1
|
Kim HM, Koo JS. Expression of amine oxidase-related proteins in breast phyllodes tumor. Histol Histopathol 2025; 40:39-47. [PMID: 38887035 DOI: 10.14670/hh-18-773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACGROUND Breast phyllodes tumors (BPTs) are difficult to differentiate from other tumor types. In-depth research is needed due to the insufficient description of the amine oxidase protein family, particularly in BPTs. OBJECTIVE This study investigated the expression and clinical implications of amine oxidase-related proteins in BPTs. METHODS Tissue microarrays were constructed (n=181), and amine oxidase-related proteins of monoamine oxidase (MAO) A, MAOB, lysyl oxidase (LOX), and primary-amine oxidase 3 (AOC3) were assessed using immunohistochemical staining. Staining patterns of these proteins were compared and analyzed with clinicopathologic parameters. RESULTS In all, 149, 27, and 5 cases were classified as benign, borderline, and malignant, respectively. A higher grade of BPT was associated with increased MAOB (P<0.001), LOX (P=0.035), and AOC3 (P<0.001) expression. BPT cases with tumor recurrence and distant metastasis had higher proportions of MAOB positivity in stromal components (P=0.002 and 0.018, respectively). During follow-up, there was a significant association between MAOB positivity in the stromal component and shorter disease-free survival (DFS) (P=0.001) as well as overall survival (P=0.003). Moreover, MAOB positivity emerged as an independent factor for shorter DFS (hazard ratio: 4.253, 95% confidence interval: 1.034-17.49, P=0.045). CONCLUSIONS Higher MAOB, LOX, and AOC3 expression were observed in higher-grade BPTs, and MAOB expression was identified as a significant prognostic factor.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Li X, Zhao Y, Wei S, Dai Y, Yi C. Construction of a cuproptosis-tricarboxylic acid cycle-associated lncRNA model to predict the prognosis of non-small cell lung cancer. Transl Cancer Res 2024; 13:6807-6824. [PMID: 39816567 PMCID: PMC11729758 DOI: 10.21037/tcr-24-660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025]
Abstract
Background In cuproptosis, excess copper ions induce cell death via fatty acylation in the tricarboxylic acid (TCA) cycle. However, the effects of cuproptosis-TCA-related long non-coding RNAs (lncRNAs) on the clinical prognosis of non-small cell lung cancer (NSCLC) and the associated tumor microenvironment remain unclear. The purpose of this study is to use cuproptosis-TCA related lncRNAs to predict the prognosis of NSCLC. Methods Molecular signature databases and cuproptosis-related publications were made use of identifying cuproptosis-TCA-related genes. They were identified based on Pearson correlation analysis. The prognostic features associated with these lncRNAs were evaluated using the absolute contraction and selection operator and a receiver operating characteristic curve analysis. Additionally, downstream functional enrichment and immunoinfiltration were analyzed to examine the immunotherapeutic responses of patients with NSCLC. Results Eleven cuproptosis-TCA-associated lncRNAs were identified. A high-risk group was compared with a low-risk group based on risk scores, and the high-risk group had a significantly lower overall survival (OS). We established a prognostic risk profile, and based on these characteristics and clinical staging, a nomogram was constructed. An analysis of functional enrichment revealed the involvement of pathways associated with cellular and humoral immunity and fatty acylation. Risk scores differed significantly based on immune cells and pathways (antigen-presenting cell co-stimulation). Moreover, TP53, TTN, and MUC16 mutation status were strongly associated with risk scores, with patients identified as having a higher risk of NSCLC being more responsive to immunotherapy. Conclusions Eleven cuproptosis-TCA-associated lncRNAs can be used to predict the prognosis of NSCLC patients, thereby providing a new theoretical basis for immunotherapy.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yunlong Zhao
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shengjie Wei
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuqing Dai
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Song W, Yue Y, Zhang Q, Wang X. Copper homeostasis dysregulation in respiratory diseases: a review of current knowledge. Front Physiol 2024; 15:1243629. [PMID: 38883186 PMCID: PMC11176810 DOI: 10.3389/fphys.2024.1243629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/22/2024] [Indexed: 06/18/2024] Open
Abstract
Cu is an essential micronutrient for various physiological processes in almost all human cell types. Given the critical role of Cu in a wide range of cellular processes, the local concentrations of Cu and the cellular distribution of Cu transporter proteins in the lung are essential for maintaining a steady-state internal environment. Dysfunctional Cu metabolism or regulatory pathways can lead to an imbalance in Cu homeostasis in the lungs, affecting both acute and chronic pathological processes. Recent studies have identified a new form of Cu-dependent cell death called cuproptosis, which has generated renewed interest in the role of Cu homeostasis in diseases. Cuproptosis differs from other known cell death pathways. This occurs through the direct binding of Cu ions to lipoylated components of the tricarboxylic acid cycle during mitochondrial respiration, leading to the aggregation of lipoylated