1
|
Lupu A, Jechel E, Mihai CM, Mitrofan EC, Fotea S, Starcea IM, Ioniuc I, Mocanu A, Ghica DC, Popp A, Munteanu D, Sasaran MO, Salaru DL, Lupu VV. The Footprint of Microbiome in Pediatric Asthma-A Complex Puzzle for a Balanced Development. Nutrients 2023; 15:3278. [PMID: 37513696 PMCID: PMC10384859 DOI: 10.3390/nu15143278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Considered to be of greater complexity than the human genome itself, the microbiome, the structure of the body made up of trillions of bacteria, viruses, and fungi, has proven to play a crucial role in the context of the development of pathological processes in the body, starting from various infections, autoimmune diseases, atopies, and culminating in its involvement in the development of some forms of cancer, a diagnosis that is considered the most disabling for the patient from a psychological point of view. Therefore, being a cornerstone in the understanding and optimal treatment of a multitude of ailments, the body's microbiome has become an intensively studied subject in the scientific literature of the last decade. This review aims to bring the microbiome-asthma correlation up to date by classifying asthmatic patterns, emphasizing the development patterns of the microbiome starting from the perinatal period and the impact of pulmonary dysbiosis on asthmatic symptoms in children. Likewise, the effects of intestinal dysbiosis reflected at the level of homeostasis of the internal environment through the intestine-lung/vital organs axis, the circumstances in which it occurs, but also the main methods of studying bacterial variability used for diagnostic purposes and in research should not be omitted. In conclusion, we draw current and future therapeutic lines worthy of consideration both in obtaining and maintaining remission, as well as in delaying the development of primary acute episodes and preventing future relapses.
Collapse
Affiliation(s)
- Ancuta Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Jechel
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | | | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, 800008 Galati, Romania
| | - Iuliana Magdalena Starcea
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Mocanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Catalin Ghica
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Popp
- Faculty of General Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dragos Munteanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Oana Sasaran
- Faculty of General Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Delia Lidia Salaru
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Prazdnova EV, Mazanko MS, Chistyakov VA, Bogdanova AA, Refeld AG, Kharchenko EY, Chikindas ML. Antimutagenic Activity as a Criterion of Potential Probiotic Properties. Probiotics Antimicrob Proteins 2022; 14:1094-1109. [PMID: 35028920 DOI: 10.1007/s12602-021-09870-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
The antimutagenic activity of probiotic strains has been reported over several decades of studying the effects of probiotics. However, this activity is rarely considered an important criterion when choosing strains to produce probiotic preparations and functional food. Meanwhile, the association of antimutagenic activity with the prevention of oncological diseases, as well as with a decrease in the spread of resistant forms in the microbiota, indicates its importance for the selection of probiotics. Besides, an antimutagenic activity can be associated with probiotics' broader systemic effects, such as geroprotective activity. The main mechanisms of such effects are considered to be the binding of mutagens, the transformation of mutagens, and inhibition of the transformation of promutagens into antimutagens. Besides, we should consider the possibility of interaction of the microbiota with regulatory processes in eukaryotic cells, in particular, through the effect on mitochondria. This work aims to systematize data on the antimutagenic activity of probiotics and emphasize antimutagenic activity as a significant criterion for the selection of probiotic strains.
Collapse
Affiliation(s)
- Evgeniya V Prazdnova
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia. .,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.
