1
|
Kumar T, Wang JG, Xu CH, Lu X, Mao J, Lin XQ, Kong CY, Li CJ, Li XJ, Tian CY, Ebid MHM, Liu XL, Liu HB. Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1739. [PMID: 38999579 PMCID: PMC11244436 DOI: 10.3390/plants13131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Sugarcane, a vital cash crop, contributes significantly to the world's sugar supply and raw materials for biofuel production, playing a significant role in the global sugar industry. However, sustainable productivity is severely hampered by biotic and abiotic stressors. Genetic engineering has been used to transfer useful genes into sugarcane plants to improve desirable traits and has emerged as a basic and applied research method to maintain growth and productivity under different adverse environmental conditions. However, the use of transgenic approaches remains contentious and requires rigorous experimental methods to address biosafety challenges. Clustered regularly interspaced short palindromic repeat (CRISPR) mediated genome editing technology is growing rapidly and may revolutionize sugarcane production. This review aims to explore innovative genetic engineering techniques and their successful application in developing sugarcane cultivars with enhanced resistance to biotic and abiotic stresses to produce superior sugarcane cultivars.
Collapse
Affiliation(s)
- Tanweer Kumar
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agriculture, Fisheries and Co-Operative Department, Charsadda Road, Mardan 23210, Khyber Pakhtunkhwa, Pakistan
| | - Jun-Gang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Chao-Hua Xu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xin Lu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Jun Mao
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xiu-Qin Lin
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Kong
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Jia Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xu-Juan Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Tian
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Mahmoud H. M. Ebid
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Xin-Long Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Hong-Bo Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| |
Collapse
|
2
|
Mehdi F, Cao Z, Zhang S, Gan Y, Cai W, Peng L, Wu Y, Wang W, Yang B. Factors affecting the production of sugarcane yield and sucrose accumulation: suggested potential biological solutions. FRONTIERS IN PLANT SCIENCE 2024; 15:1374228. [PMID: 38803599 PMCID: PMC11128568 DOI: 10.3389/fpls.2024.1374228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.
Collapse
Affiliation(s)
- Faisal Mehdi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Zhengying Cao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yimei Gan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenwei Cai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Lishun Peng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yuanli Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| |
Collapse
|
3
|
Laksana C, Sophiphun O, Chanprame S. Lignin reduction in sugarcane by performing CRISPR/Cas9 site-direct mutation of SoLIM transcription factor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111987. [PMID: 38220093 DOI: 10.1016/j.plantsci.2024.111987] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Genetic engineering of plant cell walls is limited for reducing lignocellulose recalcitrance, so mild and/or green-like pretreatment is still required for sequential enzymatic saccharification. Here, we report a method to reduce lignin content in sugarcane stalks using the CRISPR/Cas 9 technique. Three target sequences of SoLIM were designed and fused to pRGEB32. The cassette constructs were introduced into sugarcane calli cv. KK3 through Agrobacterium-mediated transformation. We produced one base substitution and one insertion line for the 1st target site; two insertions, one deletion, and one base substitution for the 2nd target site; and one base substitution and insertion for the 3rd target site. qRT-PCR analysis of SoLIM, SoPAL, SoC4H, and SoCAD showeded that downregulation of SoLIM by single nucleotide insertions or deletions reduced the expression of SoPAL, SoC4H, and SoCAD. Consequently, the edited lines contained 9.74 to 51.46% less lignin content compared to that in the wild-type plants. The syringyl/guaiacyl (S/G) ratio of the edited lines ranged between 0.23 and 0.49, while the wild-type was 0.22. The histochemical evaluation and scanning electron microscopy of the cell walls supported this observation. A low lignin content sugarcane will provide a better feedstock for second-generation bioethanol production.