proteins and the subsequent downregulation of Fe-S cluster proteins, which causes toxic stress to the proteins and ultimately leads to cell death. Here, we discuss the impact of dysregulated Cu homeostasis on the pathogenesis of various respiratory diseases, including asthma, chronic obstructive pulmonary disease, idiopathic interstitial fibrosis, and lung cancer. We also discuss the therapeutic potential of targeting Cu. This study highlights the intricate interplay between copper, cellular processes, and respiratory health. Copper, while essential, must be carefully regulated to maintain the delicate balance between necessity and toxicity in living organisms. This review highlights the need to further investigate the precise mechanisms of copper interactions with infections and immune inflammation in the context of respiratory diseases and explore the potential of therapeutic strategies for copper, cuproptosis, and other related effects.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhong Y, Zeng W, Chen Y, Zhu X. The effect of lipid metabolism on cuproptosis-inducing cancer therapy. Biomed Pharmacother 2024; 172:116247. [PMID: 38330710 DOI: 10.1016/j.biopha.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cuproptosis provides a new therapeutic strategy for cancer treatment and is thought to have broad clinical application prospects. Nevertheless, some oncological clinical trials have yet to demonstrate favorable outcomes, highlighting the need for further research into the molecular mechanisms underlying cuproptosis in tumors. Cuproptosis primarily hinges on the intracellular accumulation of copper, with lipid metabolism exerting a profound influence on its course. The interaction between copper metabolism and lipid metabolism is closely related to cuproptosis. Copper imbalance can affect mitochondrial respiration and lipid metabolism changes, while lipid accumulation can promote copper uptake and absorption, and inhibit cuproptosis induced by copper. Anomalies in lipid metabolism can disrupt copper homeostasis within cells, potentially triggering cuproptosis. The interaction between cuproptosis and lipid metabolism regulates the occurrence, development, metastasis, chemotherapy drug resistance, and tumor immunity of cancer. Cuproptosis is a promising new target for cancer treatment. However, the influence of lipid metabolism and other factors should be taken into consideration. This review provides a brief overview of the characteristics of the interaction between cuproptosis and lipid metabolism in cancer and analyses potential strategies of applying cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yongbo Chen
- Rehabilitation College of Gannan Medical University, Ganzhou 341000, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
5
|
Tian Q, Liu X, Li A, Wu H, Xie Y, Zhang H, Wu F, Chen Y, Bai C, Zhang X. LINC01936 inhibits the proliferation and metastasis of lung squamous cell carcinoma probably by EMT signaling and immune infiltration. PeerJ 2023; 11:e16447. [PMID: 38084139 PMCID: PMC10710776 DOI: 10.7717/peerj.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/21/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose To discover the biological function and potential mechanism of LINC01936 in the development of lung squamous cell carcinoma (LUSC). Methods Transcriptome data of LUSC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to analyze the differentially expressed lncRNAs in LUSC and normal tissues by R "DEseq2", "edgeR" and "limma" packages. The subcellular localization of LINC01936 was predicted by lncLocator. Cell proliferation and apoptosis were measured by CCK-8, MTT assay and Hoechst fluorescence staining. The migration and invasion were detected by Transwell assay. The function and pathway enrichment analysis were performed by Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set variation analysis (GSVA). The downstream targets of LINC01936 were predicted using RNA-Protein Interaction Prediction (RPISeq) program. The effect of LINC01936 on tumor immune infiltration was analyzed using Pearson Correlation Analysis using R "ggpubr" package. Results Based on the gene expression data of LUSC from TCGA database, 1,603, 1,702 and 529 upregulated and 536, 436 and 630 downregulated lncRNAs were obtained by DEseq2, edgeR and limma programs, respectively. For GSE88862 dataset, we acquired 341 differentially expressed lncRNAs (206 upregulated and 135 downregulated). Venn plot for the intersection of above differential expressed lncRNAs showed that there were 29 upregulated and 23 downregulated genes. LINC01936 was one of downregulated lncRNAs in LUSC tissues. The biological analysis showed that the overexpression of LINC01936 significantly reduced proliferation, migration and invasion of LUSC cells, and promoted cell apoptosis. The knockdown of LINC01936 promoted cell proliferation and metastasis. Pathway and GSVA analysis indicated that LINC01936 might participated in DNA repair, complement, cell adhesion and EMT, etc. LINC01936 was predicted to interact with TCF21, AOC3, RASL12, MEOX2 or HSPB7, which are involved in EMT and PI3K-AKT-MTOR pathway, etc. The expression of LINC01936 was also positively correlated with the infiltrating immune cells in LUSC. Conclusions LINC01936 is downregulated in LUSC. LINC01936 affected proliferation, migration and invasion of LUSC cells probably by EMT and immune infiltration, which might serve as a new target for the treatment of LUSC.
