1
|
Ryu S, Long H, Quan X, Kim U, Zhao W, Song Y, Li L, Zhang Z. RHBDF1 promotes PERK expression through the JNK/FoxO3 pathway in breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2024; 57:415-423. [PMID: 39420837 PMCID: PMC11986452 DOI: 10.3724/abbs.2024163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 10/19/2024] Open
Abstract
Human rhomboid family-1 ( RHBDF1) gene is recognized as an oncogene involved in breast cancer development. Previous studies have indicated that RHBDF1 contributes significantly to endoplasmic reticulum (ER) protein homeostasis by stabilizing the binding immunoglobulin protein (BiP) and promoting the unfolded protein response (UPR). Here, we report a relationship between RHBDF1 and the ER stress sensors PERK, IRE1, and ATF6. We show that RHBDF1 deficiency in breast cancer cells results in decreased levels of PERK, pPERK, and peIF2α. These protein levels can be restored in RHBDF1-deficient breast cancer cells by artificial overexpression of RHBDF1 but not IRE1 or ATF6. Additionally, we show that the transcription factor FoxO3 is essential for the RHBDF1-mediated production of PERK. Subsequent analysis reveals that RHBDF1 activates JNK, which causes FoxO3 to translocate into the cell nucleus. These findings demonstrate that RHBDF1 supports the UPR by upregulating the PERK/peIF2α pathway via the JNK/FoxO3 axis and that the functions of RHBDF1 are essential for preserving the homeostasis of ER proteins.
Collapse
Affiliation(s)
- SungJu Ryu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin Key Laboratory of Molecular Drug ResearchNankai Universityand the Haihe Laboratory of Cell EcosystemTianjin300350China
- Institute of MicrobiologyState Academy of SciencesPyongyangDemocratic People’s Republic of Korea
| | - Hui Long
- School of Traditional Chinese PharmacyBaoshan College of Traditional Chinese MedicineBaoshan678000China
| | - Xiaojing Quan
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin Key Laboratory of Molecular Drug ResearchNankai Universityand the Haihe Laboratory of Cell EcosystemTianjin300350China
| | - UnChol Kim
- Institute of MicrobiologyState Academy of SciencesPyongyangDemocratic People’s Republic of Korea
| | - Wenwen Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin Key Laboratory of Molecular Drug ResearchNankai Universityand the Haihe Laboratory of Cell EcosystemTianjin300350China
| | - Yuanyuan Song
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin Key Laboratory of Molecular Drug ResearchNankai Universityand the Haihe Laboratory of Cell EcosystemTianjin300350China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin Key Laboratory of Molecular Drug ResearchNankai Universityand the Haihe Laboratory of Cell EcosystemTianjin300350China
| | - Zhisong Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin Key Laboratory of Molecular Drug ResearchNankai Universityand the Haihe Laboratory of Cell EcosystemTianjin300350China
| |
Collapse
|
2
|
Wang L, Qi L, Huang X, Feng X, Gan J, Zhang J, Xi Y, Zhang S, Meng Q. RHBDF1 modulates cisplatin sensitivity of small cell lung cancer through YAP1/Smad2 signaling pathway. Heliyon 2024; 10:e33454. [PMID: 39027514 PMCID: PMC11254170 DOI: 10.1016/j.heliyon.2024.e33454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Small cell lung cancer (SCLC) is a fatal tumor type that is prone to drug resistance. In our previous study, we showed that human rhomboid-5 homolog-1 (RHBDF1) was differentially expressed in 5 intrinsic cisplatin-resistant SCLC tissues compared with 5 intrinsic cisplatin-sensitive SCLC tissues by RNA sequencing, which intrigued us. We performed gain- and loss-of-function experiments to investigate RHBDF1 function, bioinformatics analysis, qRT-PCR, western blotting, and immunoprecipitation to elucidate the molecular mechanisms as well as detect RHBDF1 expression in SCLC by immunohistochemistry. We found that RHBDF1 knockdown promoted cell proliferation and cisplatin chemoresistance