Collapse
Affiliation(s)
- Chanakan Laksana
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Onsulang Sophiphun
- Faculty of Agricultural Technology, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand
| | - Sontichai Chanprame
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
4
|
Chen JY, Sang H, Chilvers MI, Wu CH, Chang HX. Characterization of soybean chitinase genes induced by rhizobacteria involved in the defense against Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2024; 15:1341181. [PMID: 38405589 PMCID: PMC10884886 DOI: 10.3389/fpls.2024.1341181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Rhizobacteria are capable of inducing defense responses via the expression of pathogenesis-related proteins (PR-proteins) such as chitinases, and many studies have validated the functions of plant chitinases in defense responses. Soybean (Glycine max) is an economically important crop worldwide, but the functional validation of soybean chitinase in defense responses remains limited. In this study, genome-wide characterization of soybean chitinases was conducted, and the defense contribution of three chitinases (GmChi01, GmChi02, or GmChi16) was validated in Arabidopsis transgenic lines against the soil-borne pathogen Fusarium oxysporum. Compared to the Arabidopsis Col-0 and empty vector controls, the transgenic lines with GmChi02 or GmChi16 exhibited fewer chlorosis symptoms and wilting. While GmChi02 and GmChi16 enhanced defense to F. oxysporum, GmChi02 was the only one significantly induced by Burkholderia ambifaria. The observation indicated that plant chitinases may be induced by different rhizobacteria for defense responses. The survey of 37 soybean chitinase gene expressions in response to six rhizobacteria observed diverse inducibility, where only 10 genes were significantly upregulated by at least one rhizobacterium and 9 genes did not respond to any of the rhizobacteria. Motif analysis on soybean promoters further identified not only consensus but also rhizobacterium-specific transcription factor-binding sites for the inducible chitinase genes. Collectively, these results confirmed the involvement of GmChi02 and GmChi16 in defense enhancement and highlighted the diverse inducibility of 37 soybean chitinases encountering F. oxysporum and six rhizobacteria.
Collapse
Affiliation(s)
- Jheng-Yan Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Martin I. Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hao-Xun Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Master Program of Plant Medicine, National Taiwan University, Taipei, Taiwan
- Center of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Shekhar S, Panwar R, Prasad SC, Kumar D, Rustagi A. Overexpression of flowering locus D (FLD) in Indian mustard (Brassica juncea) enhances tolerance to Alternaria brassicae and Sclerotinia sclerotiorum. PLANT CELL REPORTS 2023; 42:1233-1250. [PMID: 37119284 DOI: 10.1007/s00299-023-03021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE Overexpression of BjFLD in Brassica juncea imparts resistance against fungal pathogens and increases the yield. These transgenics could lower the use of fungicides, which have detrimental effects on the environment. Productivity of Indian mustard (Brassica juncea) is adversely affected by fungal phytopathogens, Alternaria brassicae and Sclerotinia sclerotiorum. Arabidopsis flowering locus D (FLD) positively regulates jasmonic acid signaling and defense against necrotrophic pathogens. In this study, the endogenous FLD (B. juncea FLD; BjFLD) in Indian mustard was overexpressed in B. juncea to determine its role in biotic stress tolerance. We report the isolation, characterization, and functional validation of BjFLD. The transgene expression was confirmed by qRT-PCR. The constitutive overexpression of BjFLD enhanced the tolerance of B. juncea to A. brassicae and S. sclerotiorum, which was manifested as delayed appearance of symptom, impeded disease progression, and enhanced percentage of disease protection. The transgenic lines maintained a higher photosynthetic capacity and redox potential under biotic stress and could detoxify reactive oxygen species (ROS) by modulating the antioxidant machinery and physiochemical attributes. The BjFLD-overexpressing lines showed enhanced SA level as well higher NPR1 expression. The overexpression of BjFLD induced early flowering and higher seed yield in the transgenic lines. These findings indicate that overexpression of BjFLD enhances the tolerance of B. juncea to A. brassicae and S. sclerotiorum by induction of systemic acquired resistance and mitigating the damage caused by stress-induced ROS.
