1
|
Leguit RJ, Broekhuizen R, de Witte M, Raymakers RAP, Goldschmeding R. CCN2/CTGF expression does not correlate with fibrosis in myeloproliferative neoplasms, consistent with noncanonical TGF-β signaling driving myelofibrosis. Virchows Arch 2024; 484:837-845. [PMID: 38602559 PMCID: PMC11106196 DOI: 10.1007/s00428-024-03799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The classical BCR::ABL1-negative myeloproliferative neoplasms (MPN) form a group of bone marrow (BM) diseases with the potential to progress to acute myeloid leukemia or develop marrow fibrosis and subsequent BM failure. The mechanism by which BM fibrosis develops and the factors that drive stromal activation and fibrosis are not well understood. Cellular Communication Network 2 (CCN2), also known as CTGF (Connective Tissue Growth Factor), is a profibrotic matricellular protein functioning as an important driver and biomarker of fibrosis in a wide range of diseases outside the marrow. CCN2 can promote fibrosis directly or by acting as a factor downstream of TGF-β, the latter already known to contribute to myelofibrosis in MPN.To study the possible involvement of CCN2 in BM fibrosis in MPN, we assessed CCN2 protein expression by immunohistochemistry in 75 BM biopsies (55 × MPN and 20 × normal controls). We found variable expression of CCN2 in megakaryocytes with significant overexpression in a subgroup of 7 (13%) MPN cases; 4 of them (3 × essential thrombocytemia and 1 × prefibrotic primary myelofibrosis) showed no fibrosis (MF-0), 2 (1 × post-polycythemic myelofibrosis and 1 × primary myelofibrosis) showed moderate fibrosis (MF-2), and 1 (primary myelofibrosis) severe fibrosis (MF-3). Remarkably, CCN2 expression did not correlate with fibrosis or other disease parameters such as platelet count or thrombovascular events, neither in this subgroup nor in the whole study group. This suggests that in BM of MPN patients other, CCN2-independent pathways (such as noncanonical TGF-β signaling) may be more important for the development of fibrosis.
Collapse
Affiliation(s)
- Roos J Leguit
- Dept of Pathology, University Medical Centre Utrecht, H04-3123508 GA, POB 85500, Utrecht, The Netherlands.
| | - Roel Broekhuizen
- Dept of Pathology, University Medical Centre Utrecht, H04-3123508 GA, POB 85500, Utrecht, The Netherlands
| | - Moniek de Witte
- Dept of Hematology, University Medical Centre Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Reinier A P Raymakers
- Dept of Hematology, University Medical Centre Utrecht, Cancer Center, Utrecht, The Netherlands
| | - Roel Goldschmeding
- Dept of Pathology, University Medical Centre Utrecht, H04-3123508 GA, POB 85500, Utrecht, The Netherlands
| |
Collapse
|
2
|
Shim S, Lee S, Hisham Y, Kim S, Nguyen TT, Taitt AS, Hwang J, Jhun H, Park HY, Lee Y, Yeom SC, Kim SY, Kim YG, Kim S. A Paradoxical Effect of Interleukin-32 Isoforms on Cancer. Front Immunol 2022; 13:837590. [PMID: 35281008 PMCID: PMC8913503 DOI: 10.3389/fimmu.2022.837590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
IL-32 plays a contradictory role such as tumor proliferation or suppressor in cancer development depending on the cancer type. In most cancers, it was found that the high expression of IL-32 was associated with more proliferative and progression of cancer. However, studying the isoforms of IL-32 cytokine has placed its paradoxical role into a wide range of functions based on its dominant isoform and surrounding environment. IL-32β, for example, was found mostly in different types of cancer and associated with cancer expansion. This observation is legitimate since cancer exhibits some hypoxic environment and IL-32β was known to be induced under hypoxic conditions. However, IL-32θ interacts directly with protein kinase C-δ reducing NF-κB and STAT3 levels to inhibit epithelial-mesenchymal transition (EMT). This effect could explain the different functions of IL-32 isoforms in cancer. However, pro- or antitumor activity which is dependant on obesity, gender, and age as it relates to IL-32 has yet to be studied. Obesity-related IL-32 regulation indicated the role of IL-32 in cancer metabolism and inflammation. IL-32-specific direction in cancer therapy is difficult to conclude. In this review, we address that the paradoxical effect of IL-32 on cancer is attributed to the dominant isoform, cancer type, tumor microenvironment, and genetic background. IL-32 seems to have a contradictory role in cancer. However, investigating multiple IL-32 isoforms could explain this doubt and bring us closer to using them in therapy.