and inhibited apoptosis in vitro and in vivo. These effects could be reversed by overexpressing RHBDF1 in vitro. Mechanistically, RHBDF1 interacted with YAP1, which increased the phosphorylation of Smad2 and transported Smad2 to the nucleus. Among clinical specimens, the RHBDF1 was a low expression in SCLC and was associated with clinicopathological features and prognosis. We are the first to reveal that RHBDF1 inhibited cell proliferation and promoted cisplatin sensitivity in SCLC and elucidate a novel mechanism through RHBDF1/YAP1/Smad2 signaling pathway which played a crucial role in cisplatin chemosensitivity. Targeting this pathway can be a promising therapeutic strategy for chemotherapy resistance in SCLC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiao Feng
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, China
| | - Junqing Gan
- Department of Radiation Oncology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, China
| | - Juxuan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yuhui Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
3
|
Dwivedi SD, Bhoi A, Pradhan M, Sahu KK, Singh D, Singh MR. Role and uptake of metal-based nanoconstructs as targeted therapeutic carriers for rheumatoid arthritis. 3 Biotech 2024; 14:142. [PMID: 38693915 PMCID: PMC11058151 DOI: 10.1007/s13205-024-03990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune systemic inflammatory disease that affects the joints and other vital organs and diminishes the quality of life. The current developments and innovative treatment options have significantly slowed disease progression and improved their quality of life. Medicaments can be delivered to the inflamed synovium via nanoparticle systems, minimizing systemic and undesirable side effects. Numerous nanoparticles such as polymeric, liposomal, and metallic nanoparticles reported are impending as a good carrier with therapeutic properties. Other issues to be considered along are nontoxicity, nanosize, charge, optical property, and ease of high surface functionalization that make them suitable carriers for drug delivery. Metallic nanoparticles (MNPs) (such as silver, gold, zinc, iron, titanium oxide, and selenium) not only act as good carrier with desired optical property, and high surface modification ability but also have their own therapeutical potential such as anti-oxidant, anti-inflammatory, and anti-arthritic properties, making them one of the most promising options for RA treatment. Regardless, cellular uptake of MNPs is one of the most significant criterions for targeting the medication. This paper discusses the numerous interactions of nanoparticles with cells, as well as cellular uptake of NPs. This review provides the mechanistic overview on MNPs involved in RA therapies and regulation anti-arthritis response such as ability to reduce oxidative stress, suppressing the release of proinflammatory cytokines and expression of LPS induced COX-2, and modulation of MAPK and PI3K pathways in Kuppfer cells and hepatic stellate cells. Despite of that MNPs have also ability to regulates enzymes like glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) and act as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, C.G 492010 India
| | - Madhulika Pradhan
- Gracious College of Pharmacy, Abhanpur Raipur, Chhattisgarh 493661 India
| | - Keshav Kant Sahu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, C.G 492010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
4
|