Collapse
Affiliation(s)
- Shashi Shekhar
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India
| | - Ruby Panwar
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India
| | | | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India.
| |
Collapse
|
6
|
Parveen S, Khan A, Jahan N, Aaliya K, Muzaffar A, Tabassum B, Inayatullah S, Moeezullah S, Tariq M, Rehmat Z, Ali N, Hussain A. Expression of Chitinase and shRNA Gene Exhibits Resistance to Fungi and Virus. Genes (Basel) 2023; 14:genes14051090. [PMID: 37239450 DOI: 10.3390/genes14051090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/23/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
With the increasing global population, saving crops from diseases caused by different kinds of bacteria, fungi, viruses, and nematodes is essential. Potato is affected by various diseases, destroying many crops in the field and storage. In this study, we developed potato lines resistant to fungi and viruses, Potato Virus X (PVX) and Potato Virus Y (PVY), by inoculating chitinase for fungi and shRNA designed against the mRNA of the coat protein of PVX and PVY, respectively. The construct was developed using the pCAMBIA2301 vector and transformed into AGB-R (red skin) potato cultivar using Agrobacterium tumefaciens. The crude protein extract of the transgenic potato plant inhibited the growth of Fusarium oxysporum from ~13 to 63%. The detached leaf assay of the transgenic line (SP-21) showed decreased necrotic spots compared to the non-transgenic control when challenged with Fusarium oxysporum. The transgenic line, SP-21, showed maximum knockdown when challenged with PVX and PVY, i.e., 89 and 86%, while transgenic line SP-148 showed 68 and 70% knockdown in the PVX- and PVY-challenged conditions, respectively. It is concluded from this study that the developed transgenic potato cultivar AGB-R showed resistance against fungi and viruses (PVX and PVY).
Collapse
Affiliation(s)
- Samia Parveen
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Anwar Khan
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Nusrat Jahan
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Khadija Aaliya
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
| | - Adnan Muzaffar
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Syed Inayatullah
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Syed Moeezullah
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Muhammad Tariq
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan
| | - Zainia Rehmat
- Department of Biotechnology, Sardar Bahadur Khan Women's University Balochistan, Quetta 87300, Pakistan
| | - Niaz Ali
- Department of Botany, Hazara University, Mansehra 21300, Pakistan
| | - Abrar Hussain
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| |
Collapse
|
7
|
He T, Fan J, Jiao G, Liu Y, Zhang Q, Luo N, Ahmad B, Chen Q, Wen Z. Bioinformatics and Expression Analysis of the Chitinase Genes in Strawberry ( Fragaria vesca) and Functional Study of FvChi-14. PLANTS (BASEL, SWITZERLAND) 2023; 12:1543. [PMID: 37050169 PMCID: PMC10097121 DOI: 10.3390/plants12071543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Plant chitinases (EC 3.2.1.14) are pathogenesis-related (PR) proteins and are well studied in many plant species. However, little is known about the genomic organization and expression of chitinase genes in strawberries (Fragaria vesca). Here, 23 FvChi genes were identified in the genome of strawberry (F. vesca) and divided into GH18 and GH19 subfamilies based on phylogenetic relationships. A detailed bioinformatics analysis of the FvChi genes was performed, including gene physicochemical properties, chromosomal location, exon-intron distribution, domain arrangement, and subcellular localization. Twenty-two FvChi genes showed upregulation after Colletotrichum gloeosporioides infection. Following the exogenous application of SA, FvChi-3, 4, and 5 showed significant changes in expression. The ectopic expression of FvChi-14 in Arabidopsis thaliana increased resistance to C. higginsianum via controlling the SA and JA signaling pathway genes (AtPR1, AtICS1, AtPDF1.2, and AtLOX3). The FvChi-14 protein location was predicted in the cell wall or extracellular matrix. We speculate that FvChi-14 is involved in disease resistance by regulating the SA and JA signaling pathways. The findings of this study provide a theoretical reference for the functional studies of FvChi genes and new candidates for strawberry stress resistance breeding programs.
