
|
Gambardella AR, Antonucci C, Zanetti C, Noto F, Andreone S, Vacca D, Pellerito V, Sicignano C, Parrottino G, Tirelli V, Tinari A, Falchi M, De Ninno A, Businaro L, Loffredo S, Varricchi G, Tripodo C, Afferni C, Parolini I, Mattei F, Schiavoni G. IL-33 stimulates the anticancer activities of eosinophils through extracellular vesicle-driven reprogramming of tumor cells. J Exp Clin Cancer Res 2024; 43:209. [PMID: 39061080 PMCID: PMC11282757 DOI: 10.1186/s13046-024-03129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Immune cell-derived extracellular vesicles (EV) affect tumor progression and hold promise for therapeutic applications. Eosinophils are major effectors in Th2-related pathologies recently implied in cancer. Here, we evaluated the anti-tumor activities of eosinophil-derived EV following activation with the alarmin IL-33. We demonstrate that IL-33-activated mouse and human eosinophils produce higher quantities of EV with respect to eosinophils stimulated with IL-5. Following incorporation of EV from IL-33-activated eosinophils (Eo33-EV), but not EV from IL-5-treated eosinophils (Eo5-EV), mouse and human tumor cells increased the expression of cyclin-dependent kinase inhibitor (CDKI)-related genes resulting in cell cycle arrest in G0/G1, reduced proliferation and inhibited tumor spheroid formation. Moreover, tumor cells incorporating Eo33-EV acquired an epithelial-like phenotype characterized by E-Cadherin up-regulation, N-Cadherin downregulation, reduced cell elongation and migratory extent in vitro, and impaired capacity to metastasize to lungs when injected in syngeneic mice. RNA sequencing revealed distinct mRNA signatures in Eo33-EV and Eo5-EV with increased presence of tumor suppressor genes and enrichment in pathways related to epithelial phenotypes and negative regulation of cellular processes in Eo33-EV compared to Eo5-EV. Our studies underscore novel IL-33-stimulated anticancer activities of eosinophils through EV-mediated reprogramming of tumor cells opening perspectives on the use of eosinophil-derived EV in cancer therapy.
Collapse
Affiliation(s)
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Davide Vacca
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Valentina Pellerito
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Chiara Sicignano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Giuseppe Parrottino
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Antonella Tinari
- National Center for Gender Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore Di Sanità, Rome, Italy
| | - Adele De Ninno
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Luca Businaro
- CNR-IFN Institute for Photonics and Nanotechnologies, Rome, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, 80131, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council (CNR), Naples, 80131, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, 90127, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore Di Sanità, Rome, Italy
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
- Laboratory of Molecular Medicine and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
3
|
Huang GX, Mandanas MV, Djeddi S, Fernandez-Salinas D, Gutierrez-Arcelus M, Barrett NA. Increased glycolysis and cellular crosstalk in eosinophilic chronic rhinosinusitis with nasal polyps. Front Immunol 2024; 15:1321560. [PMID: 38444858 PMCID: PMC10912276 DOI: 10.3389/fimmu.2024.1321560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the sinonasal mucosa with distinct endotypes including type 2 (T2) high eosinophilic CRS with nasal polyps (eCRSwNP), T2 low non-eosinophilic CRS with nasal polyps (neCRSwNP), and CRS without nasal polyps (CRSsNP). Methods Given the heterogeneity of disease, we hypothesized that assessment of single cell RNA sequencing (scRNA-seq) across this spectrum of disease would reveal connections between infiltrating and activated immune cells and the epithelial and stromal populations that reside in sinonasal tissue. Results Here we find increased expression of genes encoding glycolytic enzymes in epithelial cells (EpCs), stromal cells, and memory T-cell subsets from patients with eCRSwNP, as compared to healthy controls. In basal EpCs, this is associated with a program of cell motility and Rho GTPase effector expression. Across both stromal and immune subsets, glycolytic programming was associated with extracellular matrix interactions, proteoglycan generation, and collagen formation. Furthermore, we report increased cell-cell interactions between EpCs and stromal/immune cells in eCRSwNP compared to healthy control tissue, and we nominate candidate receptor-ligand pairs that may drive tissue remodeling. Discussion These findings support a role for glycolytic reprograming in T2-elicited tissue remodeling and implicate increased cellular crosstalk in eCRSwNP.