| | - Maria S Mazanko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Evolutionary Biomedicine Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Aleksandr G Refeld
- Cell Biophysics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Evgeniya Y Kharchenko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Fong FLY, El-Nezami H, Mykkänen O, Kirjavainen PV. The Effects of Single Strains and Mixtures of Probiotic Bacteria on Immune Profile in Liver, Spleen, and Peripheral Blood. Front Nutr 2022; 9:773298. [PMID: 35495948 PMCID: PMC9039324 DOI: 10.3389/fnut.2022.773298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotic bacteria have potential use as immunomodulators but comparative data on their immunological effects are very limited. The aim of this study was to characterize the effect of oral administration of probiotic strains, alone or as mixtures, on systemic and organ-specific immune responses. For this purpose, healthy C57BL/6 mice were perorally administered probiotics for 3 weeks. A total of five common probiotic strains, Lactobacillus rhamnosus species GG (LGG) and LC705, Bifidobacterium breve 99 (Bb99), Propionibacterium freudenreichii Shermanii JS (PJS), and Escherichia coli Nissle 1917 (EcN), and two of their mixtures, were tested. Livers, spleens, and blood were collected for investigation. A number of five treatments increased the abundance of the natural killer (NK) cells. Bb99 had the most prominent effect on hepatic NK cells (20.0 ± 1.8%). LGG (liver: 5.8 ± 1.0%; spleen: 1.6 ± 0.4%), Bb99 (liver: 13.9 ± 4.3%; spleen: 10.3 ± 3.7%), and EcN (liver: 8.5 ± 3.2%; spleen: 1.0 ± 0.2%) increased the percentage of both the hepatic and splenic T-helper 17 cells. Moreover, LGG (85.5 ± 3.0%) and EcN (89.6 ± 1.2%) increased the percentage of splenic regulatory T-cells. The tested mixtures of the probiotics had different immunological effects from their individual components on cell-mediated responses and cytokine production. In conclusion, our results confirm that the immunomodulatory potential of the probiotics is strain- and organ/tissue-specific, and the effects of probiotic mixtures cannot be predicted based on their single constituents.
Collapse
Affiliation(s)
- Fiona Long Yan Fong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Otto Mykkänen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Environmental Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
4
|
SHI J, LI H, LIANG S, EVIVIE SE, HUO G, LI B, LIU F. Selected lactobacilli strains inhibit inflammation in LPS-induced RAW264.7 macrophages by suppressing the TLR4-mediated NF-κB and MAPKs activation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.107621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jialu SHI
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Huizhen LI
- Northeast Agricultural University, China; Northeast Agricultural University, China; Jiangnan University, China
| | - Shengnan LIANG
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Smith Etareri EVIVIE
- Northeast Agricultural University, China; Northeast Agricultural University, China; University of Benin, Nigeria; University of Benin, Nigeria
| | - Guicheng HUO
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Bailiang LI
- Northeast Agricultural University, China; Northeast Agricultural University, China
| | - Fei LIU
- Northeast Agricultural University, China; Northeast Agricultural University, China
| |
Collapse
|
5
|
Zolotukhin PV, Prazdnova EV, Chistyakov VA. Methods to Assess the Antioxidative Properties of Probiotics. Probiotics Antimicrob Proteins 2019; 10:589-599. [PMID: 29249065 DOI: 10.1007/s12602-017-9375-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Probiotics prove useful in correcting and preventing numerous health conditions, including those having severe impact on society, e.g., obesity and cancer. Notably, these capabilities of probiotics appear to be associated with their antioxidant properties. The mechanisms of antioxidant action of probiotics range from immediate biochemical scavenging of reactive substances to induction of signaling events leading to increased capacity of the host's cytoprotective systems. Since the antioxidant effects of probiotics significantly vary in types and details, a broad selection of methods of assessment of these properties is required in order to identify, characterize, and develop novel probiotics for medical purposes, as well as to explain the mechanisms of action of probiotics already in use in healthcare. This review revises the versatile toolbox, which can be used to assess the antioxidant properties of probiotics.
Collapse
|
6
|
Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages. J Immunol Res 2017; 2017:4607491. [PMID: 28758133 PMCID: PMC5516745 DOI: 10.1155/2017/4607491] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 01/15/2023] Open
Abstract
Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214) showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation). Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages.
