1
|
Xu B, Kong L, Sun J, Zhang J, Zhang Y, Song H, Li Q, Uribe JE, Halanych KM, Cai C, Dong YW, Wang S, Li Y. Molluscan systematics: historical perspectives and the way ahead. Biol Rev Camb Philos Soc 2025; 100:672-697. [PMID: 39505387 DOI: 10.1111/brv.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Mollusca, the second-most diverse animal phylum, is estimated to have over 100,000 living species with great genetic and phenotypic diversity, a rich fossil record, and a considerable evolutionary significance. Early work on molluscan systematics was grounded in morphological and anatomical studies. With the transition from oligo gene Sanger sequencing to cutting-edge genomic sequencing technologies, molecular data has been increasingly utilised, providing abundant information for reconstructing the molluscan phylogenetic tree. However, relationships among and within most major lineages of Mollusca have long been contentious, often due to limited genetic markers, insufficient taxon sampling and phylogenetic conflict. Fortunately, remarkable progress in molluscan systematics has been made in recent years, which has shed light on how major molluscan groups have evolved. In this review of molluscan systematics, we first synthesise the current understanding of the molluscan Tree of Life at higher taxonomic levels. We then discuss how micromolluscs, which have adult individuals with a body size smaller than 5 mm, offer unique insights into Mollusca's vast diversity and deep phylogeny. Despite recent advancements, our knowledge of molluscan systematics and phylogeny still needs refinement. Further advancements in molluscan systematics will arise from integrating comprehensive data sets, including genome-scale data, exceptional fossils, and digital morphological data (including internal structures). Enhanced access to these data sets, combined with increased collaboration among morphologists, palaeontologists, evolutionary developmental biologists, and molecular phylogeneticists, will significantly advance this field.
Collapse
Affiliation(s)
- Biyang Xu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institude of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junlong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laoshan Laboratory, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Marine Biological Museum, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 1111 Haibin Road, Guangzhou, 510301, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2 C. de José Gutiérrez Abascal, Madrid, 28006, Spain
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, 1000 Madison Drive NW, Washington, 20013-7012, DC, USA
| | - Kenneth M Halanych
- Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, 28409, NC, USA
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shi Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Guangzhou, 511458, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| |
Collapse
|
2
|
Albano PG, Hong Y, Steger J, Yasuhara M, Bartolini S, Bogi C, Bošnjak M, Chiappi M, Fossati V, Huseyinoglu MF, Jiménez C, Lubinevsky H, Morov AR, Noè S, Papatheodoulou M, Resaikos V, Zuschin M, Guy-Haim T. New records of non-indigenous species from the eastern Mediterranean Sea (Crustacea, Mollusca), with a revision of genus Isognomon (Mollusca: Bivalvia). PeerJ 2024; 12:e17425. [PMID: 38832036 PMCID: PMC11146324 DOI: 10.7717/peerj.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
We report new data on non-indigenous invertebrates from the Mediterranean Sea (four ostracods and 20 molluscs), including five new records for the basin: the ostracods Neomonoceratina iniqua, Neomonoceratina aff. mediterranea, Neomonoceratina cf. entomon, Loxoconcha cf. gisellae (Arthropoda: Crustacea)-the first records of non-indigenous ostracods in the Mediterranean-and the bivalve Striarca aff. symmetrica (Mollusca). Additionally, we report for the first time Electroma vexillum from Israel, and Euthymella colzumensis, Joculator problematicus, Hemiliostraca clandestina, Pyrgulina nana, Pyrgulina microtuber, Turbonilla cangeyrani, Musculus aff. viridulus and Isognomon bicolor from Cyprus. We also report the second record of Fossarus sp. and of Cerithiopsis sp. cf. pulvis in the Mediterranean Sea, the first live collected specimens of Oscilla galilae from Cyprus and the northernmost record of Gari pallida in Israel (and the Mediterranean). Moreover, we report the earliest records of Rugalucina angela, Ervilia scaliola and Alveinus miliaceus in the Mediterranean Sea, backdating their first occurrence in the basin by 3, 5 and 7 years, respectively. We provide new data on the presence of Spondylus nicobaricus and Nudiscintilla aff. glabra in Israel. Finally, yet importantly, we use both morphological and molecular approaches to revise the systematics of the non-indigenous genus Isognomon in the Mediterranean Sea, showing that two species currently co-occur in the basin: the Caribbean I. bicolor, distributed in the central and eastern Mediterranean, and the Indo-Pacific I. aff. legumen, at present reported only from the eastern Mediterranean and whose identity requires a more in-depth taxonomic study. Our work shows the need of taxonomic expertise and investigation, the necessity to avoid the unfounded sense of confidence given by names in closed nomenclature when the NIS belong to taxa that have not enjoyed ample taxonomic work, and the necessity to continue collecting samples-rather than relying on visual censuses and bio-blitzes-to enable accurate detection of non-indigenous species.