Collapse
Affiliation(s)
- George X. Huang
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Michael V. Mandanas
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sarah Djeddi
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Daniela Fernandez-Salinas
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Nora A. Barrett
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Liu S, Liu P, Fei X, Zhu C, Hou J, Wang X, Pan Y. Analysis and validation of the potential of the MYO1E gene in pancreatic adenocarcinoma based on a bioinformatics approach. Oncol Lett 2023; 26:285. [PMID: 37274465 PMCID: PMC10236097 DOI: 10.3892/ol.2023.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/22/2023] [Indexed: 06/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common digestive cancer, and its prognosis is poor. Myosin 1E (MYO1E) is a class I myosin family member whose expression and function have not been reported in PAAD. In the present study, bioinformatics analysis was used to explore the expression levels of MYO1E in PAAD and its prognostic value, and the immunological role of MYO1E in PAAD was analyzed. The study revealed that a variety of malignancies have substantially increased MYO1E expression. Further investigation demonstrated that PAAD tissues exhibited greater levels of MYO1E mRNA and protein expression than normal tissues. High MYO1E expression is associated with poor prognosis in patients with PAAD. MYO1E expression was also associated with pathological stage in patients with PAAD. Functional enrichment analysis demonstrated that MYO1E was linked to multiple tumor-related mechanisms in PAAD. The pancreatic adenocarcinoma tumor microenvironment (TME) was analyzed and it was revealed that MYO1E expression was positively associated with tumor immune cell infiltration. In addition, MYO1E was closely associated with some tumor chemokines/receptors and immune checkpoints. In vitro experiments revealed that the suppression of MYO1E expression could inhibit pancreatic adenocarcinoma cell proliferation, invasion and migration. Through preliminary analysis, the present study evaluated the potential function of MYO1E in PAAD and its function in TME, and MYO1E may become a potential biomarker for PAAD.
Collapse
Affiliation(s)
- Songbai Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Peng Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Xiaobin Fei
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Changhao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Junyi Hou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Xing Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Yaozhen Pan
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| |
Collapse
|
5
|
Su Q, Li L, Li X, Li W, Zhang X, Dong Y, Han L, Wang D, Ran J. CD97 serves as a novel biomarker of immune cell infiltration in hepatocellular carcinoma. World J Surg Oncol 2022; 20:382. [PMID: 36464675 PMCID: PMC9721038 DOI: 10.1186/s12957-022-02829-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND CD97 is the most widely expressed G protein-coupled receptor in the epidermal growth factor seven-span transmembrane family. It plays a vital role in cell adhesion, migration, and cell connection regulation. We explored the role of CD97 in hepatocellular carcinoma (HCC). METHODS We evaluated CD97 mRNA expression in HCC using TNMplot and the Gene Expression Omnibus database. The clinical prognostic significance of CD97 in HCC patients was evaluated by gene expression profiling interactive analysis, the Kaplan-Meier plotter, and the UALCAN database. The Tumor Immune Estimation Resource (TIMER) and CIBERSORT databases were used to analyze the relationships among CD97, genes positively related with CD97, and tumor-infiltrating immune cells. RESULTS CD97 was highly expressed in HCC tissues and was associated with an adverse prognosis. CD97 and genes positively related with CD97 were positively correlated with the abundance of tumor-infiltrating immune cells and strongly correlated with tumor-infiltrating macrophages (all r ≥ 0.513, P < 0.001). CD97 was positively correlated with M2 macrophage and tumor-associated macrophage markers (both r ≥ 0.464, P < 0.001). CD97 was found to be an immune-related gene in HCC and positively correlated with the TOX, PD-L1, PD-L2, CTLA4, and PD-1 immune checkpoint genes. CD97 copy number alterations affect the level of immune cell infiltration and mRNA expression. CONCLUSIONS CD97 can be used as a potential molecular marker of prognosis in HCC, which is associated with immune cell infiltration.