Collapse
|
7
|
Allergic enteritis in children. GASTROENTEROLOGY REVIEW 2017; 12:1-5. [PMID: 28337229 PMCID: PMC5360665 DOI: 10.5114/pg.2017.65677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/21/2015] [Indexed: 01/27/2023]
Abstract
The gastrointestinal form of food allergy is very common in children. The most frequently observed types are allergic proctitis and proctocolitis. In most cases the symptoms subside within the first 2 months of life. The babies seem healthy, and the only abnormality is a small amount of blood in stool. Symptoms can also include small intestine inflammation and colitis. Patients may present with irritability, abdominal pain, flatulence, colic, postprandial vomiting, chronic diarrhoea, and hindered physical development. The diagnosis of allergic enteritis is based on the clinical examination and the results of additional tests including an endoscopy of the lower digestive tract with histopathological assessment. Cow’s milk proteins are the most common nutrition proteins responsible for the development of the symptoms of allergic enteritis. The most essential method of treating allergic enteritis is the elimination diet. The symptoms should subside within 1–2 weeks from the beginning of the diet.
Collapse
|
8
|
Prazdnova EV, Chistyakov VA, Churilov MN, Mazanko MS, Bren AB, Volski A, Chikindas ML. DNA-protection and antioxidant properties of fermentates from Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933. Lett Appl Microbiol 2015; 61:549-54. [PMID: 26370336 DOI: 10.1111/lam.12491] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/25/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED DNA protective and antioxidant activity of Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933 were evaluated by Escherichia coli-based Lux biosensors. Two biosensor strains of E. coli, MG1655 (pColD-lux) and MG1655 (pSoxS-lux), which react on DNA damage and superoxide-anion radical activity, were used. SOS-response and Sox-response were stimulated by addition of dioxidine (2,3-Quinoxalinedimethanol,1,4-dioxide) and paraquat (N,N'-dimethyl-4,4'-bipyridinium dichloride) respectively. Preparations of both Bacillus fermentates demonstrated DNA protective and antioxidant (superoxide scavenging) activity (up to 60·19%). The strain К1933 is, in general, characterized by higher DNA protective activity (28·85%), with parameters of antioxidant activity of both bacilli strains being statistically not significantly different. Sporogenous potential probiotic micro-organisms with antioxidant and DNA protective activities can become an effective tool for compensation of various negative oxidative stress processes in humans. SIGNIFICANCE AND IMPACT OF THE STUDY In humans, oxidative stress is a cause or an important component of many serious diseases, as well as being one of the age influencing factors. Environmental stresses lead to the increase in levels of reactive oxygen species (ROS). Oxidative DNA damage is a side effect of nonspecific inflammation. These human health challenging factors trigger the search for health-promoting bacteria capable of production of antioxidants and DNA-protectors. In this study, two Bacillus strains of interest were shown to produce noticeable DNA protective and antioxidant activities.
Collapse
Affiliation(s)
- E V Prazdnova
- Academy of Biology and Biotechnologies, Southern FederalUniversity, Rostov-on-Don, Russia
| | - V A Chistyakov
- Academy of Biology and Biotechnologies, Southern FederalUniversity, Rostov-on-Don, Russia
| | - M N Churilov
- Academy of Biology and Biotechnologies, Southern FederalUniversity, Rostov-on-Don, Russia
| | - M S Mazanko
- Academy of Biology and Biotechnologies, Southern FederalUniversity, Rostov-on-Don, Russia
| | - A B Bren
- Academy of Biology and Biotechnologies, Southern FederalUniversity, Rostov-on-Don, Russia
| | - A Volski
- School of Arts and Science, Rutgers State University, New Brunswick, NJ, USA
| | - M L Chikindas
- Astrabiol, LLC, Highland Park, NJ, USA.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition and Health, New Brunswick, NJ, USA
| |
Collapse
|
9
|
Gillissen A, Paparoupa M. Inflammation and infections in asthma. THE CLINICAL RESPIRATORY JOURNAL 2015; 9:257-69. [PMID: 24725460 PMCID: PMC7162380 DOI: 10.1111/crj.12135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/26/2014] [Accepted: 04/04/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Asthma is driven by an inflammatory response against normally harmless environmental inorganic and organic compounds in the respiratory tract. Immune responses to airborne pathogens such as viruses and bacteria may reduce the allergic responses but are also known to trigger asthma attacks and eventually lead to severe disease condition. OBJECTIVE To investigate the role of respiratory pathogens concerning the induction or protection against acute or chronic asthma manifestations. METHODS We included 131 articles for the final review according to their relevance with the subject. RESULTS There is apparently contradictory interaction of respiratory germs in the airways of asthmatics which may be protective on one angle but deleterious on the other. CONCLUSION The relationship between inflammation and remodeling and the pathogenic role of viral and bacterial infection in the airways of asthmatic patients is still highly debatable and incompletely understood.