Collapse
Affiliation(s)
- Qinqin Tian
- The Second Affiliated Hospital of Army Medical University, Department of Clinical Laboratory, Chongqing, China
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Xiyao Liu
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Ang Li
- North China University of Science and Technology, School of Public Health, Tangshan, China
| | - Hongjiao Wu
- North China University of Science and Technology, School of Public Health, Tangshan, China
| | - Yuning Xie
- North China University of Science and Technology, School of Public Health, Tangshan, China
| | - Hongmei Zhang
- North China University of Science and Technology, School of Public Health, Tangshan, China
| | - Fengjun Wu
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Yating Chen
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Congcong Bai
- North China University of Science and Technology, College of Life Science, Tangshan, China
| | - Xuemei Zhang
- North China University of Science and Technology, College of Life Science, Tangshan, China
- North China University of Science and Technology, School of Public Health, Tangshan, China
| |
Collapse
|
6
|
Tian Z, Jiang S, Zhou J, Zhang W. Copper homeostasis and cuproptosis in mitochondria. Life Sci 2023; 334:122223. [PMID: 38084674 DOI: 10.1016/j.lfs.2023.122223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Mitochondria serve as sites for energy production and are essential for regulating various forms of cell death induced by metal metabolism, targeted anticancer drugs, radiotherapy and immunotherapy. Cuproptosis is an autonomous form of cell death that depends on copper (Cu) and mitochondrial metabolism. Although the recent discovery of cuproptosis highlights the significance of Cu and mitochondria, there is still a lack of biological evidence and experimental verification for the underlying mechanism. We provide an overview of how Cu and cuproptosis affect mitochondrial morphology and function. Through comparison with ferroptosis, similarities and differences in mitochondrial metabolism between cuproptosis and ferroptosis have been identified. These findings provide implications for further exploration of cuproptotic mechanisms. Furthermore, we explore the correlation between cuproptosis and immunotherapy or radiosensitivity. Ultimately, we emphasize the therapeutic potential of targeting cuproptosis as a novel approach for disease treatment.