Collapse
Affiliation(s)
- Qiuming Su
- grid.285847.40000 0000 9588 0960Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming City, 650224 Yunnan Province China
| | - Lu Li
- grid.285847.40000 0000 9588 0960Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming City, 650224 Yunnan Province China
| | - Xiaokai Li
- grid.414902.a0000 0004 1771 3912Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province China
| | - Wang Li
- grid.285847.40000 0000 9588 0960Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming City, 650224 Yunnan Province China
| | - Xibing Zhang
- grid.285847.40000 0000 9588 0960Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming City, 650224 Yunnan Province China
| | - Yun Dong
- grid.285847.40000 0000 9588 0960Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming City, 650224 Yunnan Province China
| | - Lei Han
- grid.285847.40000 0000 9588 0960Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming City, 650224 Yunnan Province China
| | - Duo Wang
- grid.285847.40000 0000 9588 0960Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming City, 650224 Yunnan Province China
| | - Jianghua Ran
- grid.285847.40000 0000 9588 0960Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, 1228 Beijing Road, Panlong District, Kunming City, 650224 Yunnan Province China
| |
Collapse
|
6
|
Wu N, Xiao F, Zhang J, Chi Y, Zhai Y, Chen B, Lu J. Proteomic characteristics of plasma and blood cells in natural aging rhesus monkeys. Proteomics 2022; 22:e2200049. [PMID: 36037246 DOI: 10.1002/pmic.202200049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Aging has become a serious social issue that places a heavy burden on society. However, the underlying mechanisms of aging remain unclear. This study sought to understand the aging process as it may be affected by proteins in the blood, the most important functional system for material transportation in the body. We analyzed and compared the protein expression spectrums in the blood of old and young rhesus monkeys and found 257 proteins expressed differentially in plasma and 1183 proteins expressed differentially in blood cells. Through bioinformatics analysis, we found that the differentially-expressed proteins in plasma were involved in signal pathways related to complement and coagulation cascades, pertussis, malaria, phagosome, and cholesterol metabolism, while the differentially-expressed proteins in blood cells were involved in endocytosis, proteasome, ribosome, protein processing in the endoplasmic reticulum, and Parkinson's disease. We confirmed that the protein levels of complement C2 in plasma and actin-related protein 2/3 complex subunit 2 (ARPC2) in blood cells obviously decreased, whereas the complement C3 and complement component 4 binding protein beta (C4BPB) significantly increased in plasma of old rhesus monkeys and C57BL/6 mice. Our results suggest that C2, C3, C4BPB, and ARPC2 can be used as target proteins for anti-aging research.
Collapse
Affiliation(s)
- Na Wu
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China.,School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Fuchuan Xiao
- Department of Laboratory Animal Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Zhang
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China.,School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Laboratory Animal Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yafei Chi
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China
| | - Yanan Zhai
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China
| | - Baian Chen
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China.,School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Laboratory Animal Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Lu
- Laboratory Animal Resource Center, Capital Medical University, Beijing, China.,School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Department of Laboratory Animal Sciences, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Huang S, Sun L, Hou P, Liu K, Wu J. A comprehensively prognostic and immunological analysis of actin-related protein 2/3 complex subunit 5 in pan-cancer and identification in hepatocellular carcinoma. Front Immunol 2022; 13:944898. [PMID: 36148220 PMCID: PMC9485570 DOI: 10.3389/fimmu.2022.944898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Actin-related protein 2/3 complex subunit 5 (ARPC5) is one of the members of actin-related protein 2/3 complex and plays an important role in cell migration and invasion. However, little is known about the expression pattern, prognosis value, and biological function of ARPC5 in pan-cancer. Thus, we focus on ARPC5 as cut point to explore a novel prognostic and immunological biomarker for cancers. Methods The public databases, including TCGA, GTEx, and UCEC, were used to analyze ARPC5 expression in pan-cancer. The Human Protein Atlas website was applied to obtain the expression of ARPC5 in different tissues, cell lines, and single-cell types. Univariate Cox regression analysis and Kaplan–Meier analysis were used to explore the prognosis value of ARPC5 in various cancers. Spearman’s correlation analysis was performed to investigate the association between ARPC5 expression and tumor microenvironment scores, immune cell infiltration, immune-related genes, TMB, MSI, RNA modification genes, DNA methyltransferases, and tumor stemness. Moreover, qPCR, Western blot, and immunohistochemistry were carried out to examine the differential expression of ARPC5 in HCC tissues and cell lines. CCK8, EdU, flow cytometry, wound-healing assays, and transwell assays were conducted to explore its role in tumor proliferation, apoptosis, migration, and invasion among HCC cells. Results ARPC5 expression was upregulated in most cancer types and significantly associated with worse prognosis in KIRC, KIRP, LGG, and LIHC. mRNA expression of ARPC5 showed low tissue and cell specificity in normal tissues, cell lines, and single-cell types. ARPC5 expression was positively correlated with the tumor microenvironment scores, immune infiltrating cells, immune checkpoint–related genes in most cancers. ARPC5 in STAD and BRCA was positively associated with TMB, MSI, and neoantigens. We also discovered that ARPC5 was correlated with the expression of m1A-related genes, m5C-related genes, m6A-related genes, and DNA methyltransferases. In experiment analyses, we found that ARPC5 was significantly highly expressed in HCC tissues and HCC cells. Functionally, silencing ARPC5 dramatically decreased proliferation, migration, and invasion ability of HCC cells. Conclusions ARPC5 expression affects the prognosis of multiple tumors and is closely correlated to tumor immune infiltration and immunotherapy. Furthermore, ARPC5 may function as an oncogene and promote tumor progression in HCC.