Collapse
Affiliation(s)
- Adrian Gillissen
- Department of Pulmonary MedicineGeneral Hospital KasselKasselGermany
| | - Maria Paparoupa
- Department of Pulmonary MedicineGeneral Hospital KasselKasselGermany
| |
Collapse
|
10
|
Myles IA. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr J 2014; 13:61. [PMID: 24939238 PMCID: PMC4074336 DOI: 10.1186/1475-2891-13-61] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/23/2014] [Indexed: 02/08/2023] Open
Abstract
While numerous changes in human lifestyle constitute modern life, our diet has been gaining attention as a potential contributor to the increase in immune-mediated diseases. The Western diet is characterized by an over consumption and reduced variety of refined sugars, salt, and saturated fat. Herein our objective is to detail the mechanisms for the Western diet's impact on immune function. The manuscript reviews the impacts and mechanisms of harm for our over-indulgence in sugar, salt, and fat, as well as the data outlining the impacts of artificial sweeteners, gluten, and genetically modified foods; attention is given to revealing where the literature on the immune impacts of macronutrients is limited to either animal or in vitro models versus where human trials exist. Detailed attention is given to the dietary impact on the gut microbiome and the mechanisms by which our poor dietary choices are encoded into our gut, our genes, and are passed to our offspring. While today's modern diet may provide beneficial protection from micro- and macronutrient deficiencies, our over abundance of calories and the macronutrients that compose our diet may all lead to increased inflammation, reduced control of infection, increased rates of cancer, and increased risk for allergic and auto-inflammatory disease.
Collapse
Affiliation(s)
- Ian A Myles
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike Building 33, Room 2W10A, Bethesda, MD, 20892, Maryland.
| |
Collapse
|
11
|
Lin WY, Fu LS, Lin HK, Shen CY, Chen YJ. Evaluation of the effect of Lactobacillus paracasei (HF.A00232) in children (6-13 years old) with perennial allergic rhinitis: a 12-week, double-blind, randomized, placebo-controlled study. Pediatr Neonatol 2014; 55:181-8. [PMID: 24269033 DOI: 10.1016/j.pedneo.2013.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/02/2013] [Accepted: 10/07/2013] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Dietary supplementation with probiotics alters intestinal microflora of children and may have immunomodulatory effects in prevention of allergic diseases. The aim of this study was to evaluate the effects of Lactobacillus paracasei (LP), strain HF.A00232, as a supplementary agent to levocetirizine in treating children with perennial allergic rhinitis (AR). METHODS This study was a 12-week, double-blind, randomized, placebo-controlled trial. Sixty children with AR aged 6-13 years with nasal total symptoms score (NTSS) ≥5 who fulfilled the inclusion criteria were enrolled. Patients were randomized into two groups with 28 participants receiving levocetirizine plus placebo and 32 participants receiving regular levocetirizine plus LP (HF.A00232) for the first 8 weeks, with a shift to levocetirizine as rescue treatment during the following 4 weeks. Parameters evaluated, including nasal, throat, and eye TSS (NTSS, TTSS, and ETSS, respectively), TSS and levocetirizine use, were recorded daily. Physical examinations and Pediatric Rhinoconjunctivitis Quality of Life Questionnaires (PRQLQs) were administered at each visit. In addition, blood samples were obtained for evaluation of cytokines including interleukin-4, interferon-γ, interleukin-10, and transforming growth factor-β at baseline, Week 8, and Week 12. RESULTS The LP (HF.A00232) group had significantly lower PRQLQ scores even after discontinuing regular levocetirizine from Week 9 to Week 12 (p < 0.01). There was more improvement in individual parameters in the PRQLQ, including sneezing (p = 0.005), itchy nose (p = 0.040), and swollen puffy eyes (p = 0.038), in the LP (HF.A00232) group. No significant differences in TSS, NTSS, TTSS, ETSS, or cytokine levels were found between the two groups. CONCLUSION Dietary supplementation with LP (HF.A00232) provided no additional benefit when used with regular levocetirizine in treating AR in the initial 8 weeks of our study, but there was a continuing decrease in PRQLQ scores, as well as a significant improvement in individual symptoms of sneezing, itchy nose, and swollen eyes, after discontinuing regular levocetirizine treatment.