Collapse
Affiliation(s)
- Ziying Tian
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Su Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Jieyu Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Wang H, Gong F, Kong W, Chen Y, Zhang J. Homologous recombination repair gene-based risk model predicts prognosis and immune microenvironment for primary lung cancer after previous malignancies. J Gene Med 2023; 25:e3533. [PMID: 37243581 DOI: 10.1002/jgm.3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Homologous recombination repair (HRR) plays an important role in cancer development, drug resistance, and immune escape, but the role of HRR genes in primary lung cancer (PLC) after previous malignancies is unclear. METHODS We used HRR-related score constrcted by HRR genes to classify patients into two groups and compared clinical progression, differential genes, and their functions between them. Then, we constructed a prognostic risk model based on HRR-related score and screened key differentially expressed genes. We evaluated the potential roles, mutational information, and immune correlations of key genes. Finally, we compared the long-term prognosis and immune correlations of different prognostic risk subgroups. RESULTS We found that HRR-related score was associated with T-stage, immunotherapy sensitivity, and prognosis of PLC after previous malignancies. Differential genes between HRR-related low-score and high-score groups are mainly involved in DNA replication and repair processes, such as the cell cycle. We identified three key genes, ABO, SERPINE2, and MYC, by machine learning, and MYC had the highest amplification mutation frequency. We verified that the key gene-based prognostic model can better assess the prognosis of patients. The risk score of the prognostic model was associated with immune microenvironment and efficacy of immunotherapy. CONCLUSIONS Overall, we identified three key genes ABO, SERPINE2, and MYC associated with HRR status in PLC after previous malignancies. The risk model based on key genes is associated with immune microenvironment and can well predict the prognosis for PLC after previous malignancies.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fangxiao Gong
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Weicheng Kong
- Department of Thoracic Surgery, Putuo District People's Hospital, Zhoushan, China
| | - Yanyan Chen
- Division of Pulmonary, SinoUnited Health, Shanghai, China
| | - Jie Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Ahmad Zawawi SS, Mohd Azram NAS, Sulong S, Zakaria AD, Lee YY, Che Jalil NA, Musa M. Identification of AOC3 and LRRC17 as Colonic Fibroblast Activation Markers and Their Potential Roles in Colorectal Cancer Progression. Asian Pac J Cancer Prev 2023; 24:3099-3107. [PMID: 37774061 PMCID: PMC10762737 DOI: 10.31557/apjcp.2023.24.9.3099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Accumulation of cancer-associated fibroblasts (CAFs) in the tumor stroma is linked to poor prognosis in colorectal cancer (CRC). CAF-cancer cell interplay, facilitated by secretomes including transforming growth factor-beta 1 (TGF-β1), supports fibroblast activation, drives colorectal carcinogenesis, and contributes to CRC aggressive phenotypes. Although widely used, traditional CAF biomarkers are found to have heterogeneous and non-specific expression. Amine oxidase copper containing 3 (AOC3) and leucine-rich repeat-containing 17 (LRRC17) have been reported to be emerging markers of myofibroblasts. AIM Our objective was to investigate the potential of AOC3 and LRRC17 as biomarkers for fibroblast activation thus predicting their roles in CRC progression. METHODS Immunofluorescence (IF) staining of AOC3 and LRRC17 was performed on myofibroblast line (CCD-112CoN), primary fibroblasts from colorectal tumor (CAFs), and adjacent normal tissue (normal fibroblasts-NFs). SW620 (epithelial CRC cell line) was used as a control. Conventional CAF biomarker (alpha-smooth muscle actin - α-SMA) was included in the IF analysis. Fluorescence intensity was compared between groups using ImageJ software. Proliferation and contractility of treated cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and collagen gel contraction assays, respectively. Fibroblast contraction under TGF-β1 treatment was compared to those treated with complete medium (addition of 10% serum) and serum free (SF) medium. RESULTS Positive AOC3, LRRC17, and α-SMA expression were observed in colonic fibroblasts, more prominent in CAFs, whereas negative staining was found in SW620. Significant downregulation of AOC3, and upregulations in LRRC17 and α-SMA expression was found in TGF-β1-treated fibroblasts compared to SF medium treatment (p-value<0.05). All fibroblasts exhibited higher proliferation in complete medium and under treatment with conditioned medium from SW620 than SF medium. Significant contraction of NFs was recorded in complete medium and TGF-β1 (p-value<0.01). CONCLUSION Our results demonstrate AOC3 and LRRC17 as the potential markers of CAF activation which promote CRC progression.
Collapse
Affiliation(s)
| | | | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia.
| | - Andee Dzulkarnaen Zakaria
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia.
| | - Yeong Yeh Lee
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia.
| | - Nur Asyilla Che Jalil
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia.