Collapse
Affiliation(s)
- Saerok Shim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Siyoung Lee
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,YbdYbiotech Research Center, Seoul, South Korea
| | - Yasmin Hisham
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Sinae Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,YbdYbiotech Research Center, Seoul, South Korea
| | - Tam T Nguyen
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,YbdYbiotech Research Center, Seoul, South Korea
| | - Afeisha S Taitt
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Jihyeong Hwang
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Wanju, South Korea
| | - Ho-Young Park
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju, South Korea
| | - Youngmin Lee
- Department of Medicine, Pusan Paik Hospital, Collage of Medicine, Inje University, Busan, South Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Science, Asan Medical Center, Seoul, South Korea
| | - Yong-Gil Kim
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soohyun Kim
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea.,College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
4
|
Liu J, Rebecca VW, Kossenkov AV, Connelly T, Liu Q, Gutierrez A, Xiao M, Li L, Zhang G, Samarkina A, Zayasbazan D, Zhang J, Cheng C, Wei Z, Alicea GM, Fukunaga-Kalabis M, Krepler C, Aza-Blanc P, Yang CC, Delvadia B, Tong C, Huang Y, Delvadia M, Morias AS, Sproesser K, Brafford P, Wang JX, Beqiri M, Somasundaram R, Vultur A, Hristova DM, Wu LW, Lu Y, Mills GB, Xu W, Karakousis GC, Xu X, Schuchter LM, Mitchell TC, Amaravadi RK, Kwong LN, Frederick DT, Boland GM, Salvino JM, Speicher DW, Flaherty KT, Ronai ZA, Herlyn M. Neural Crest-Like Stem Cell Transcriptome Analysis Identifies LPAR1 in Melanoma Progression and Therapy Resistance. Cancer Res 2021; 81:5230-5241. [PMID: 34462276 PMCID: PMC8530965 DOI: 10.1158/0008-5472.can-20-1496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/15/2020] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Metastatic melanoma is challenging to clinically address. Although standard-of-care targeted therapy has high response rates in patients with BRAF-mutant melanoma, therapy relapse occurs in most cases. Intrinsically resistant melanoma cells drive therapy resistance and display molecular and biologic properties akin to neural crest-like stem cells (NCLSC) including high invasiveness, plasticity, and self-renewal capacity. The shared transcriptional programs and vulnerabilities between NCLSCs and cancer cells remains poorly understood. Here, we identify a developmental LPAR1-axis critical for NCLSC viability and melanoma cell survival. LPAR1 activity increased during progression and following acquisition of therapeutic resistance. Notably, genetic inhibition of LPAR1 potentiated BRAFi ± MEKi efficacy and ablated melanoma migration and invasion. Our data define LPAR1 as a new therapeutic target in melanoma and highlights the promise of dissecting stem cell-like pathways hijacked by tumor cells. SIGNIFICANCE: This study identifies an LPAR1-axis critical for melanoma invasion and intrinsic/acquired therapy resistance.
Collapse
Affiliation(s)
- Jianglan Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Vito W Rebecca
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andrew V Kossenkov
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Thomas Connelly
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alexis Gutierrez
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ling Li
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Anastasia Samarkina
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Delaine Zayasbazan
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Chaoran Cheng
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Gretchen M Alicea
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Mizuho Fukunaga-Kalabis
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Pedro Aza-Blanc
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Chih-Cheng Yang
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Bela Delvadia
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Cynthia Tong
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ye Huang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maya Delvadia
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alice S Morias
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Patricia Brafford
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua X Wang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Marilda Beqiri
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rajasekharan Somasundaram
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adina Vultur
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Denitsa M Hristova
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Lawrence W Wu
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Xu
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Giorgos C Karakousis
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M Schuchter
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tara C Mitchell
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Abramson Cancer Center, Department of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dennie T Frederick
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Genevieve M Boland
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania
| | - Keith T Flaherty
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
5
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|