Collapse
Affiliation(s)
- Tiannan He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianshuai Fan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaozhen Jiao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qimeng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Luo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bilal Ahmad
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhifeng Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Verma KK, Song XP, Budeguer F, Nikpay A, Enrique R, Singh M, Zhang BQ, Wu JM, Li YR. Genetic engineering: an efficient approach to mitigating biotic and abiotic stresses in sugarcane cultivation. PLANT SIGNALING & BEHAVIOR 2022; 17:2108253. [PMID: 35959678 PMCID: PMC9377231 DOI: 10.1080/15592324.2022.2108253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses are the foremost limiting factors for crop productivity. Crop plants need to cope with adverse external pressure caused by various environmental conditions with their intrinsic biological mechanisms to keep their growth, development, and productivity. Climate-resilient, high-yielding crops need to be developed to maintain sustainable food supply. Over the last decade, understanding of the genetic complexity of agronomic traits in sugarcane has prompted the integrated application of genetic engineering to address specific biological questions. Genes for adaptation to environmental stress and yield enhancement traits are being determined and introgressed to develop elite sugarcane cultivars with improved characteristics through genetic engineering approaches. Here, we discuss the advancement to provide a reference for future sugarcane (Saccharum spp.) genetic engineering.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Florencia Budeguer
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estacion Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Amin Nikpay
- Department of Plant Protection, Sugarcane and By-Products Development Company, Salman Farsi Agroindustry, AhwazIran
| | - Ramon Enrique
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estacion Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow–India
| | - Bao-Qing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jian-Ming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences/ Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/ Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
9
|
O’Connell A, Deo J, Deomano E, Wei X, Jackson P, Aitken KS, Manimekalai R, Mohanraj K, Hemaprabha G, Ram B, Viswanathan R, Lakshmanan P. Combining genomic selection with genome-wide association analysis identified a large-effect QTL and improved selection for red rot resistance in sugarcane. FRONTIERS IN PLANT SCIENCE 2022; 13:1021182. [PMID: 36388469 PMCID: PMC9660812 DOI: 10.3389/fpls.2022.1021182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
Red rot caused by the fungus Colletotrichum falcatum is the main disease limiting sugarcane productivity in several countries including the major producer India. The genetic basis for red rot resistance is unclear. We studied a panel of 305 sugarcane clones from the Australian breeding program for disease response phenotype and genotype using an Affymetrix® Axiom® array, to better understand the genetic basis of red rot resistance. SNP markers highly significantly associated with red rot response (≤ 10-8) were identified. Markers with largest effect were located in a single 14.6 Mb genomic region of sorghum (the closest diploid relative of sugarcane with a sequenced genome) suggesting the presence of a major-effect QTL. By genomic selection, the estimated selection accuracy was ~0.42 for red rot resistance. This was increased to ~0.5 with the addition of 29 highly significant SNPs as fixed effects. Analysis of genes nearby the markers linked to the QTL revealed many biotic stress responsive genes within this QTL, with the most significant SNP co-locating with a cluster of four chitinase A genes. The SNP markers identified here could be used to predict red rot resistance with high accuracy at any stage in the sugarcane breeding program.
Collapse
Affiliation(s)
| | - Jasmin Deo
- Sugar Research Australia Limited, Brisbane, QLD, Australia
| | - Emily Deomano
- Sugar Research Australia Limited, Brisbane, QLD, Australia
| | - Xianming Wei
- Sugar Research Australia Limited, Brisbane, QLD, Australia
| | - Phillip Jackson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Karen S. Aitken
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | | | | | | | - Bakshi Ram
- Sugarcane Breeding Institute, Coimbatore, India
| | | | - Prakash Lakshmanan
- Sugar Research Australia Limited, Brisbane, QLD, Australia
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin (CAGD), College of Resources and Environment, Southwest University, Chongqing, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Tariq M, Tabassum B, Bakhsh A, Farooq AM, Qamar Z, Akram F, Naz F, Rao AQ, Malik K, Nasir IA. Heterologous expression of cry1Ia12 insecticidal gene in cotton encodes resistance against pink bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae); an alternate insecticidal gene for insect pest management. Mol Biol Rep 2022; 49:10557-10564. [PMID: 36169899 DOI: 10.1007/s11033-022-07824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/26/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Cotton is continuously exposed to sucking and chewing insect pest pressure since emergence to harvesting. Pink bollworm (Pectinophora gossypiella) has become major chewing insect pest to reduce the cotton yield and results in bad lint quality even in transgenic crops. The efficiency of insecticidal genes has been compromised due to extensive utilization of transgenic crops. METHODS AND RESULTS The present study was conducted to evaluate the efficacy of an alternate cry1Ia12 insecticidal gene against pink bollworm (PBW) in cotton. Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA2300 expression vector containing cry1Ia12 gene under the control of 35S CaMV was used to transform a local cotton cultivar GS-01. The various molecular analyses revealed the transgene integration and expression in primary transformants. Among five selected transgenic plants, tcL-08 showed maximum (16.06-fold) mRNA expression of cry1Ia12 gene whereas tcL-03 showed minimum (2.33-fold) expression. Feeding bioassays of 2nd and 3rd instar pink bollworm (PBW) larvae on immature cotton bolls, flowers and cotton squares revealed up to 33.33% mortality on tcL-08 while lowest mortality (13.33%) was observed in tcL-03 and tcL-15. Furthermore, the average weight and size of survived larvae fed on transgenic plants was significantly lesser than the average weight of larvae survived on non-transgenic plants. CONCLUSIONS The present study suggests the cry1Ia12 gene as an alternate insecticidal gene for the resistance management of cotton bollworms, especially PBW.