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia.
| |
Collapse
|
9
|
Kim EK, Koo JS. Expression of Amine Oxidase Proteins in Adrenal Cortical Neoplasm and Pheochromocytoma. Biomedicines 2023; 11:1896. [PMID: 37509535 PMCID: PMC10376964 DOI: 10.3390/biomedicines11071896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
We delved into the expression of amine oxidase family proteins and their potential significance in adrenal gland neoplasm. Tissue microarrays were prepared for 132 cases of adrenal cortical neoplasm (ACN) consisting of 115 cases of adrenal cortical adenoma (ACA), 17 cases of adrenal cortical carcinoma (ACC), and 163 cases of pheochromocytoma (PCC). Immunohistochemical stainings for MAOA, MAOB, LOX, and AOC3 were performed to evaluate the H-scores and compare them with clinicopathological parameters. The H-scores of MAOA (T; p = 0.005) and MAOB (T; p = 0.006) in tumor cells (T) were high in ACN, whereas LOX (T, S; p < 0.001) in tumor and stromal cells (S) and AOC3 (T; p < 0.001) were higher in PCC. In stromal cells, MAOA (S; p < 0.001) and AOC3 (S; p = 0.010) were more expressed in ACA than in ACC. MAOB (S) in PCC showed higher H-scores when the grading of adrenal pheochromocytoma and paraganglioma (GAPP) score was 3 or higher (p = 0.027). In the univariate analysis, low MAOA expression in stromal cells of ACN was associated with shorter overall survival (p = 0.008). In conclusion, monoamine oxidase proteins revealed differences in expression between ACN and PCC and also between benign and malignant cells.
Collapse
Affiliation(s)
- Eun Kyung Kim
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Jian D, Lianghao Z, Yunge G, Ligang C, Biliang C, Xiaohui L. A Prognostic Model Based on Metabolism-Related Genes for Patients with Ovarian Cancer. DOKL BIOCHEM BIOPHYS 2023; 510:110-122. [PMID: 37582873 DOI: 10.1134/s1607672923600082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 08/17/2023]
Abstract
Metabolism-associated genes (MAGs) are important regulators of tumor progression and can affect a variety of physiological processes. In this study, we focused on the relationship between MAGs and Ovarian cancer (OC) prognosis. METHOD Metabolism-related genes were extracted from the Cancer Genome Atlas (TCGA) database. Through univariate COX and lasso regression models, a dynamic risk model based on MAGs was established. Compared with other clinical factors, demonstrated the ability of the model to predict the prognosis of patients with OC. The clinical samples were used to verify the expression of these MAGs. RESULTS A metabolism-associated gene signature was constructed by LASSO Cox regression analysis in OC, which was composed of 3-MAGs (PTGIS, AOC3, and IDO1). The signature was used to classify the OC patients into high-risk and low-risk groups. The overall survival of the low-risk group was significantly better than that of the high-risk group. The analysis of the therapeutic effect of bevacizumab showed that bevacizumab was not conducive to improving the prognosis of the low-risk group. CONCLUSIONS We constructed a prognostic model of MAGs in OC, which can be used to predict the prognosis of OC patients and may have a good guiding significance in the individualized treatment of patients.
Collapse
Affiliation(s)
- Dong Jian
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Zhai Lianghao
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Gao Yunge
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Chen Ligang
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Chen Biliang
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China
| | - Lv Xiaohui
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 710032, Shaanxi Xi'an, China.
| |
Collapse
|
11
|
Zhu H, Lin Q, Gao X, Huang X. Identification of the hub genes associated with prostate cancer tumorigenesis. Front Oncol 2023; 13:1168772. [PMID: 37251946 PMCID: PMC10213256 DOI: 10.3389/fonc.2023.1168772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Prostate cancer (PCa) is one of the most common malignant tumors of the male urogenital system; however, the underlying mechanisms remain largely unclear. This study integrated two cohort profile datasets to elucidate the potential hub genes and mechanisms in PCa. Methods and Results Gene expression profiles GSE55945 and GSE6919 were filtered from the Gene Expression Omnibus (GEO) database to obtain 134 differentially expressed genes (DEGs) (14 upregulated and 120 downregulated) in PCa. Gene Ontology and pathway enrichment were performed using the Database for Annotation, Visualization, and Integrated Discovery, showing that these DEGs were mainly involved in biological functions such as cell adhesion, extracellular matrix, migration, focal adhesion, and vascular smooth muscle contraction. The STRING database and Cytoscape tools were used to analyze protein-protein interactions and identify 15 hub candidate genes. Violin plot, boxplot, and prognostic curve analyses were performed using Gene Expression Profiling Interactive Analysis, which identified seven hub genes, including upregulated expressed SPP1 and downregulated expressed MYLK, MYL9, MYH11, CALD1, ACTA2, and CNN1 in PCa compared with normal tissue. Correlation analysis was performed using the OmicStudio tools, which showed that these hub genes were moderately to strongly correlated with each other. Finally, quantitative reverse transcription PCR and western blotting were performed to validate the hub genes, showing that the abnormal expression of the seven hub genes in PCa was consistent with the analysis results of the GEO database. Discussion Taken together, MYLK, MYL9, MYH11, CALD1, ACTA2, SPP1, and CNN1 are hub genes significantly associated with PCa occurrence. These genes are abnormally expressed, leading to the formation, proliferation, invasion, and migration of PCa cells and promoting tumor neovascularization. These genes may serve as potential biomarkers and therapeutic targets in patients with PCa.