Ryu S, Long H, Zheng XL, Song YY, Wang Y, Zhou YJ, Quan XJ, Li LY, Zhang ZS. Pentapeptide PYRAE triggers ER stress-mediated apoptosis of breast cancer cells in mice by targeting RHBDF1-BiP interaction. Acta Pharmacol Sin 2024; 45:378-390. [PMID: 37798352 PMCID: PMC10789821 DOI: 10.1038/s41401-023-01163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Reinforced cellular responses to endoplasmic reticulum (ER) stress are caused by a variety of pathological conditions including cancers. Human rhomboid family-1 protein (RHBDF1), a multiple transmembrane protein located mainly on the ER, has been shown to promote cancer development, while the binding immunoglobulin protein (BiP) is a key regulator of cellular unfolded protein response (UPR) for the maintenance of ER protein homeostasis. In this study, we investigated the role of RHBDF1 in maintaining ER protein homeostasis in breast cancer cells. We showed that deleting or silencing RHBDF1 in breast cancer cell lines MCF-7 and MDA-MB-231 caused marked aggregation of unfolded proteins in proximity to the ER. We demonstrated that RHBDF1 directly interacted with BiP, and this interaction had a stabilizing effect on the BiP protein. Based on the primary structural motifs of RHBDF1 involved in BiP binding, we found a pentapeptide (PE5) targeted BiP and inhibited BiP ATPase activity. SPR assay revealed a binding affinity of PE5 toward BiP (Kd = 57.7 μM). PE5 (50, 100, 200 μM) dose-dependently promoted ER protein aggregation and ER stress-mediated cell apoptosis in MCF-7 and MDA-MB-231 cells. In mouse 4T1 breast cancer xenograft model, injection of PE5 (10 mg/kg, s.c., every 2 days for 2 weeks) significantly inhibited the tumor growth with markedly increased ER stress and apoptosis-related proteins in tumor tissues. Our results suggest that the ability of RHBDF1 to maintain BiP protein stability is critical to ER protein homeostasis in breast cancer cells, and that the pentapeptide PE5 may serve as a scaffold for the development of a new class of anti-BiP inhibitors.
Collapse
Affiliation(s)
- SungJu Ryu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
- Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Hui Long
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Xin-Ling Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Yuan-Yuan Song
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Yan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Yu-Jie Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Xiao-Jing Quan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China.
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China.
| |
Collapse
|
5
|
Luo Z, Huang Y, Batra N, Chen Y, Huang H, Wang Y, Zhang Z, Li S, Chen CY, Wang Z, Sun J, Wang QJ, Yang D, Lu B, Conway JF, Li LY, Yu AM, Li S. Inhibition of iRhom1 by CD44-targeting nanocarrier for improved cancer immunochemotherapy. Nat Commun 2024; 15:255. [PMID: 38177179 PMCID: PMC10766965 DOI: 10.1038/s41467-023-44572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
The multifaceted chemo-immune resistance is the principal barrier to achieving cure in cancer patients. Identifying a target that is critically involved in chemo-immune-resistance represents an attractive strategy to improve cancer treatment. iRhom1 plays a role in cancer cell proliferation and its expression is negatively correlated with immune cell infiltration. Here we show that iRhom1 decreases chemotherapy sensitivity by regulating the MAPK14-HSP27 axis. In addition, iRhom1 inhibits the cytotoxic T-cell response by reducing the stability of ERAP1 protein and the ERAP1-mediated antigen processing and presentation. To facilitate the therapeutic translation of these findings, we develop a biodegradable nanocarrier that is effective in codelivery of iRhom pre-siRNA (pre-siiRhom) and chemotherapeutic drugs. This nanocarrier is effective in tumor targeting and penetration through both enhanced permeability and retention effect and CD44-mediated transcytosis in tumor endothelial cells as well as tumor cells. Inhibition of iRhom1 further facilitates tumor targeting and uptake through inhibition of CD44 cleavage. Co-delivery of pre-siiRhom and a chemotherapy agent leads to enhanced antitumor efficacy and activated tumor immune microenvironment in multiple cancer models in female mice. Targeting iRhom1 together with chemotherapy could represent a strategy to overcome chemo-immune resistance in cancer treatment.