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Hou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kan Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|
8
|
Huang S, Dong C, Li D, Xu Y, Wu J. ARPC2: A Pan-Cancer Prognostic and Immunological Biomarker That Promotes Hepatocellular Carcinoma Cell Proliferation and Invasion. Front Cell Dev Biol 2022; 10:896080. [PMID: 35733852 PMCID: PMC9207441 DOI: 10.3389/fcell.2022.896080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Actin-related protein 2/3 complex subunit 2 (ARPC2) plays a fundamental role in actin filament nucleation and is critical for tumor cell migration and invasion. However, its abnormal expression, clinical significance, and biological function in human pan-cancer have been poorly explored. Thus, we focused on ARPC2 as an entry point for identifying novel pan-cancer prognostic biomarkers. Methods: The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases were used to assess the differential expression of ARPC2 in pan-cancer. The Human Protein Atlas was used for the tissue/cell-specific expression analysis of ARPC2. The genetic alteration information of ARPC2 was obtained from the cBioPortal database and the GSCALite platform. The prognostic value of ARPC2 was explored in pan-cancer using Cox regression and Kaplan–Meier analyses. Spearman correlation analysis was performed to investigate the relationship between ARPC2 expression and tumor mutational burden (TMB), DNA methyltransferases, microsatellite instability (MSI), immune-related genes, and mismatch repairs (MMRs). The ESTIMATE and CIBERSORT algorithms were used to evaluate the association between ARPC2 expression and the tumor microenvironment (TME) and immune infiltrating cells. We also conducted differential expression analysis of ARPC2 in hepatocellular carcinoma (HCC) tissues and cell lines using qPCR, western blotting, and immunohistochemistry and explored its role in tumor proliferation, migration, and invasion of HCC cells. Results: ARPC2 expression was significantly upregulated in multiple tumor types and significantly correlated with worse prognosis and higher clinicopathological stage. Genetic alterations and DNA methylation in tumor tissues may contribute to the aberrant expression of ARPC2. ARPC2 expression was significantly correlated with the tumor microenvironment (TME), infiltrating immune cells, TMB, microsatellite instability (MSI), and immune checkpoint-related genes in certain cancer types. In this experimental study, we found that the expression of ARPC2 was dramatically upregulated in HCC tissues and cell lines compared to adjacent liver tissues and normal liver cell lines. Functionally, ARPC2 silencing in HCC cells significantly inhibited cell proliferation, migration, and invasion, while the overexpression of ARPC2 promotes tumor proliferation, migration, and invasion. Conclusion: ARPC2 is a promising prognostic and immunological biomarker for multiple tumor types and is likely to play an important role in HCC progression and metastasis.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Cairong Dong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|
9
|
Mei P, Tey SK, Wong SWK, Ng TH, Mao X, Yeung CLS, Xu Y, Yu L, Huang Q, Cao P, Yam JWP, Gao Y. Actin-related protein 2/3 complex subunit 2-enriched extracellular vesicles drive liver cancer metastasis. Hepatol Int 2022; 16:603-613. [PMID: 35556226 DOI: 10.1007/s12072-022-10338-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) play pivotal roles in tumor growth, cancer metastasis and angiogenesis. Here, we aimed to identify proteins that contribute to the functionality of EVs derived from metastatic hepatocellular carcinoma (HCC) cells. METHODS Proteins of EVs derived from metastatic HCC cells and normal liver cells were analyzed by mass spectrometry. Proteomic profiling identified actin-related protein 2/3 complex subunit 2 (ARPC2) to be highly expressed in EVs of metastatic HCC cells. The expression of ARPC2 in EVs and HCC tissues was examined using immunoblotting and TCGA database, respectively. The functional roles of EV-ARPC2 were investigated by knockout approach and various in vitro and in vivo assays. RESULTS ARPC2 was highly expressed in EVs of metastatic cells but barely detected in non-metastatic HCC cells and normal liver cells. Immunogold labeling showed the presence of APRC2 on the surface of EVs. Analysis of TCGA database of liver cancer revealed ARPC2 overexpression was correlated with poor prognosis of patients. ARPC2 was knockout in metastatic HCC cells. EVs derived from knockout cells displayed compromised activity in enhancing cell growth, motility and metastasis compared to EVs of control cells. Pimozide, an inhibitor of APRC2, also inhibited the promoting effect of EVs of metastatic cells in lung colonization of tumor cells in mice. CONCLUSION This study reveals previously unreported expression and function of ARPC2 in EVs. EVs with highly expressed ARPC2 enhance cancer cell growth and metastasis. ARPC2 may provide a prospective target for the novel treatment of HCC patients.