Collapse
|
12
|
Cheng F, Peng G, Lu Y, Wang K, Ju Q, Ju Y, Ouyang M. Relationship between copper and immunity: The potential role of copper in tumor immunity. Front Oncol 2022; 12:1019153. [PMID: 36419894 PMCID: PMC9676660 DOI: 10.3389/fonc.2022.1019153] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Copper is an essential trace element in an organism, and changes in copper levels in vivo often indicate a diseased state. Copper and immunity have been discussed since the last century, with copper deficiency significantly affecting the development and function of the immune system, such as increased host susceptibility to various pathogens, decreased number and impaired function of neutrophils, reduced antibacterial activity of macrophages, decreased proliferation of splenocytes, impaired B cell ability to produce antibodies and impaired function of cytotoxic T lymphocyte and helper T cells. In the past 20 years, some studies have shown that copper ions are related to the development of many tumors, including lung cancer, acute lymphoid leukaemia, multiple myeloma and other tumors, wherein copper ion levels were significantly elevated, and current studies reveal that copper ions are involved in the development, growth and metastasis of tumors through various pathways. Moreover, recent studies have shown that copper ions can regulate the expression of PD-L1, thus, attention should be paid to the important role of copper in tumor immunity. By exploring and studying copper ions and tumor immunity, new insights into tumor immunity could be generated and novel therapeutic approaches to improve the clinical prognosis of patients can be provided.
Collapse
Affiliation(s)
- Fu Cheng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Geng Peng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinuo Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- Guangdong Country Garden School, Shunde, Foshan, Guangdong, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Li H, Zu X, Hu J, Xiao Z, Cai Z, Gao N, Chen J. Cuproptosis depicts tumor microenvironment phenotypes and predicts precision immunotherapy and prognosis in bladder carcinoma. Front Immunol 2022; 13:964393. [PMID: 36211344 PMCID: PMC9540537 DOI: 10.3389/fimmu.2022.964393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Though immune checkpoint inhibitors (ICIs) exhibit durable efficacy in bladder carcinomas (BLCAs), there are still a large portion of patients insensitive to ICIs treatment. METHODS We systematically evaluated the cuproptosis patterns in BLCA patients based on 46 cuproptosis related genes and correlated these cuproptosis patterns with tumor microenvironment (TME) phenotypes and immunotherapy efficacies. Then, for individual patient's evaluation, we constructed a cuproptosis risk score (CRS) for prognosis and a cuproptosis signature for precise TME phenotypes and immunotherapy efficacies predicting. RESULTS Two distinct cuproptosis patterns were generated. These two patterns were consistent with inflamed and noninflamed TME phenotypes and had potential role for predicting immunotherapy efficacies. We constructed a CRS for predicting individual patient's prognosis with high accuracy in TCGA-BLCA. Importantly, this CRS could be well validated in external cohorts including GSE32894 and GSE13507. Then, we developed a cuproptosis signature and found it was significantly negative correlated with tumor-infiltrating lymphocytes (TILs) both in TCGA-BLCA and Xiangya cohorts. Moreover, we revealed that patients in the high cuproptosis signature group represented a noninflamed TME phenotype on the single cell level. As expected, patients in the high cuproptosis signature group showed less sensitive to immunotherapy. Finally, we found that the high and low cuproptosis signature groups were consistent with luminal and basal subtypes of BLCA respectively, which validated the role of signature in TME in terms of molecular subtypes. CONCLUSIONS Cuproptosis patterns depict different TME phenotypes in BLCA. Our CRS and cuproptosis signature have potential role for predicting prognosis and immunotherapy efficacy, which might guide precise medicine.
Collapse
Affiliation(s)
- Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, Xiangya Boai Hospital, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|