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neelu Batra
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shichen Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien-Yu Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zehua Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binfeng Lu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lu-Yuan Li
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Chen J, Lin X, He J, Liu D, He L, Zhang M, Luan H, Hu Y, Tao C, Wang Q. Artemisitene suppresses rheumatoid arthritis progression via modulating METTL3-mediated N6-methyladenosine modification of ICAM2 mRNA in fibroblast-like synoviocytes. Clin Transl Med 2022; 12:e1148. [PMID: 36536495 PMCID: PMC9763537 DOI: 10.1002/ctm2.1148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease. We previously revealed that the natural compound artemisitene (ATT) exhibits excellent broad anticancer activities without toxicity on normal tissues. Nevertheless, the effect of ATT on RA is undiscovered. Herein, we aim to study the effect and potential mechanism of ATT on RA management. METHODS A collagen-induced arthritis (CIA) mouse model was employed to confirm the anti-RA potential of ATT. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays, cell cycle and apoptosis analysis, immunofluorescence, migration and invasion assays, quantitative real-time PCR (RT-qPCR), Western blot, RNA-sequencing (RNA-seq) analysis, plasmid construction and lentivirus infection, and methylated RNA immunoprecipitation and chromatin immunoprecipitation assays, were carried out to confirm the effect and potential mechanism of ATT on RA management. RESULTS ATT relieved CIA in mice. ATT inhibited proliferation and induced apoptosis of RA-fibroblast-like synoviocytes (FLSs). ATT restrained RA-FLSs migration and invasion via suppressing epithelial-mesenchymal transition. RNA-sequencing analysis and bioinformatics analysis identified intercellular adhesion molecule 2 (ICAM2) as a promoter of RA progression in RA-FLSs. ATT inhibits RA progression by suppressing ICAM2/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/p300 pathway in RA-FLSs. Moreover, ATT inhibited methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine methylation of ICAM2 mRNA in RA-FLSs. Interestingly, p300 directly facilitated METTL3 transcription, which could be restrained by ATT in RA-FLSs. Importantly, METTL3, ICAM2 and p300 expressions in synovium tissues of RA patients were related to clinical characteristics and therapy response. CONCLUSIONS We provided strong evidence that ATT has therapeutic potential for RA management by suppressing proliferation, migration and invasion, in addition to inducing apoptosis of RA-FLSs through modulating METTL3/ICAM2/PI3K/AKT/p300 feedback loop, supplying the fundamental basis for the clinical application of ATT in RA therapy. Moreover, METTL3, ICAM2 and p300 might serve as biomarkers for the therapy response of RA patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Xian Lin
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Juan He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Dandan Liu
- School of Basic Medical ScienceGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Lianhua He
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Miaomiao Zhang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Huijie Luan
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Yiping Hu
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| | - Cheng Tao
- School of PharmacyGuangdong Medical UniversityDongguanGuangdongChina
| | - Qingwen Wang
- Department of Rheumatism and ImmunologyPeking University Shenzhen HospitalShenzhenGuangdongChina
- Shenzhen Key Laboratory of Inflammatory and Immunology DiseasesShenzhenGuangdongChina
| |
Collapse
|
7
|
Sieber B, Lu F, Stribbling SM, Grieve AG, Ryan AJ, Freeman M. iRhom2 regulates ERBB signalling to promote KRAS-driven tumour growth of lung cancer cells. J Cell Sci 2022; 135:jcs259949. [PMID: 35971826 PMCID: PMC9482348 DOI: 10.1242/jcs.259949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of the ERBB/EGFR signalling pathway causes multiple types of cancer. Accordingly, ADAM17, the primary shedding enzyme that releases and activates ERBB ligands, is tightly regulated. It has recently become clear that iRhom proteins, inactive members of the rhomboid-like superfamily, are regulatory cofactors for ADAM17. Here, we show that oncogenic KRAS mutants target the cytoplasmic domain of iRhom2 (also known as RHBDF2) to induce ADAM17-dependent shedding and the release of ERBB ligands. Activation of ERK1/2 by oncogenic KRAS induces the phosphorylation of iRhom2, recruitment of the phospho-binding 14-3-3 proteins, and consequent ADAM17-dependent shedding of ERBB ligands. In addition, cancer-associated mutations in iRhom2 act as sensitisers in this pathway by further increasing KRAS-induced shedding of ERBB ligands. This mechanism is conserved in lung cancer cells, where iRhom activity is required for tumour xenograft growth. In this context, the activity of oncogenic KRAS is modulated by the iRhom2-dependent release of ERBB ligands, thus placing the cytoplasmic domain of iRhom2 as a central component of a positive feedback loop in lung cancer cells. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Fangfang Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Adam G. Grieve
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Anderson J. Ryan
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
8
|
Lin X, Wang F, Chen J, Liu J, Lin YB, Li L, Chen CB, Xu Q. N 6-methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance. Mil Med Res 2022; 9:19. [PMID: 35418160 PMCID: PMC9008995 DOI: 10.1186/s40779-022-00378-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Stemness and chemoresistance contribute to cervical cancer recurrence and metastasis. In the current study, we determined the relevant players and role of N6-methyladenine (m6A) RNA methylation in cervical cancer progression. METHODS The roles of m6A RNA methylation and centromere protein K (CENPK) in cervical cancer were analyzed using bioinformatics analysis. Methylated RNA immunoprecipitation was adopted to detect m6A modification of CENPK mRNA. Human cervical cancer clinical samples, cell lines, and xenografts were used for analyzing gene expression and function. Immunofluorescence staining and the tumorsphere formation, clonogenic, MTT, and EdU assays were performed to determine cell stemness, chemoresistance, migration, invasion, and proliferation in HeLa and SiHa cells, respectively. Western blot analysis, co-immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter, cycloheximide chase, and cell fractionation assays were performed to elucidate the underlying mechanism. RESULTS Bioinformatics analysis of public cancer datasets revealed firm links between m6A modification patterns and cervical cancer prognosis, especially through ZC3H13-mediated m6A modification of CENPK mRNA. CENPK expression was elevated in cervical cancer, associated with cancer recurrence, and independently predicts poor patient prognosis [hazard ratio = 1.413, 95% confidence interval = 1.078 - 1.853, P = 0.012]. Silencing of CENPK prolonged the overall survival time of cervical cancer-bearing mice and improved the response of cervical cancer tumors to chemotherapy in vivo (P < 0.001). We also showed that CENPK was directly bound to SOX6 and disrupted the interactions of CENPK with β-catenin, which promoted β-catenin expression and nuclear translocation, facilitated p53 ubiquitination, and led to activation of Wnt/β-catenin signaling, but suppression of the p53 pathway. This dysregulation ultimately enhanced the tumorigenic pathways required for cell stemness, DNA damage repair pathways necessary for cisplatin/carboplatin resistance, epithelial-mesenchymal transition involved in metastasis, and DNA replication that drove tumor cell proliferation. CONCLUSIONS CENPK was shown to have an oncogenic role in cervical cancer and can thus serve as a prognostic indicator and novel target for cervical cancer treatment.
Collapse
Affiliation(s)
- Xian Lin
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 Guangdong China
| | - Feng Wang
- Outpatient Department, Fujian Hospital of People’s Armed Police, Fujian Medical University, Fuzhou, 350014 China
| | - Jian Chen
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 Guangdong China
| | - Jing Liu
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| | - Yi-Bin Lin
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| | - Li Li
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| | - Chuan-Ben Chen
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| | - Qin Xu
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| |
Collapse
|
9
|