Collapse
Affiliation(s)
- Muhammad Tariq
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan.
| | - Bushra Tabassum
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Allah Bakhsh
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Abdul Munim Farooq
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Zahida Qamar
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Faheem Akram
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Farah Naz
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Abdul Qayyum Rao
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Kausar Malik
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan
| | - Idrees Ahmad Nasir
- National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, 53700, Lahore, Pakistan.
| |
Collapse
|
11
|
Verma K, Song XP, Yadav G, Degu HD, Parvaiz A, Singh M, Huang HR, Mustafa G, Xu L, Li YR. Impact of Agroclimatic Variables on Proteogenomics in Sugar Cane ( Saccharum spp.) Plant Productivity. ACS OMEGA 2022; 7:22997-23008. [PMID: 35847309 PMCID: PMC9280927 DOI: 10.1021/acsomega.2c01395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sugar cane (Saccharum spp. hybrids) is a major crop for sugar and renewable bioenergy worldwide, grown in arid and semiarid regions. China, the world's fourth-largest sugar producer after Brazil, India, and the European Union, all share ∼80% of the global production, and the remaining ∼20% of sugar comes from sugar beets, mostly grown in the temperate regions of the Northern Hemisphere, also used as a raw material in production of bioethanol for renewable energy. In view of carboxylation strategies, sugar cane qualifies as one of the best C4 crop. It has dual CO2 concentrating mechanisms located in its unique Krantz anatomy, having dimorphic chloroplasts located in mesophylls and bundle sheath cells for integrated operation of C4 and C3 carbon fixation cycles, regulated by enzymes to upgrade/sustain an ability for improved carbon assimilation to acquire an optimum carbon economy by producing enhanced plant biomass along with sugar yield under elevated temperature and strong irradiance with improved water-use efficiency. These superior intrinsic physiological carbon metabolisms encouraged us to reveal and recollect the facts for moving ahead with the molecular approaches to reveal the expression of proteogenomics linked with plant productivity under abiotic stress during its cultivation in specific agrizones globally.
Collapse
Affiliation(s)
- Krishan
K. Verma
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Xiu-Peng Song
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Garima Yadav
- Department
of Botany, University of Lucknow, Lucknow 226 007, India
| | - Hewan Demissie Degu
- College
of Agriculture, School of Plant and Horticulture Science Plant Biotechnology, Hawassa University, Sidama, Hawassa 05, Ethiopia
| | - Aqsa Parvaiz
- Centre
of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture FaisalabadFaisalabad 38000, Pakistan
| | - Munna Singh
- Department
of Botany, University of Lucknow, Lucknow 226 007, India
| | - Hai-Rong Huang
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Ghulam Mustafa
- Centre
of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture FaisalabadFaisalabad 38000, Pakistan
| | - Lin Xu
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| | - Yang-Rui Li
- Sugarcane
Research Institute, Guangxi Academy of Agricultural Sciences/, Key
Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi
Key Laboratory of Sugarcane Genetic Improvement Nanning, 530007 Guangxi, China
| |
Collapse
|
12
|
Karamchandani BM, Chakraborty S, Dalvi SG, Satpute SK. Chitosan and its derivatives: Promising biomaterial in averting fungal diseases of sugarcane and other crops. J Basic Microbiol 2022; 62:533-554. [DOI: 10.1002/jobm.202100613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023]
Affiliation(s)
| | - Saswata Chakraborty
- Department of Microbiology Savitribai Phule Pune University Pune Maharashtra India