Collapse
Affiliation(s)
- Piaorong Mei
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sze Keong Tey
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, 637551, Singapore
| | - Samuel Wan Ki Wong
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tung Him Ng
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaowen Mao
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| | - Cherlie Lot Sum Yeung
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi Xu
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Yu
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qianhua Huang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peihua Cao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Pathology, School for Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Raivola J, Dini A, Salokas K, Karvonen H, Niininen W, Piki E, Varjosalo M, Ungureanu D. New insights into the molecular mechanisms of ROR1, ROR2, and PTK7 signaling from the proteomics and pharmacological modulation of ROR1 interactome. Cell Mol Life Sci 2022; 79:276. [PMID: 35504983 PMCID: PMC9064840 DOI: 10.1007/s00018-022-04301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
ROR1, ROR2, and PTK7 are Wnt ligand-binding members of the receptor tyrosine kinase family. Despite their lack of catalytic activity, these receptors regulate skeletal, cardiorespiratory, and neurological development during embryonic and fetal stages. However, their overexpression in adult tissue is strongly connected to tumor development and metastasis, suggesting a strong pharmacological potential for these molecules. Wnt5a ligand can activate these receptors, but lead to divergent signaling and functional outcomes through mechanisms that remain largely unknown. Here, we developed a cellular model by stably expressing ROR1, ROR2, and PTK7 in BaF3 cells that allowed us to readily investigate side-by-side their signaling capability and functional outcome. We applied proteomic profiling to BaF3 clones and identified distinctive roles for ROR1, ROR2, and PTK7 pseudokinases in modulating the expression of proteins involved in cytoskeleton dynamics, apoptotic, and metabolic signaling. Functionally, we show that ROR1 expression enhances cell survival and Wnt-mediated cell proliferation, while ROR2 and PTK7 expression is linked to cell migration. We also demonstrate that the distal C-terminal regions of ROR1 and ROR2 are required for receptors stability and downstream signaling. To probe the pharmacological modulation of ROR1 oncogenic signaling, we used affinity purification coupled to mass spectrometry (AP-MS) and proximity-dependent biotin identification (BioID) to map its interactome before and after binding of GZD824, a small molecule inhibitor previously shown to bind to the ROR1 pseudokinase domain. Our findings bring new insight into the molecular mechanisms of ROR1, ROR2, and PTK7, and highlight the therapeutic potential of targeting ROR1 with small molecule inhibitors binding to its vestigial ATP-binding site.
Collapse
Affiliation(s)
- Juuli Raivola
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Alice Dini
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLife, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Emilia Piki
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLife, University of Helsinki, 00014, Helsinki, Finland
| | - Daniela Ungureanu
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland.
| |
Collapse
|
11
|
Huang S, Li D, Zhuang L, Sun L, Wu J. Identification of Arp2/3 Complex Subunits as Prognostic Biomarkers for Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:690151. [PMID: 34307456 PMCID: PMC8299467 DOI: 10.3389/fmolb.2021.690151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
The actin-related protein 2/3 complex (Arp2/3) is a major actin nucleator that has been widely reported and plays an important role in promoting the migration and invasion of various cancers. However, the expression patterns and prognostic values of Arp2/3 subunits in hepatocellular carcinoma (HCC) remain unclear. In this study, The Cancer Genome Atlas (TCGA) and UCSC Xena databases were used to obtain mRNA expression and the corresponding clinical information, respectively. The differential expression and Arp2/3 subunits in HCC were analyzed using the “limma” package of R 4.0.4 software. The prognostic value of each subunit was evaluated using Kaplan–Meier survival analysis and Cox proportional hazards regression analyses. The results revealed that mRNA expression of Arp2/3 members (ACTR2, ACTR3, ARPC1A, APRC1B, ARPC2, ARPC3, ARPC4, ARPC5, and ARPC5L) was upregulated in HCC. Higher expression of Arp2/3 members was significantly correlated with worse overall survival (OS) and shorter progression-free survival (PFS) in HCC patients. Cox proportional hazards regression analyses demonstrated that ACTR3, ARPC2, and ARPC5 were independent prognostic biomarkers of survival in patients with HCC. The relation between tumor immunocyte infiltration and the prognostic subunits was determined using the TIMER 2.0 platform and the GEPIA database. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanisms of prognostic subunits in the carcinogenesis of HCC. The results revealed that ACTR3, ARPC2, and ARPC5 were significantly positively correlated with the infiltration of immune cells in HCC. The GSEA results indicated that ACTR3, ARPC2, and ARPC5 are involved in multiple cancer-related pathways that promote the development of HCC. In brief, various analyses indicated that Arp2/3 complex subunits were significantly upregulated and predicted worse survival in HCC, and they found that ACTR3, ARPC2, and ARPC5 could be used as independent predictors of survival and might be applied as promising molecular targets for diagnosis and therapy of HCC in the future.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - LingLing Zhuang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China.,Department of Gynaecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
12
|
Stanton SE, Gad E, Ramos E, Corulli L, Annis J, Childs J, Katayama H, Hanash S, Marks J, Disis ML. Tumor-associated autoantibodies from mouse breast cancer models are found in serum of breast cancer patients. NPJ Breast Cancer 2021; 7:50. [PMID: 33976232 PMCID: PMC8113561 DOI: 10.1038/s41523-021-00257-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
B cell responses to tumor antigens occur early in breast tumors and may identify immunogenic drivers of tumorigenesis. Sixty-two candidate antigens were identified prior to palpable tumor development in TgMMTV-neu and C3(1)Tag transgenic mouse mammary tumor models. Five antigens (VPS35, ARPC2, SERBP1, KRT8, and PDIA6) were selected because their decreased expression decreased survival in human HER2 positive and triple negative cell lines in a siRNA screen. Vaccination with antigen-specific epitopes, conserved between mouse and human, inhibited tumor growth in both transgenic mouse models. Increased IgG autoantibodies to the antigens were elevated in serum from women with ductal carcinoma in situ (DCIS) and invasive breast cancer (IBC). The autoantibodies differentiated women with DCIS from control with AUC 0.93 (95% CI 0.88-0.98, p < 0.0001). The tumor antigens identified early in the development of breast cancer in mouse mammary tumor models were conserved in human disease, and potentially identify early diagnostic markers in human breast tumors.
Collapse
Affiliation(s)
- Sasha E Stanton
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA.
| | - Ekram Gad
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA
| | - Erik Ramos
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA
| | - Lauren Corulli
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA
| | - James Annis
- Quellos High Throughput Facility, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer Childs
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, MD Anderson Cancer Center, Houston, TX, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Marks
- Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Datta A, Deng S, Gopal V, Yap KCH, Halim CE, Lye ML, Ong MS, Tan TZ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis. Cancers (Basel) 2021; 13:1882. [PMID: 33919917 PMCID: PMC8070945 DOI: 10.3390/cancers13081882] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
In cancer cells, a vital cellular process during metastasis is the transformation of epithelial cells towards motile mesenchymal cells called the epithelial to mesenchymal transition (EMT). The cytoskeleton is an active network of three intracellular filaments: actin cytoskeleton, microtubules, and intermediate filaments. These filaments play a central role in the structural design and cell behavior and are necessary for EMT. During EMT, epithelial cells undergo a cellular transformation as manifested by cell elongation, migration, and invasion, coordinated by actin cytoskeleton reorganization. The actin cytoskeleton is an extremely dynamic structure, controlled by a balance of assembly and disassembly of actin filaments. Actin-binding proteins regulate the process of actin polymerization and depolymerization. Microtubule reorganization also plays an important role in cell migration and polarization. Intermediate filaments are rearranged, switching to a vimentin-rich network, and this protein is used as a marker for a mesenchymal cell. Hence, targeting EMT by regulating the activities of their key components may be a potential solution to metastasis. This review summarizes the research done on the physiological functions of the cytoskeleton, its role in the EMT process, and its effect on multidrug-resistant (MDR) cancer cells-highlight some future perspectives in cancer therapy by targeting cytoskeleton.