Jiang X, Jia H, Zhang Z, Wei C, Wang C, Dong J. The Feasibility of Combining ADC Value With Texture Analysis of T 2WI, DWI and CE-T 1WI to Preoperatively Predict the Expression Levels of Ki-67 and p53 of Endometrial Carcinoma. Front Oncol 2022; 11:805545. [PMID: 35127515 PMCID: PMC8811460 DOI: 10.3389/fonc.2021.805545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To evaluate the feasibility of apparent diffusion coefficient (ADC) value combined with texture analysis (TA) in preoperatively predicting the expression levels of Ki-67 and p53 in endometrial carcinoma (EC) patients. METHODS Clinical, pathological and MRI findings of 110 EC patients were analyzed retrospectively. The expression levels of Ki-67 and p53 in EC tissues were detected by immunohistochemistry. ADC value was calculated, and three-dimensional (3D) texture features were measured on T2-weighted images (T2WI), diffusion-weighted images (DWI), and contrast-enhanced T1-weighted images (CE-T1WI). The univariate and multivariate logistic regression and cross-validations were used for the selection of texture features. The receiver operating characteristic (ROC) curve was performed to estimate the diagnostic efficiency of prediction model by the area under the curve (AUC) in the training and validation cohorts. RESULTS Significant differences of the ADC values were found in predicting Ki-67 and p53 (P=0.039, P=0.007). The AUC of the ADC value in predicting the expression levels of Ki-67 and p53 were 0.698, 0.853 and 0.626, 0.702 in the training and validation cohorts. The AUC of the TA model based on T2WI, DWI, CE-T1WI, and ADC value combined with T2WI + DWI + CE-T1WI in the training and validation cohorts for predicting the expression of Ki-67 were 0.741, 0.765, 0.733, 0.922 and 0.688, 0.691, 0.651, 0.938, respectively, and for predicting the expression of p53 were 0.763, 0.805, 0.781, 0.901 and 0.796, 0.713, 0.657, 0.922, respectively. CONCLUSION ADC values combined with TA are beneficial for predicting the expression levels of Ki-67 and p53 in EC patients before surgery, and they provide higher auxiliary diagnostic values for clinical application.
Collapse
Affiliation(s)
- Xueyan Jiang
- Department of Radiology, Bengbu Medical College, Bengbu, China
| | - Haodong Jia
- Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Zhongyuan Zhang
- Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Chao Wei
- Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Chuanbin Wang
- Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| | - Jiangning Dong
- Department of Radiology, Bengbu Medical College, Bengbu, China.,Department of Radiology, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, China
| |
Collapse
|
10
|
Martínez-Rodríguez F, Limones-González JE, Mendoza-Almanza B, Esparza-Ibarra EL, Gallegos-Flores PI, Ayala-Luján JL, Godina-González S, Salinas E, Mendoza-Almanza G. Understanding Cervical Cancer through Proteomics. Cells 2021; 10:1854. [PMID: 34440623 PMCID: PMC8391734 DOI: 10.3390/cells10081854] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the leading public health issues worldwide, and the number of cancer patients increases every day. Particularly, cervical cancer (CC) is still the second leading cause of cancer death in women from developing countries. Thus, it is essential to deepen our knowledge about the molecular pathogenesis of CC and propose new therapeutic targets and new methods to diagnose this disease in its early stages. Differential expression analysis using high-throughput techniques applied to biological samples allows determining the physiological state of normal cells and the changes produced by cancer development. The cluster of differential molecular profiles in the genome, the transcriptome, or the proteome is analyzed in the disease, and it is called the molecular signature of cancer. Proteomic analysis of biological samples of patients with different grades of cervical intraepithelial neoplasia (CIN) and CC has served to elucidate the pathways involved in the development and progression of cancer and identify cervical proteins associated with CC. However, several cervical carcinogenesis mechanisms are still unclear. Detecting pathologies in their earliest stages can significantly improve a patient's survival rate, prognosis, and recurrence. The present review is an update on the proteomic study of CC.
Collapse
Affiliation(s)
- Fátima Martínez-Rodríguez
- Microbiology Department, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico;
| | | | - Brenda Mendoza-Almanza
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Edgar L. Esparza-Ibarra
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Perla I. Gallegos-Flores
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Jorge L. Ayala-Luján
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (J.L.A.-L.); (S.G.-G.)
| | - Susana Godina-González
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (J.L.A.-L.); (S.G.-G.)