| | - Sunil G. Dalvi
- Tissue Culture Section Vasantdada Sugar Institute Pune Maharashtra India
| | - Surekha K. Satpute
- Department of Microbiology Savitribai Phule Pune University Pune Maharashtra India
| |
Collapse
|
13
|
Abstract
AbstractRed rot of sugarcane was recorded more than 100 years before in Java, India, Argentina, USA and other countries, and it is one of the most devastating diseases of sugarcane. Since the cultivated sugarcane (Saccharum officinarum) has failed across the countries, systematic inter-specific hybridization betweenS. officinarumand the wild speciesS. spontaneumreferred as ‘nobilization’ was done to develop resistant varieties and the disease was managed in most of the countries. However, in the countries especially in Asia, varietal breakdown to red rot caused severe epiphytotics, by which the resistant varieties failed in the field at regular intervals. New pathogenic strains ofColletotrichum falcatumwith higher virulence were found responsible for varietal breakdown in sugarcane. Extensive cultivation of a single variety over large areas led to extensive crop damages due to ‘vertifolia’ effect in different decades in India. The current epiphytotic on the ruling variety Co 0238 has caused loss of more than one billion US dollars in the current season in the country. Detailed studies were done on pathogenic variation, epidemiology, screening methods, disease resistance mechanism, identifying effectors, pathogenicity determinants, antifungal genes and transgenics. Recently, complete genome and transcriptomes ofC. falcatumwere sequenced and pathogenicity hot spots and candidate secreted effector proteins were identified and this will further help to identify the candidate genes for further genetic manipulation. In spite of poor understanding on inheritance of resistance toC. falcatumin sugarcane, new varieties with red rot resistance were developed and deployed after each of the epiphytotic to save the crop. Further, other management practices including bioagents, chemicals and inducers were attempted and improved efficacy by mechanized sett treatment showed promising results to manage the disease under field conditions.
Collapse
|
14
|
Over-Expression of Endogenous SUGARWIN Genes Exalted Tolerance against Colletotrichum Infection in Sugarcane. PLANTS 2021; 10:plants10050869. [PMID: 33925956 PMCID: PMC8146068 DOI: 10.3390/plants10050869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
Sugarcane being the major contributor of sugar and potential source of biofuel around the globe, occupies significant commercial importance. Red rot is the most devastating disease of sugarcane, severely affecting its quality as well as yield. Here we report the overexpression of SUGARWIN1 and SUGARWIN2 genes in any field crop for the first time. For this purpose, SUGAWIN1 and SUGARWIN2 were cloned downstream of maize ubiquitin (Ubi-1) promoter to construct two independent expression cassettes. The bar gene conferring resistance against phosphinothricin was used as selectable marker. Embryogenic calli of sugarcane were bombarded with both expression cassettes and selected on regeneration medium supplemented with phosphinothricin. The phosphinothricin-resistant shoots were rooted and then, analyzed using molecular tools at the genomic as well as transcriptomic levels. The transcriptomic analysis, using real time qPCR, showed that expression of SUGARWIN1 (SWO) and SUGARWIN2 (SWT) was higher in transgenic plants as compared to untransformed plants. Our results further demonstrated that over expression of these genes under maize ubiquitin (Ubi-1) promoter causes significant restriction in proliferation of red rot causal agent, Colletotrichum falcatum in sugarcane transgenic plants, under in vitro conditions. This report may open up exciting possibilities to extend this technology to other monocots for the development of crops with better ability to withstand fungal pathogens.