Collapse
Affiliation(s)
- Arpita Datta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Kenneth Chun-Hong Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mun Leng Lye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
14
|
Guo X, Lin W, Wen W, Huyghe J, Bien S, Cai Q, Harrison T, Chen Z, Qu C, Bao J, Long J, Yuan Y, Wang F, Bai M, Abecasis GR, Albanes D, Berndt SI, Bézieau S, Bishop DT, Brenner H, Buch S, Burnett-Hartman A, Campbell PT, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Cho SH, Conti DV, Chapelle ADL, Feskens EJM, Gallinger SJ, Giles GG, Goodman PJ, Gsur A, Guinter M, Gunter MJ, Hampe J, Hampel H, Hayes RB, Hoffmeister M, Kampman E, Kang HM, Keku TO, Kim HR, Le Marchand L, Lee SC, Li CI, Li L, Lindblom A, Lindor N, Milne RL, Moreno V, Murphy N, Newcomb PA, Nickerson DA, Offit K, Pearlman R, Pharoah PDP, Platz EA, Potter JD, Rennert G, Sakoda LC, Schafmayer C, Schmit SL, Schoen RE, Schumacher FR, Slattery ML, Su YR, Tangen CM, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Wang X, White E, Wolk A, Woods MO, Casey G, Hsu L, Jenkins MA, Gruber SB, Peters U, Zheng W. Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects. Gastroenterology 2021; 160:1164-1178.e6. [PMID: 33058866 PMCID: PMC7956223 DOI: 10.1053/j.gastro.2020.08.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. METHODS Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. RESULTS We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. CONCLUSIONS Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Weiqiang Lin
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeroen Huyghe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tabitha Harrison
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conghui Qu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jiandong Bao
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yuan Yuan
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangqin Wang
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqiu Bai
- The Kidney Disease Center, the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sang Hee Cho
- Department of Hematology-Oncology, Chonnam National University Hospital, Hwasun, South Korea
| | - David V Conti
- Department of Preventive Medicine and University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Mark Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Hyeong Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | | | - Soo Chin Lee
- National University Cancer Institute, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Neil Murphy
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Polly A Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; School of Public Health, University of Washington, Seattle, Washington
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D Potter
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lori C Sakoda
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Yu-Ru Su
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Xiaoliang Wang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St John's, Newfoundland and Labrador, Canada
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine and University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
15
|
Involvement of Actin and Actin-Binding Proteins in Carcinogenesis. Cells 2020; 9:cells9102245. [PMID: 33036298 PMCID: PMC7600575 DOI: 10.3390/cells9102245] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton plays a crucial role in many cellular processes while its reorganization is important in maintaining cell homeostasis. However, in the case of cancer cells, actin and ABPs (actin-binding proteins) are involved in all stages of carcinogenesis. Literature has reported that ABPs such as SATB1 (special AT-rich binding protein 1), WASP (Wiskott-Aldrich syndrome protein), nesprin, and villin take part in the initial step of carcinogenesis by regulating oncogene expression. Additionally, changes in actin localization promote cell proliferation by inhibiting apoptosis (SATB1). In turn, migration and invasion of cancer cells are based on the formation of actin-rich protrusions (Arp2/3 complex, filamin A, fascin, α-actinin, and cofilin). Importantly, more and more scientists suggest that microfilaments together with the associated proteins mediate tumor vascularization. Hence, the presented article aims to summarize literature reports in the context of the potential role of actin and ABPs in all steps of carcinogenesis.
Collapse
|
16
|
Li L, Niu D, Yang J, Bi J, Zhang L, Cheng Z, Wang G. TRIM62 From Chicken as a Negative Regulator of Reticuloendotheliosis Virus Replication. Front Vet Sci 2020; 7:152. [PMID: 32318585 PMCID: PMC7146716 DOI: 10.3389/fvets.2020.00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 01/04/2023] Open
Abstract
Emerging evidence suggests that the tripartite motif containing 62 (TRIM62), a member of the TRIM family, plays an important role in antiviral processes. The objective of the study was to explore the role of TRIM62 in reticuloendotheliosis virus (REV) infection and its potential molecular mechanism. We first demonstrated that the REV infection affected the TRIM62 expression first upregulated and then downregulated in CEF cells. Next, we evaluated the effect of TRIM62 on viral replication. Overexpression of TRIM62 decreased REV replication. On the contrary, silencing of endogenously expressed TRIM62 increased viral replication. Then, to explore the necessity of domains in TRIM62's negative regulation on viral replication, we transfected CEF cells with TRIM62 domain deletion mutants. Deletion domain partially abolished TRIM62's antiviral activity. The effect of SPRY domain deletion was the highest and that of coiled-coil was the lowest. Further, we identified 18 proteins that coimmunoprecipitated and interacted with TRIM62 by immunocoprecipitation and mass spectrometry analysis. Strikingly, among which, both Ras-related protein Rab-5b (RAB5B) and Arp2/3 complex 34-kDa subunit (ARPC2) were involved in actin cytoskeletal pathway. Altogether, these results strongly suggest that chicken TRIM62 provides host defense against viral infection, and all domains are required for its action. RAB5B and ARPC2 may play important roles in its negative regulation processes.