Collapse
Affiliation(s)
- Paolo G. Albano
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Yuanyuan Hong
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality, and Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong SAR, China
| | - Jan Steger
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Moriaki Yasuhara
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality, and Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | | | - Cesare Bogi
- Gruppo Malacologico Livornese, Livorno, Italy
| | | | - Marina Chiappi
- Enalia Physis Environmental Research Centre, Nicosia, Cyprus
| | | | | | - Carlos Jiménez
- Enalia Physis Environmental Research Centre, Nicosia, Cyprus
| | | | | | - Simona Noè
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Biodiversity Future Center, Palermo, Italy
| | | | | | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, Haifa, Israel
| |
Collapse
|
3
|
Jirapatrasilp P, Cuny G, Kocsis L, Sutcharit C, Ngamnisai N, Charoentitirat T, Kumpitak S, Suraprasit K. Mid-Holocene marine faunas from the Bangkok Clay deposits in Nakhon Nayok, the Central Plain of Thailand. Zookeys 2024; 1202:1-110. [PMID: 38800563 PMCID: PMC11112167 DOI: 10.3897/zookeys.1202.119389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 05/29/2024] Open
Abstract
Based on several field investigations, many molluscan shells and chondrichthyan teeth, together with other invertebrate and actinopterygian remains were found from the marine Bangkok Clay deposits in Ongkharak, Nakhon Nayok, at a depth of ~ 5-7 m below the topsoil surface. Animal macrofossils recovered from these Holocene marine deposits were identified and their chronological context was investigated in order to reconstruct the paleoenvironments of the area at that time. The majority of marine fossils recovered from the site consist of molluscs, with a total of 63 species identified. Other invertebrate species include a stony coral, a mud lobster, barnacles, and a sea urchin. The vertebrates are represented by fish remains, including carcharhinid shark teeth from at least nine species, stingray and trichiurid teeth, and one sciaenid otolith. The molluscan fauna indicates that the paleoenvironments of the area corresponded to intertidal to sublittoral zones, where some areas were mangrove forests and intertidal mudflats. The fish fauna is dominated by the river shark Glyphis, indicating freshwater influences and possibly occasional brackish conditions. The carbon-14 analysis of mollusc and charcoal remains shows that deposition of the marine sediment sequence began during the mid-Holocene, spanning approximately from 8,800 to 5,300 cal yr BP. This study provides in-depth insights into the diversity of fishes, marine molluscs, and other invertebrates from the Bangkok Clay deposits, supporting the existence of a marine transgression onto the Lower Central Plain of Thailand during the mid-Holocene.
Collapse
Affiliation(s)
- Parin Jirapatrasilp
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Leibniz-Institut zur Analyse des Biodiversitätswandels - Standort Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| | - Gilles Cuny
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - László Kocsis
- Institute of Earth Surface Dynamics, University of Lausanne, Rue de la Mouline, 1015 Lausanne, Switzerland
| | - Chirasak Sutcharit
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nom Ngamnisai
- Department of Geography, Faculty of Social Sciences, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Thasinee Charoentitirat
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Satapat Kumpitak
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kantapon Suraprasit
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Steger J, Bogi C, Lubinevsky H, Galil BS, Zuschin M, Albano PG. Ecological baselines in the Eastern Mediterranean Sea shifted long before the availability of observational time series. GLOBAL CHANGE BIOLOGY 2024; 30:e17272. [PMID: 38623753 DOI: 10.1111/gcb.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Native biodiversity loss and invasions by nonindigenous species (NIS) have massively altered ecosystems worldwide, but trajectories of taxonomic and functional reorganization remain poorly understood due to the scarcity of long-term data. Where ecological time series are available, their temporal coverage is often shorter than the history of anthropogenic changes, posing the risk of drawing misleading conclusions on systems' current states and future development. Focusing on the Eastern Mediterranean Sea, a region affected by massive biological invasions and the largest climate change-driven collapse of native marine biodiversity ever documented, we followed the taxonomic and functional evolution of an emerging "novel ecosystem", using a unique dataset on shelled mollusks sampled in 2005-2022 on the Israeli shelf. To quantify the alteration of observed assemblages relative to historical times, we also analyzed decades- to centuries-old ecological baselines reconstructed from radiometrically dated death assemblages, time-averaged accumulations of shells on the seafloor that constitute natural archives of past community states. Against expectations, we found no major loss of native biodiversity in the past two decades, suggesting that its collapse had occurred even earlier than 2005. Instead, assemblage taxonomic and functional richness increased, reflecting the diversification of NIS whose trait structure was, and has remained, different from the native one. The comparison with the death assemblage, however, revealed that modern assemblages are taxonomically and functionally much impoverished compared to historical communities. This implies that NIS did not compensate for the functional loss of native taxa, and that even the most complete observational dataset available for the region represents a shifted baseline that does not reflect the actual magnitude of anthropogenic changes. While highlighting the great value of observational time series, our results call for the integration of multiple information sources on past ecosystem states to better understand patterns of biodiversity loss in the Anthropocene.