Collapse
|
15
|
Budeguer F, Enrique R, Perera MF, Racedo J, Castagnaro AP, Noguera AS, Welin B. Genetic Transformation of Sugarcane, Current Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2021; 12:768609. [PMID: 34858464 PMCID: PMC8632530 DOI: 10.3389/fpls.2021.768609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 05/13/2023]
Abstract
Sugarcane (Saccharum spp.) is a tropical and sub-tropical, vegetative-propagated crop that contributes to approximately 80% of the sugar and 40% of the world's biofuel production. Modern sugarcane cultivars are highly polyploid and aneuploid hybrids with extremely large genomes (>10 Gigabases), that have originated from artificial crosses between the two species, Saccharum officinarum and S. spontaneum. The genetic complexity and low fertility of sugarcane under natural growing conditions make traditional breeding improvement extremely laborious, costly and time-consuming. This, together with its vegetative propagation, which allows for stable transfer and multiplication of transgenes, make sugarcane a good candidate for crop improvement through genetic engineering. Genetic transformation has the potential to improve economically important properties in sugarcane as well as diversify sugarcane beyond traditional applications, such as sucrose production. Traits such as herbicide, disease and insect resistance, improved tolerance to cold, salt and drought and accumulation of sugar and biomass have been some of the areas of interest as far as the application of transgenic sugarcane is concerned. Although there have been much interest in developing transgenic sugarcane there are only three officially approved varieties for commercialization, all of them expressing insect-resistance and recently released in Brazil. Since the early 1990's, different genetic transformation systems have been successfully developed in sugarcane, including electroporation, Agrobacterium tumefaciens and biobalistics. However, genetic transformation of sugarcane is a very laborious process, which relies heavily on intensive and sophisticated tissue culture and plant generation procedures that must be optimized for each new genotype to be transformed. Therefore, it remains a great technical challenge to develop an efficient transformation protocol for any sugarcane variety that has not been previously transformed. Additionally, once a transgenic event is obtained, molecular studies required for a commercial release by regulatory authorities, which include transgene insertion site, number of transgenes and gene expression levels, are all hindered by the genomic complexity and the lack of a complete sequenced reference genome for this crop. The objective of this review is to summarize current techniques and state of the art in sugarcane transformation and provide information on existing and future sugarcane improvement by genetic engineering.
Collapse
Affiliation(s)
- Florencia Budeguer
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Ramón Enrique
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - María Francisca Perera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Josefina Racedo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Atilio Pedro Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- Centro Cientifico Tecnológico (CCT) CONICET NOA Sur, San Miguel de Tucumán, Argentina
| | - Aldo Sergio Noguera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
| | - Bjorn Welin
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Las Talitas, Argentina
- *Correspondence: Bjorn Welin,
| |
Collapse
|
16
|
Particle bombardment technology and its applications in plants. Mol Biol Rep 2020; 47:9831-9847. [PMID: 33222118 DOI: 10.1007/s11033-020-06001-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Particle bombardment, or biolistics, has emerged as an excellent alternative approach for plant genetic transformation which circumvents the limitations of Agrobacterium-mediated genetic transformation. The method has no biological constraints and can transform a wide range of plant species. Besides, it has been the most efficient way to achieve organelle transformation (for both chloroplasts and mitochondria) so far. Along with the recent advances in genome editing technologies, conventional gene delivery tools are now being repurposed to deliver targeted gene editing reagents into the plants. One of the key advantages is that the particle bombardment allows DNA-free gene editing of the genome. It enables the direct delivery of proteins, RNAs, and RNPs into plants. Owing to the versatility and wide-range applicability of the particle bombardment, it will likely remain one of the major genetic transformation methods in the future. This article provides an overview of the current status of particle bombardment technology and its applications in the field of plant research and biotechnology.
Collapse
|
17
|
de Mello US, Vidigal PMP, Vital CE, Tomaz AC, de Figueiredo M, Peternelli LA, Barbosa MHP. An overview of the transcriptional responses of two tolerant and susceptible sugarcane cultivars to borer (Diatraea saccharalis) infestation. Funct Integr Genomics 2020; 20:839-855. [PMID: 33068201 DOI: 10.1007/s10142-020-00755-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Diatraea saccharalis constitutes a threat to the sugarcane productivity, and obtaining borer tolerant cultivars is an alternative method of control. Although there are studies about the relationship between the interaction of D. saccharalis with sugarcane, little is known about the molecular and genomic basis of defense mechanisms that confer tolerance to sugarcane cultivars. Here, we analyzed the transcriptional profile of two sugarcane cultivars in response to borer attack, RB867515 and SP80-3280, which are considered tolerant and sensitive to the borer attack, respectively. A sugarcane genome and transcriptome were used for read mapping. Differentially expressed transcripts and genes were identified and termed to as DETs and DEGs, according to the sugarcane database adopted. A total of 745 DETs and 416 DEGs were identified (log2|ratio| > 0.81; FDR corrected P value ≤ 0.01) after borer infestation. Following annotation of up- and down-regulated DETs and DEGs by similarity searches, the sugarcane cultivars demonstrated an up-regulation of jasmonic acid (JA), ethylene (ET), and defense protein genes, as well as a down-regulation of pathways involved in photosynthesis and energy metabolism. The expression analysis also highlighted that RB867515 cultivar is possibly more transcriptionally activated after 12 h from infestation than SP80-3280, which could imply in quicker responses by probably triggering more defense-related genes and mediating metabolic pathways to cope with borer attack.