Collapse
Affiliation(s)
- Ling Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Dongyan Niu
- Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jie Yang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jianmin Bi
- China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Lingjuan Zhang
- Penglai City Animal Epidemic Prevention and Control Center, Penglai, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
17
|
Engqvist H, Parris TZ, Kovács A, Rönnerman EW, Sundfeldt K, Karlsson P, Helou K. Validation of Novel Prognostic Biomarkers for Early-Stage Clear-Cell, Endometrioid and Mucinous Ovarian Carcinomas Using Immunohistochemistry. Front Oncol 2020; 10:162. [PMID: 32133296 PMCID: PMC7040170 DOI: 10.3389/fonc.2020.00162] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Early-stage (I and II) ovarian carcinoma patients generally have good prognosis. Yet, some patients die earlier than expected. Thus, it is important to stratify early-stage patients into risk groups to identify those in need of more aggressive treatment regimens. The prognostic value of 29 histotype-specific biomarkers identified using RNA sequencing was evaluated for early-stage clear-cell (CCC), endometrioid (EC) and mucinous (MC) ovarian carcinomas (n = 112) using immunohistochemistry on tissue microarrays. Biomarkers with prognostic significance were further evaluated in an external ovarian carcinoma data set using the web-based Kaplan-Meier plotter tool. Here, we provide evidence of aberrant protein expression patterns and prognostic significance of 17 novel histotype-specific prognostic biomarkers [10 for CCC (ARPC2, CCT5, GNB1, KCTD10, NUP155, RPL13A, RPL37, SETD3, SMYD2, TRIO), three for EC (CECR1, KIF26B, PIK3CA), and four for MC (CHEK1, FOXM1, KIF23, PARPBP)], suggesting biological heterogeneity within the histotypes. Combined predictive models comprising the protein expression status of the validated CCC, EC and MC biomarkers together with established clinical markers (age, stage, CA125, ploidy) improved the predictive power in comparison with models containing established clinical markers alone, further strengthening the importance of the biomarkers in ovarian carcinoma. Further, even improved predictive powers were demonstrated when combining these models with our previously identified prognostic biomarkers PITHD1 (CCC) and GPR158 (MC). Moreover, the proteins demonstrated improved risk prediction of CCC-, EC-, and MC-associated ovarian carcinoma survival. The novel histotype-specific prognostic biomarkers may not only improve prognostication and patient stratification of early-stage ovarian carcinomas, but may also guide future clinical therapy decisions.
Collapse
Affiliation(s)
- Hanna Engqvist
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Zhang L, Lin W, Chen X, Wei G, Zhu H, Xing S. Tanshinone IIA reverses EGF- and TGF-β1-mediated epithelial-mesenchymal transition in HepG2 cells via the PI3K/Akt/ERK signaling pathway. Oncol Lett 2019; 18:6554-6562. [PMID: 31807174 PMCID: PMC6876303 DOI: 10.3892/ol.2019.11032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is an essential phenotypic conversion involved in cancer progression. Epidermal growth factor (EGF) and transforming growth factor (TGF)-β1 are potent inducers of the EMT. Tanshinone IIA (Tan IIA) is a phenanthrenequinone extracted from the root of Salvia miltiorrhiza Bunge, and its anticancer activity has been demonstrated in numerous studies. However, the mechanisms of action underlying Tan IIA in EGF- and TGF-β1-induced EMT in HepG2 cells remain unknown. Multiple assays were utilized in the present study, including colony formation, wound healing, Transwell invasion, immunofluorescence staining and western blotting, in order to assess the influence of Tan IIA on HepG2 cells induced by 20 ng/ml EGF and 10 ng/ml TGF-β1. The present study reported that Tan IIA treatment decreased EGF- and TGF-β1-enhanced cell colony numbers, migration and invasion, and inhibited EGF- and TGF-β1-induced decreases in the expression levels of E-cadherin, and increases in the expression levels of matrix metalloproteinase-2, N-cadherin, vimentin and Snail. In addition, it was observed that Tan IIA decreased the expression levels of phosphorylated (p)-Akt and p-ERK1/2 induced by EGF and TGF-β1. Furthermore, western blot analysis confirmed that blocking the function of PI3K/Akt and ERK with LY294002 and U0126 resulted in upregulation of E-cadherin expression, and downregulation of vimentin and Snail expression in EGF- and TGF-β1-treated HepG2 cells. In conclusion, to the best of our knowledge, the results of the present study are the first to indicate that Tan IIA may suppress EGF- and TGF-β1-induced EMT in HepG2 cells by deactivating the PI3K/Akt/ERK pathway.
Collapse
Affiliation(s)
- Longkai Zhang
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Weibin Lin
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Xiaodan Chen
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Gang Wei
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hailong Zhu
- Traditional Chinese Medicine Quality Evaluation and Testing Center, Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd., Guangzhou, Guangdong 510006, P.R. China
| | - Shangping Xing
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|