Collapse
Affiliation(s)
- Wen-Ya Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Lin-Shien Fu
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Pediatrics, National Yang-Ming University, Taipei, Taiwan; Institute of Technology, National Chi-Nan University, Nanto, Taiwan.
| | - Heng-Kuei Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chian-Yin Shen
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yee-Jun Chen
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Boonma P, Spinler JK, Qin X, Jittaprasatsin C, Muzny DM, Doddapaneni H, Gibbs R, Petrosino J, Tumwasorn S, Versalovic J. Draft genome sequences and description of Lactobacillus rhamnosus strains L31, L34, and L35. Stand Genomic Sci 2014; 9:744-54. [PMID: 25197459 PMCID: PMC4148986 DOI: 10.4056/sigs.5048907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus rhamnosus is a facultative, lactic acid bacterium in the phylum Firmicutes. Lactobacillus spp. are generally considered beneficial, and specific strains of L. rhamnosus are validated probiotics. We describe the draft genomes of three L. rhamnosus strains (L31, L34, and L35) isolated from the feces of Thai breastfed infants, which exhibit anti-inflammatory properties in vitro. The three genomes range between 2.8 - 2.9 Mb, and contain approximately 2,700 protein coding genes.
Collapse
Affiliation(s)
- Prapaporn Boonma
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Jennifer K Spinler
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas, USA ; Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Chutima Jittaprasatsin
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Richard Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Joe Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - James Versalovic
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas, USA ; Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA ; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
|
14
|
Evaluation of safety and tolerance of microencapsulated Lactobacillus reuteri NCIMB 30242 in a yogurt formulation: a randomized, placebo-controlled, double-blind study. Food Chem Toxicol 2012; 50:2216-23. [PMID: 22425689 DOI: 10.1016/j.fct.2012.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
Probiotic organisms have shown promise in treating diseases. Previously, we have reported on the efficacy of microencapsulated Lactobacillus reuteri NCIMB 30242 in a yogurt formulation at lowering serum cholesterol levels in otherwise healthy hypercholesterolemic adults. This study investigates the safety and toxicology of oral ingestion of microencapsulated L. reuteri NCIMB 30242 in a yogurt formulation. A randomized group of 120 subjects received a dose of 5 × 10(10) CFU microencapsulated L. reuteri NCIMB 30242 in yogurt (n=59) or placebo yogurt (n=61) twice/day for 6 weeks. Clinical chemistry and hematological parameters of safety were analyzed. Fecal samples were collected at these time points for the analysis of deconjugated bile acids. The frequency, duration and intensity of adverse events (AEs) and clinical significance of safety parameters were recorded for both groups. No clinically significant differences between the probiotic yogurt and placebo yogurt treated groups were detected in either the blood clinical chemistry or hematology results and there was no significant increase in fecal deconjugated bile acids (P>0.05) between treated and control groups. The frequency and intensity of AEs was similar in the two groups. These results demonstrate the safe use of this formulation in food.
Collapse
|