Collapse
Affiliation(s)
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil.
| | - Camilo Elber Vital
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Adriano Cirino Tomaz
- Department of Agronomy, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Milene de Figueiredo
- Department of Agronomy, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
18
|
Swiontek Brzezinska M, Kalwasińska A, Świątczak J, Żero K, Jankiewicz U. Exploring the properties of chitinolytic Bacillus isolates for the pathogens biological control. Microb Pathog 2020; 148:104462. [PMID: 32835774 DOI: 10.1016/j.micpath.2020.104462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Plant fungal diseases generate serious losses in the agriculture. The bacteria producing biologically active substances that inhibit the growth of fungal pathogens can be an alternative to the chemicals. The chitinolytic bacteria were isolated from the rhizosphere of wheat (Triticum aestivum L.) and their physiological properties which may be useful in the promotion of plant growth have been investigated. Their chitinases and antifungal activity were studied. The isolates were also tested for indirect growth-promoting traits such as ammonia production, siderophore production, hydrogen cyanide production, and salicylic acid production. Two chitinolytic strains B3 and B5 were identified as Bacillus subtilis and Bacillus sp., respectively. They produced active chitinases on a medium containing shrimp shell powder. The purified chitinases having the molecular weight of 35-45 kDa inhibited the growth of important plant pathogens such as Alternaria alternata, and Fusarium oxysporum. Additionally, the isolates showed the ability to produce a broad range of biological substances promoting the growth of plants.
Collapse
Affiliation(s)
- Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland.
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Klaudia Żero
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Urszula Jankiewicz
- Department of Biochemistry, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| |
Collapse
|
19
|
Resistance to Chilo infuscatellus (Lepidoptera: Pyraloidea) in transgenic lines of sugarcane expressing Bacillus thuringiensis derived Vip3A protein. Mol Biol Rep 2020; 47:2649-2658. [PMID: 32128710 DOI: 10.1007/s11033-020-05355-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Sustainable agriculture requires management of insect pests through resistance development. The biological potential of Cry toxins and Vip protein, derived from Bacillus species, is widely recognized in this context. The identification, evaluation of new insecticidal protein genes with different mode of action and entomotoxicity against sugarcane stem borer (Chilo infuscatellus) is important to overcome evolved insect resistance. In this study, we reported the generation of transgenic sugarcane lines expressing Vip3A toxin driven by polyubiquitin promoter for resistance against sugarcane stem borer. The V0 transgenic sugarcane plants were initially characterized by GUS histochemical staining, PCR and Southern blot assays that confirmed genetic transformation of twelve independent sugarcane lines. Variable transgene expression was found among transgenic sugarcane lines when revealed through Realtime quantitative PCR (RT-qPCR) with highest in S10 line while minimum was observed in V5 line. A similar expression pattern was observed in transgenic sugarcane lines for Vip3A protein concentration which ranged from 5.35 to 8.89 µg/mL. A direct correlation was observed between the Vip3A protein and Vip3A transgene expression in the transgenic sugarcane lines. In in-vitro insect bioassay on V1, Vip3A transgenic sugarcane lines exhibited high resistance to C. infuscatellus with upto 100% mortality compared to the control sugarcane line. Our findings suggest that a single copy insertion of Vip3A gene in transgenic sugarcane lines render them resistant to borer and these lines can be potentially used for generation of insect resistant transgenic sugarcane and could also be employed in gene pyramiding with Bt toxin to prolong resistance.
Collapse
|
20
|
Singh G, Arya SK. Antifungal and insecticidal potential of chitinases: A credible choice for the eco-friendly farming. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|