| | - Eva Salinas
- Microbiology Department, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico;
| | - Gretel Mendoza-Almanza
- Master in Biomedical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico;
- National Council of Science and Technology, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
11
|
Predictive Ki-67 Proliferation Index of Cervical Squamous Cell Carcinoma Based on IVIM-DWI Combined with Texture Features. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:8873065. [PMID: 33531882 PMCID: PMC7826202 DOI: 10.1155/2021/8873065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022]
Abstract
Purpose This study aims to determine whether IVIM-DWI combined with texture features based on preoperative IVIM-DWI could be used to predict the Ki-67 PI, which is a widely used cell proliferation biomarker in CSCC. Methods A total of 70 patients were included. Among these patients, 16 patients were divided into the Ki-67 PI <50% group and 54 patients were divided into the Ki-67 PI ≥50% group based on the retrospective surgical evaluation. All patients were examined using a 3.0T MRI unit with one standard protocol, including an IVIM-DWI sequence with 10 b values (0–1,500 sec/mm2). The maximum level of CSCC with a b value of 800 sec/mm2 was selected. The parameters (diffusion coefficient (D), microvascular volume fraction (f), and pseudodiffusion coefficient (D∗)) were calculated with the ADW 4.6 workstation, and the texture features based on IVIM-DWI were measured using GE AK quantitative texture analysis software. The texture features included the first order, GLCM, GLSZM, GLRLM, and wavelet transform features. The differences in IVIM-DWI parameters and texture features between the two groups were compared, and the ROC curve was performed for parameters with group differences, and in combination. Results The D value in the Ki-67 PI ≥50% group was lower than that in the Ki-67 PI <50% group (P < 0.05). A total of 1,050 texture features were obtained using AK software. Through univariate logistic regression, mPMR feature selection, and multivariate logistic regression, three texture features were obtained: wavelet_HHL_GLRLM_ LRHGLE, lbp_3D_k_ firstorder_IR, and wavelet_HLH_GLCM_IMC1. The AUC of the prediction model based on the three texture features was 0.816, and the combined D value and three texture features was 0.834. Conclusions Texture analysis on IVIM-DWI and its parameters was helpful for predicting Ki-67 PI and may provide a noninvasive method to investigate important imaging biomarkers for CSCC.
Collapse
|
12
|
iRhom2: An Emerging Adaptor Regulating Immunity and Disease. Int J Mol Sci 2020; 21:ijms21186570. [PMID: 32911849 PMCID: PMC7554728 DOI: 10.3390/ijms21186570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled “inactive” rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.
Collapse
|
13
|
Hosur V, Low BE, Li D, Stafford GA, Kohar V, Shultz LD, Wiles MV. Genes adapt to outsmart gene-targeting strategies in mutant mouse strains by skipping exons to reinitiate transcription and translation. Genome Biol 2020; 21:168. [PMID: 32646486 PMCID: PMC7350591 DOI: 10.1186/s13059-020-02086-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gene disruption in mouse embryonic stem cells or zygotes is a conventional genetics approach to identify gene function in vivo. However, because different gene disruption strategies use different mechanisms to disrupt genes, the strategies can result in diverse phenotypes in the resulting mouse model. To determine whether different gene disruption strategies affect the phenotype of resulting mutant mice, we characterized Rhbdf1 mouse mutant strains generated by three commonly used strategies-definitive-null, targeted knockout (KO)-first, and CRISPR/Cas9. RESULTS We find that Rhbdf1 responds differently to distinct KO strategies, for example, by skipping exons and reinitiating translation to potentially yield gain-of-function alleles rather than the expected null or severe hypomorphic alleles. Our analysis also revealed that at least 4% of mice generated using the KO-first strategy show conflicting phenotypes. CONCLUSIONS Exon skipping is a widespread phenomenon occurring across the genome. These findings have significant implications for the application of genome editing in both basic research and clinical practice.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| | - Benjamin E. Low
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| | - Daniel Li
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021 USA
| | | | - Vivek Kohar
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| | | | - Michael V. Wiles
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| |
Collapse
|