Collapse
Affiliation(s)
- Jan Steger
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Cesare Bogi
- Gruppo Malacologico Livornese, c/o Museo di Storia Naturale del Mediterraneo, Livorno, Italy
| | - Hadas Lubinevsky
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Bella S Galil
- The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, Israel
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Paolo G Albano
- Department of Palaeontology, University of Vienna, Vienna, Austria
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
5
|
Holzknecht M, Albano PG. The molluscan assemblage of a pristine Posidonia oceanica meadow in the eastern Mediterranean. MARINE BIODIVERSITY : A JOURNAL OF THE SENCKENBERG RESEARCH INSTITUTE 2022; 52:59. [PMID: 36254156 PMCID: PMC9560936 DOI: 10.1007/s12526-022-01292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
The seagrass Posidonia oceanica forms extensive meadows in the Mediterranean Sea. Studies on their associated highly diverse invertebrate assemblages are limited to the western Mediterranean. The eastern Mediterranean, however, is a basin undergoing rapid change due to the synergistic effects of climate warming, biological invasions and other human stressors that are driving native biodiversity to regional-scale collapses. We here surveyed the shelled molluscan assemblage of a Posidonia oceanica meadow in Plakias, south-western Crete, the first such study in the eastern Mediterranean Sea. This area has increased its yearly mean temperature by 1 °C in the last 20 years and is under heavy pressure by Lessepsian species. We sampled across a 5- to 20-m depth gradient, in two seasons to capture intra-annual variation and the leaf and rhizome strata separately. Against our expectations, the molluscan assemblage proved to be highly diverse, with species richness, dominant species and trophic guilds comparable to healthy western Mediterranean ones, and with a negligible non-indigenous component. The diversity of the native community (following the biotic resistance hypothesis) and oxygen supersaturation in the meadow may cause greater resistance to biological invasions and warming, respectively, suggesting that Posidonia oceanica meadows may act as a precious refugium for native biodiversity in the fast changing eastern Mediterranean Sea. Supplementary Information The online version contains supplementary material available at 10.1007/s12526-022-01292-2.
Collapse
Affiliation(s)
- Martina Holzknecht
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Paolo G. Albano
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Department of Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
6
|
Data-Driven Recommendations for Establishing Threshold Values for the NIS Trend Indicator in the Mediterranean Sea. DIVERSITY 2022. [DOI: 10.3390/d14010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present work, we analysed time series data on the introduction of new non-indigenous species (NIS) in the Mediterranean between 1970 and 2017, aiming to arrive at recommendations concerning the reference period and provisional threshold values for the NIS trend indicator. We employed regression analysis and breakpoint structural analysis. Our results confirm earlier findings that the reference conditions differ for the four Mediterranean subregions, and support a shortening of the reporting cycle from six to three years, with a two-year time lag for the ensuing assessment. Excluding Lessepsian fishes and parasites, the reference period, defined as the most recent time segment with stable mean new NIS values, was estimated as 1997–2017 for the eastern Mediterranean, 2012–2017 for the central Mediterranean, 2000–2017 for the Adriatic and 1970–2017 for the western Mediterranean. These findings are interpreted primarily on the basis of a basin scale temperature regime shift in the late 1990s, shifts in driving forces such as shellfish culture, and as a result of intensified research efforts and citizen scientist initiatives targeting NIS in the last decade. The threshold values, i.e., the three-year average new NIS values during the reference period, are indicative and will ultimately depend on the choice of species and pathways to be used in the calculations. This is discussed through the prism of target setting in alignment with specific management objectives.
Collapse
|
7
|
Bakker PAJ, Albano PG. Nomenclator, geographic and stratigraphic distribution of the family Triphoridae (Mollusca: Gastropoda). Zootaxa 2022; 5088:1-216. [PMID: 35391264 DOI: 10.11646/zootaxa.5088.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/04/2022]
Abstract
The microgastropod family Triphoridae is one of the five most diverse marine molluscan families. It likely hosts a few thousand species worldwide, but its taxonomy has long been considered challenging due to the high diversity and subtle morphological characters needed for species delimitation. Consequently, only a small portion of the species appears to be formally described to date. However, further taxonomic work should be based on robust knowledge on the numerous names introduced so far. In this perspective, we have here compiled a list of all published names that can be attributed to the fossil and extant Triphoridae. We list 958 species and 75 genus names, of which 771 are known as extant species and 146 as fossil species, 41 are known from both fossil and extant records. We provide information on type locality and horizon, type material, synonymy and homonymy. Importantly, based on the review of hundreds of publications, we provide a preliminary overview of the geographic and stratigraphic distribution.
Collapse
Affiliation(s)
- Piet A J Bakker
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands. .
| | - Paolo G Albano
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy. .
| |
Collapse
|